Appendix D

Water, Wastewater, and Stormwater Reports

Appendix D-1 Water and Wastewater Feasibility Study Acorn Environmental

Water and Wastewater Feasibility Study

Prepared by HydroScience Engineers

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

SE	CTION 1	1 – Introduction	1-1
1.1	Prop	oosed Project Site Alternatives	1-1
1.2	Repo	ort Organization	1-2
SE	CTION 2	2 – Project Alternatives	2-1
2.1	Prog	gram Alternatives	2-1
2.2		er Supply Requirements	
	2.2.1	Water Supply	
2.3	Wast 2.3.1	stewater Influent Water Quality	
	2.3.1	Capacity	
	2.3.3	Wastewater Treatment Facilities	
	2.3.4	Effluent Disposal	
SE	CTION 3	3 – Local Hydrogeology	3-1
3.1	Santa	ta Rosa Valley Basin	3-1
	3.1.1	Windsor Basin	3-2
3.2	Proje	ect Site Geotechnical Conditions	
3.3		al Groundwater Supply	
	3.3.1	Esposti Park Well	
SE		4 – Background and Regulatory Issues	
4.1		er Supply	
	4.1.1	Groundwater Supply and Management	
4.2)	ycled Water	
4.3	Wast 4.3.1	stewater	
	4.3.1	Baseline Monitoring Program	
	4.3.3	Cooling Tower Brine Generation and Disposal	
SE	CTION 5	5 – Water Facility Requirements	
5.1		er Production Wells	
5.2	Wate	er Treatment Plant	5-2
5.3	Wate	er Storage Tank and Pump Station	
SE		6 – Wastewater Facility Requirements	
6.1		stewater Collection System	
6.2		stewater Treatment Plant	
	6.2.1	Coarse Screening Facility	6-3
	6.2.2	Headworks	
	6.2.3	Immersed Membrane Bioreactor System (Packaged)	
	6.2.4 6.2.5	Ultraviolet Disinfection	
	6.2.5 6.2.6	Effluent Pump Station	
	6.2.7	Operation and Maintenance	
6.3		ycled Water	
-	6.3.1	Recycled Water Storage Tank and Pump Station	6-12
	6.3.2	Seasonal Storage and Discharge Facilities	6-14

SECTION 7 – Recommendations7-1			
7.1	Water Supply7-1		
7.2	Wastewater Handling7-1		
SECTION 8 – References			

LIST OF APPENDICES

Appendix A:	Projected Water and Wastewater Flows
Appendix B:	Windsor Groundwater Well Installation and Testing Project Summary Report
Appendix C:	Esposti Supply Well Redevelopment, Pumping Test and Treatment Feasibility Study
Appendix D:	Geotechnical Data Memorandum

LIST OF FIGURES

Figure 1-1: Vicinity and Project Location Map	1-3
Figure 1-2: Aerial Site Plan	1-4
Figure 2-1: Proposed Site Plan – Alternative A	2-4
Figure 2-2: Proposed Site Plan - Alternative B	2-5
Figure 2-3: Proposed Site Plan - Alternative C	2-6
Figure 2-4: Local Groundwater Well Site Map	2-8
Figure 2-5: Wastewater Treatment Process Flow Diagram	2-15
Figure 2-6: USGS Gauging Station Location	2-20
Figure 2-7: Option 1 – Alternative A	2-26
Figure 2-8: Option 2 – Alternative A	2-27
Figure 2-9: Option 3 – Alternative A	2-28
Figure 2-10: Option 4 – Alternative A	2-29
Figure 2-11: Option 1 - Alternative B	2-32
Figure 2-12: Option 2 - Alternative B	2-33
Figure 2-13: Option 1 - Alternative C	2-35
Figure 5-1: Preliminary Water Treatment Plant Layout	5-3
Figure 5-2: Preliminary Process Flow Diagram	5-4
Figure 5-3: Typical Potable Water Storage Tank	5-7
Figure 6-1: Typical Influent Lift Station	6-2
Figure 6-2: Typical Coarse Screening Facility	6-4
Figure 6-3: Typical Headworks Facility	6-6

Figure 6-4: Preliminary Wastewater Treatment Facility Plan	6-9
Figure 6-5: Preliminary Operations Building Floor Plan	. 6-10
Figure 6-6: Typical Recycled Water Storage Tank	. 6-15
Figure 6-7: Typical Open Storage Basin Elevation	. 6-16

LIST OF TABLES

Table 2-1: Comparison of Alternatives and Existing Site Demands	
Table 2-2: Projected Water Demands for Alternative A, B & C	2-2
Table 2-3: Projected Water Supply Design Flows	2-3
Table 2-4: Typical WWTP Influent Water Quality	2-9
Table 2-5: Projected Wastewater Flows for Alternative A	2-10
Table 2-6: Projected Wastewater Flows for Alternative B	2-11
Table 2-7: Projected Wastewater Flows for Alternative C	2-12
Table 2-8: WWTP Design Flows for Alternative A, B & C	2-13
Table 2-9: Typical Irrigation Demands for Regional Turf Grasses	2-18
Table 2-10: Daily Average Streamflow at USGS Gauging Station #11466800	2-22
Table 2-11: Beneficial Uses of Mark West Creek and Russian River	2-23
Table 2-12: Water Quality Objectives of Receiving Waters	2-24
Table 2-13: Estimated On-Site Seasonal Disposal Requirements for Alternative A	2-30
Table 2-14: Estimated On-Site Seasonal Disposal Requirements for Alternative B	2-31
Table 2-15: Estimated On-site Seasonal Disposal Requirements for Alternative C	2-34
Table 3-1: Esposti Park Lithologic Summary	3-4
Table 3-2: Esposti Park Screened Intervals and Lengths	3-5
Table 5-1: Recommended Water Production Well Design Criteria	5-2
Table 5-2: Recommended Water Treatment Plant Design Criteria for Alternative A	5-5
Table 5-3: Recommended Water Storage Tank and Pump Station Design Criteria	5-6
Table 6-1: Recommended Sanitary Sewage Lift Station Design Criteria	6-1
Table 6-2: Coarse Screen Design Criteria	6-3
Table 6-3: Headworks Design Criteria	6-5
Table 6-4: UV Disinfection Design Criteria	6-11
Table 6-5: Recycled Water Storage Tank Design Criteria	6-13

LIST OF ACRONYMS AND ABBREVIATIONS

AF	acre-feet
bgs	below ground surface
BOD	biochemical oxygen demand
CFR	Code of Federal Regulations
СТ	product of chlorine residual and modal contact time measured at the same
DU	dwelling unit
DWR	Department of Water Resources
ET	evapotranspiration rate
Ft	feet
Ft^2	square feet
gal	gallons
gpd	gallons per day
gpm	gallons per minute
IHS	Indian Health Services
LS	lump sum
MBR	membrane bioreactor
MCL	Maximum Contaminant Level
MG	million gallons
mg/L	milligrams per liter
µg/L	micrograms per liter
MGD	million gallons per day
MPN	Most Probable Number
NPDES	National Pollution Discharge Elimination System
NTU	nephelometric turbidity units
PLC	programmable logic controller
RWQCB	Regional Water Quality Control Board
SWRCB	State Water Resources Control Board
SDS	Safety Data Sheets
sf	square feet
TSS	total suspended solids
UV	Ultraviolet
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey

WWTP Wastewater Treatment Plant

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 1 – INTRODUCTION

HydroScience Engineers, Inc. (HydroScience) was retained by Acorn Environmental to prepare a feasibility study evaluating the regulatory, technical, and engineering issues associated with supplying water and handling wastewater from the Shiloh Resort and Casino Project (Project) proposed by the Koi Nation of Northern California. The objectives of this water and wastewater feasibility study are to:

- Estimate the proposed Project's water supply and wastewater disposal requirements;
- Describe the facilities that would be required to supply the required water, and treat the required amount of wastewater;
- Develop a strategy for disposing of wastewater generated by the Project; and
- Identify applicable water and wastewater permitting issues for the proposed Project.

This report evaluates these objectives for two development alternatives located at the project site. Alternative A – Proposed Resort and Casino Project consists of a resort hotel and casino, with event center and conference space, parking structure, and surface parking lots. Alternative B – Reduced Intensity Resort and Casino Project plan consists of a smaller resort hotel and casino without event center or large ballroom and no surface parking lots. A third development alternative (non-gaming) was also evaluated which consists of a resort hotel, winery production facility, tasting room, and dining area and is identified as Alternative C – Proposed Resort and Winery Facility Project. This document describes each alternative's water supply and wastewater requirements, identifies projected flows and demands, and evaluates alternative effluent disposal strategies.

Sections 5 and 6 present a plan summarizing the facilities required to meet the more conservative objectives for Alternative A.

1.1 **Proposed Project Site Alternatives**

The proposed Project would be constructed in an unincorporated area of Sonoma County just outside the Town of Windsor (Town) (**Figure 1-1**). The 68.6-acre (ac) parcel located at the intersection of East Shiloh Road and Old Redwood Highway would be brought into Trust as part of the proposed Project. A map showing the location of the site is shown in **Figure 1-2**.

The proposed land use on this parcel includes a new casino (excluded in Alternative C), hotel, parking, restaurants, and other associated facilities and are further described in **Section 2.1**. Three separate programs, each comprising of different densities and facilities, will be evaluated as part of this analysis: Alternative A – Proposed Resort and Casino Project, Alternative B – Reduced Intensity Resort and Casino Project and Alternative C – Proposed Resort and Winery Facility Project. See **Appendix A** for a full list of the proposed facilities.

1.2 Report Organization

This report is divided into eight sections as described below.

- Section 1 Introduction
- Section 2 Project Alternatives
- Section 3 Local Hydrogeology
- Section 4 Background and Regulatory Issues
- Section 5 Water Facility Requirements
- Section 6 Wastewater Facility Requirements
- Section 7 Recommendations
- Section 8 References

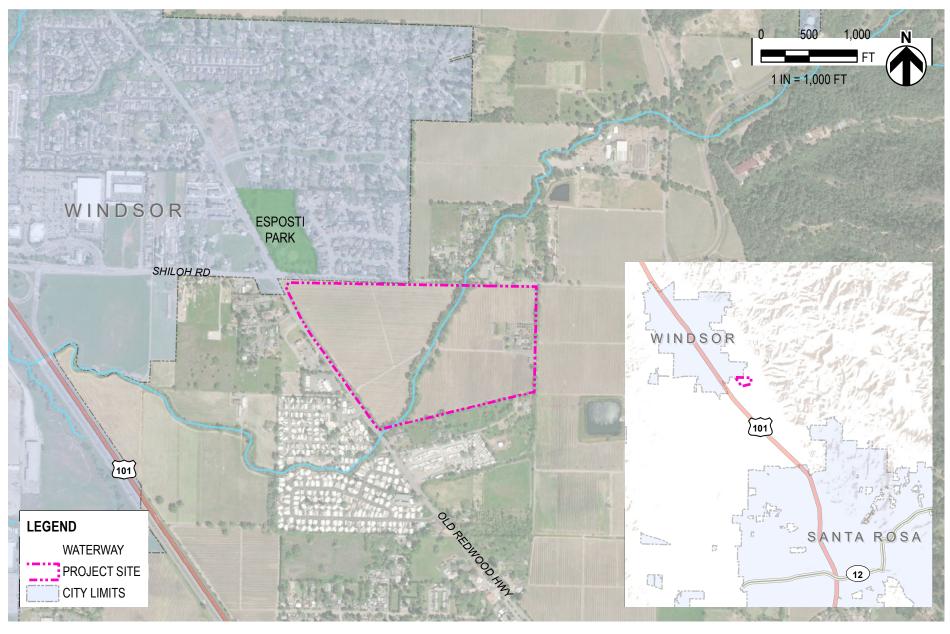
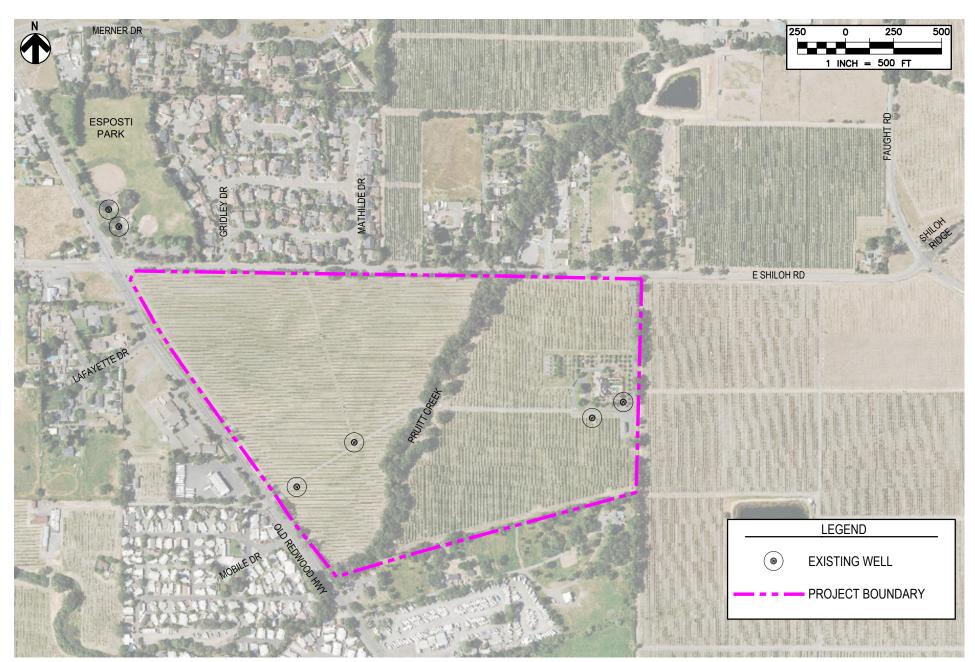



Figure 1-1 Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Vicinity and Project Location Map

Figure 1-2 Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Aerial Site Plan

SECTION 2 – PROJECT ALTERNATIVES

This section provides a summary of each of the three program alternatives and the related water and wastewater facility requirements. For each program alternative, the following information is summarized:

- Water supply requirements;
- Wastewater generated, including discussions about influent water quality, treatment options, and effluent disposal options; and
- Recycled water.

Each alternative is individually described below.

2.1 **Program Alternatives**

There are two program alternatives that are considered in this feasibility study to understand the range of water and wastewater facility needs. Each program is summarized below:

- Alternative A: This program includes a total approximate footprint of 805,000 ft², including a casino, multiple restaurants and bars, meeting rooms, 44,900 ft² of ballrooms, a spa, and a 400-room hotel. Approximately 183,100 ft² of on-site parking spaces will be located on the site east of the gaming facility and would include a 3,692-count parking structure adjacent to paved surface parking. A map of the Alternative A program site plan is included as **Figure 2-1**.
- Alternative B: This program includes a total approximate footprint of 554,000 ft², including a casino, multiple restaurants and bars, meeting rooms, 12,400 ft² of ballrooms, a spa, and a 200-room hotel. This program would also include a 3,692-count parking structure adjacent to paved surface parking. A map of the Alternative B program site plan is included as **Figure 2-2**.
- Alternative C: This program includes a total approximate footprint of 212,400 ft², including a dining facility, hotel, spa, winery, and visitor center with a dedicated tasting area. Approximately 109,700 ft² of on-site parking will also be located east of the facilities. A map of the Alternative C program site plan is included as **Figure 2-3**.

2.2 Water Supply Requirements

Existing water demands for the proposed project site include vineyard irrigation and single-family home use. Water usage was estimated based on a demand rate of 0.317 AF per year/acre and 319 gpd/DU for vineyard irrigation and residential use, respectively. The demand rate for vineyard irrigation is discussed in **Section 2.3.4.1**. The residential water demand rate was based on the 2011 Town of Windsor Water Master Plan estimate for future residential demands. Actual billing/metered data was not available. **Table 2-1** compares the projected average annual demands for Alternatives A, B, and C with estimated existing usage for the proposed project site.

Program Alternative	Average Annual Demand (AFY)	
Existing Usage	20	
Alternative A	315	
Alternative B	215	
Alternative C	55	

Table 2-1: Comparison of Alternatives and Existing Site Demands

The average water demand, supplemented with recycled water, for Alternatives A, B, and C is shown in **Table 2-2**. The average water demand is expected to be representative of typical daily water use. Peak water demands, which would typically occur on the weekends, were calculated using similar methodology.

Program Alternative	Parameter	Projected Water Demands (gpd)	Projected Water Demands with Recycled Water (gpd)
Alternative A	Average Daily Flow	278,000	170,000
Allemative A	Peak Day Flow	402,000	294,000
Alternative B	Average Daily Flow	189,000	117,000
Allemative D	Peak Day Flow	258,000	186,000
Alternative C	Average Daily Flow	48,000	19,000
Alternative C	Peak Day Flow	64,000	35,000

Table 2-2: Projected Water Demands for Alternative A, B & C

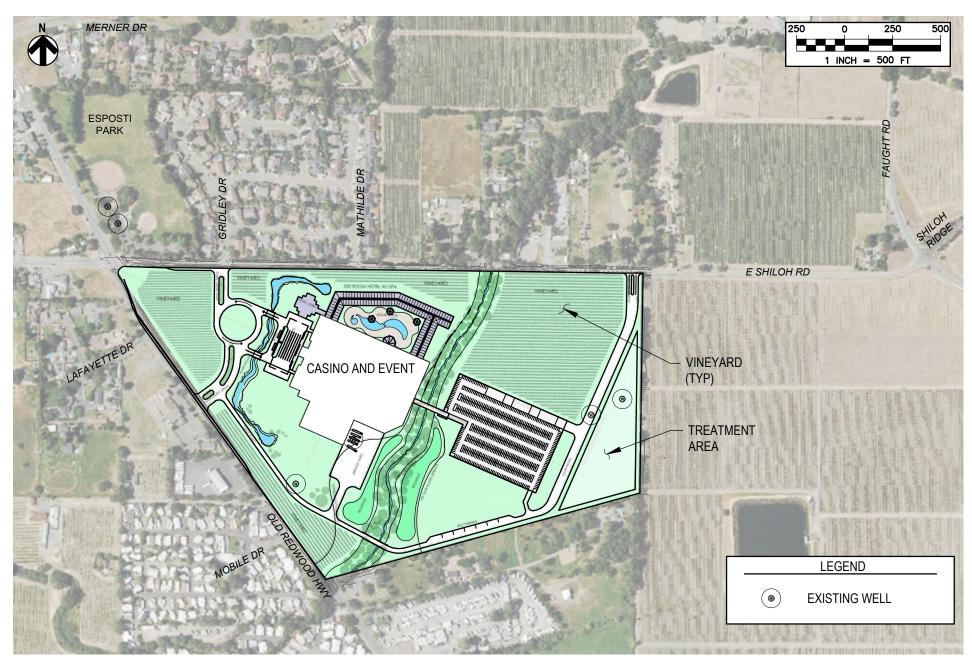
The experience of other similarly sized gaming and entertainment facilities has shown that water demands can be significantly reduced when recycled water is introduced as an alternative water supply source. Water supply requirements, including the use of recycled water, were calculated assuming recycled water would be utilized for toilet flushing, landscape irrigation, vineyard irrigation, cooling tower make-up and other approved non-potable uses under Title 22 regulations. Although it doesn't apply to uses on Trust lands, the recycled water quality will be designed to produce the equivalent water quality to disinfected tertiary recycled water as defined by Title 22.

Preliminary projections of the water supply needed to reliably meet water demand for both programs are summarized in **Table 2-3**. These projections are based on estimated average wastewater flows (see **Table 2-5**) and include a 20% allowance for system losses as well as a safety factor to ensure adequate supply. These are preliminary and for planning purposes only.

Program Alternative	Water Supply Requirement without Recycled Water (gpm)	Water Supply Requirement with Recycled Water (gpm)	Minimum Recommended Firm Water Supply (gpm)
Alternative A	300	225	300
Alternative B	200	150	200
Alternative C	50	30	50

Notes:

1. Units of gpm = gallons per minute.


2. Reduction in water supply requirement is higher for Alternative A than Alternative B alternative since dual plumbing use and cooling tower demands are greater for the larger facility.

A "firm" water source is considered that which can be supplied by the system with the single largest source out of service, in a redundant system. The "firm" water supply is required 24 hours a day, 365-day a year, and can meet the Maximum Day Demand for the project. Water system redundancy may be achieved in a variety of ways – in a groundwater system, multiple wells or another redundant source would normally be required. Diurnal peaks, fire flow, and other peak demands may be met with storage tanks.

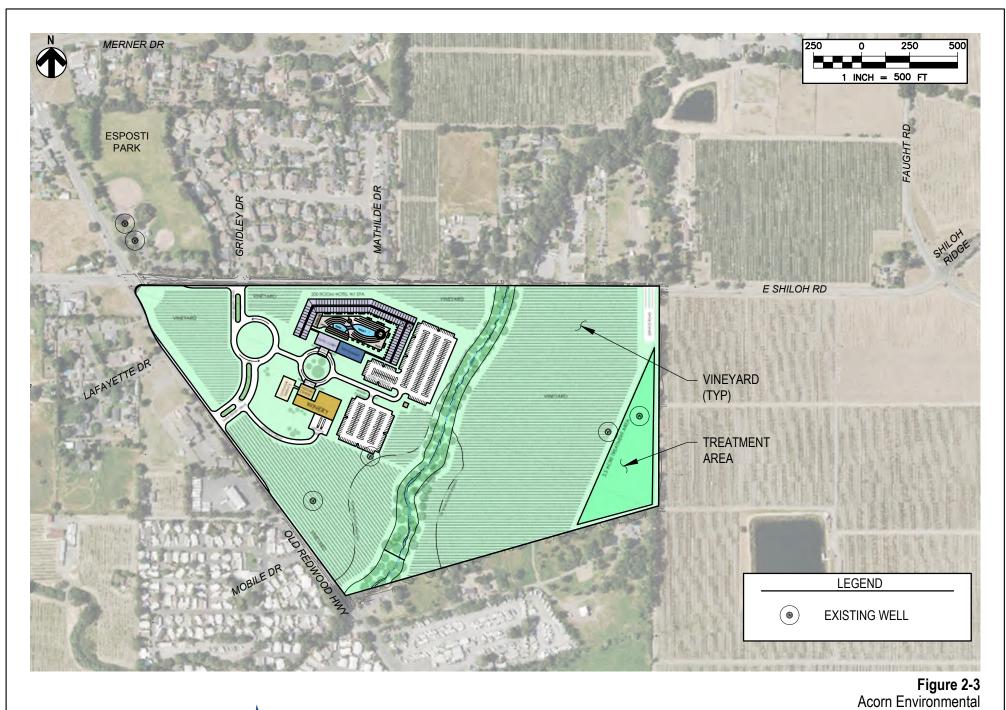
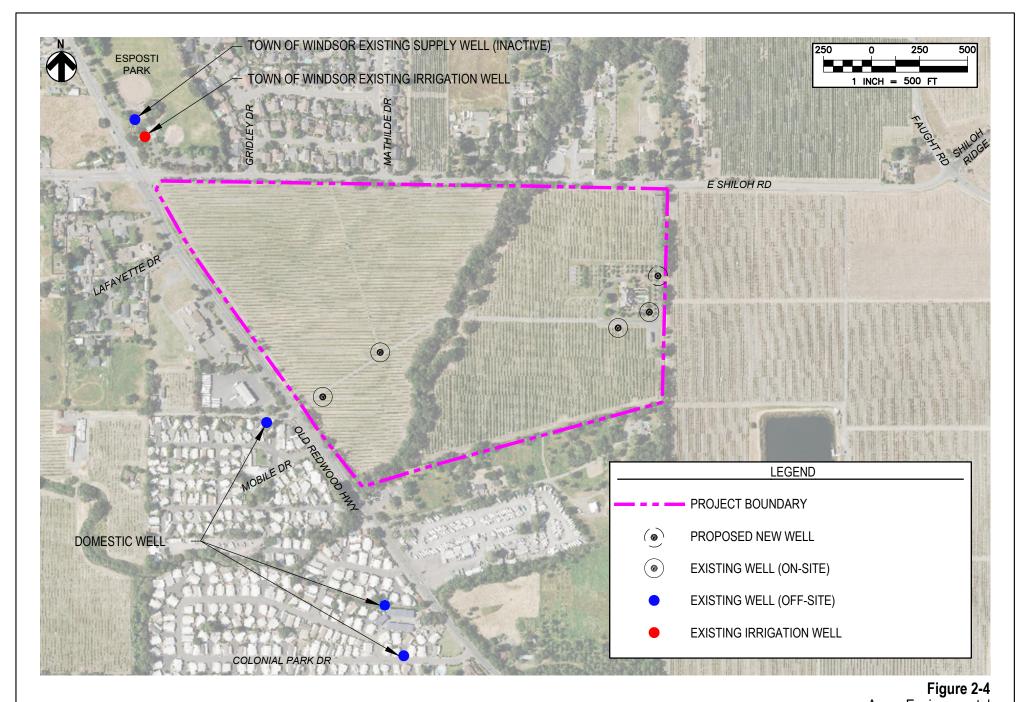

Figure 2-1 Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Proposed Site Plan - Alternative A

Figure 2-2 Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Proposed Site Plan - Alternative B

HydroScience

Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Proposed Site Plan - Alternative C In addition to the use of recycled water, the project alternatives are also expected to be designed and managed to minimize potable water usage. Recommended water conservation measures include low flow fixtures, voluntary towel re-use, central plant optimization, recirculating fountains or water features, high efficiency/water conserving appliances, etc. For restaurants, potable water can also be conserved, if only served to patrons who request it. To facilitate this, sub-metering of water for each of the uses within the Project will discourage waste and help identify areas where consumption can be reduced. Employee training and participation, regular maintenance, and customer education are all expected to also help reduce water use.


Fire flow requirements (or guidelines) are set by the local fire authorities, based on the building's use and classification. Storage requirements for casinos are generally controlled by fire protection requirements, and not by domestic peaking requirements. Storage requirements will be determined upon issuance of the fire flow and duration requirement from the local fire authority. Fireflow requirements for a large facility such as this can be as much as 8,000 gpm for 4 hours with up to 75% reduction (reduced to 2,000 gpm for 4 hours) for automatic fire sprinklers.

2.2.1 Water Supply

The Project will require both a potable and irrigation water supply for use within the Project. Potable water could be obtained through the construction of on-site groundwater wells. It was noted that there are already multiple on-site wells used for irrigation with capacities ranging up to over 600 gpm, though it is unclear whether these wells are suitable for use as a potable water supply well. Irrigation water could be obtained either through reuse of effluent from the proposed onsite wastewater treatment plant (WWTP) as recycled water, use of the existing onsite irrigation well, or use of potable water.

It is expected that groundwater is available within the Project site based on recent investigations at Esposti Park. Esposti Park has both an existing Town irrigation well as well as a standby potable water supply well. The potable water supply well is not currently active; however, the Town has evaluated the thickness and productivity of the deeper sedimentary units at the existing well location and documented those results in the *Windsor Groundwater Well Installation and Testing Report* prepared in September 2010 and included as **Appendix B** as well as the *Town of Windsor and Windsor Water District Esposti Supply Well Redevelopment, Pumping Test and Treatment Feasibility Study (October 3, 2017)*, included as **Appendix C**. Based on these evaluations, discussed further in **Section 3.3.1**, it is estimated that a new on-site potable water supply well can reliably produce 400 gpm.

For any onsite groundwater well, it is likely that groundwater treatment will be required to remove arsenic and manganese. The number of wells required would be dependent on the capacity of each new groundwater well. At a minimum, sufficient capacity would be required to meet the maximum day demand with the largest source out of service. One potential primary groundwater well location is shown on **Figure 2-4**. The anticipated well capacity, location and operating strategy would be developed further during the design phase. Additional information about groundwater supplies is included in **Section 4.1**.

HydroScience

Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Local Groundwater Well Site Map

2.3 Wastewater

This section identifies the expected strength of influent wastewater, describes existing wastewater treatment facilities, and identifies the wastewater treatment options explored for Alternative A. Projected wastewater flows and the proposed WWTP process train are also identified.

2.3.1 Influent Water Quality

The quality of influent water for gaming facilities differs from the quality of domestic sewage. This section provides background on the typical quality of influent water at gaming facilities and identifies the facilities required to treat it.

Traditional wastewater treatment options, such as primary clarifiers, activated sludge, conventional filtration, and disinfection, were not considered as WWTP options due to the limited proposed treatment area layout.

Typical gaming facility wastes have higher BOD and TSS values compared to domestic wastewater, as identified in **Table 2-4**. Shock loadings are also typical of gaming facility wastewater. Weekend flows are much higher than weekday flows, and evening flows are higher than daytime flows. This assumption is based on the higher utilization of similar facilities outside of normal business hours. Other similar facilities also experience increased utilization of the casino facilities during evenings and on the weekend.

Table 2-4: Typical WWTP Influent Water Quality

Parameter	Units	Alternative A	Typical Domestic Sewage
BOD	mg/L	450-600	200-300
TSS	mg/L	450-600	200-300

Any wastewater treatment process selected for use must be able to handle the high strength waste and react well to wide variations in flow.

2.3.2 Capacity

Average weekday and peak weekend flows for Alternative A, B, and C were obtained from analysis of similar facilities.

2.3.2.1 Alternative A and B

Real-time data from similar facilities and previous project wastewater flow projections were compared and the most conservative was used to estimate the unit flows for the proposed Project. An occupancy level factor was used to estimate flows during daytime and evening hours for a typical weekday and weekend. The average day flow was estimated using the weighted average of the weekday and weekend estimated flow projections. These projections are based on the Alternative A and Alternative B space program provided by Acorn. **Table 2-5** summarizes the projections of wastewater volumes generated by Alternative B. For the full flow projection table see **Appendix A**.

	Estin	nated Occup	Wastewater Flow (gpd)			
Area Description	Number Units		gpd/Unit	Wt. Average	Weekend	
Casino Gaming and Support Areas	114,345	SF	0.6	38,000	51,000	
Retail	2,250	SF	0.05	60	80	
Coffee Shop	2,750	SF	2.6	4,000	5,000	
Food Hall	465	Seats	60	15,000	21,000	
Restaurants (5)	1,240	D Seats 70		48,000	65,000	
Bars (2)	17,755	7,755 SF		6,000	8,000	
Lounges (2)	29,285	SF	0.5	7,000	10,000	
Service Bar/Unassigned	19,815	SF	0.1	1,000	1,000	
Event Center	2,800	2,800 Seats 35		34,000	59,000	
Ballroom (2)	44,900	SF	0.75	10,000	24,000	
Spa	13,930	SF	0.1	1,000	1,000	
Hotel	400	Rooms	250	53,000	70,000	
Support Facilities ¹	1	LS	14,000	19,000		
Total Wastewa	232,000	335,000				

Table 2-5: Projected Wastewater Flows for Alternative A

Notes:

1. Support facilities are lump sum values for back-of-house for Casino and hotel combined.

2. All flows are rounded to the nearest 1,000 gpd.

3. Total wastewater generated sum may be off due to rounding of individual facility wastewater generated.

4. Weighted average is the sum of the weekday flows over four days plus the sum of the weekend flows over three days divided by seven days.

Based on the wastewater generation rates identified in **Table 2-5**, the WWTP must have the capability to treat and/or convey the Project's maximum weekend demand of approximately 335,000 gpd.

	Estin	nated Occup	ancy	Wastewater Flow (gpd)		
Area Description	Number	Units	gpd/Unit	Wt. Average	Weekend	
Casino Gaming and Support Areas	114,345	SF	0.6	38,000	51,000	
Retail	2,250	SF	0.05	60	80	
Coffee Shop	2,750	SF	2.6	5,000	6,000	
Food Hall	465	Seats	60	15,000	21,000	
Restaurants (5)	1,240	Seats	70	48,000	65,000	
Bars (2)	17,755	SF	0.7	6,000	8,000	
Lounges (2)	20,735	20,735 SF 0		5,000	7,000	
Service Bar/Unassigned	19,815	SF	0.1	1,000	1,400	
Ballroom	12,400	SF	0.75	3,000	7,000	
Spa	13,930	13,930 SF		1,000	1,000	
Hotel	200	Rooms	250	26,000	35,000	
Support Facilities ¹	Support Facilities ¹ 1 LS				13,000	
Total Wastewat	158,000	215,000				

Table 2-6: Projected Wastewater Flows for Alternative B

Notes:

1. Support facilities are lump sum values for back-of-house for Casino and hotel combined.

2. All flows are rounded to the nearest 1,000 gpd.

3. Total wastewater generated sum may be off due to rounding of individual facility wastewater generated.

4. Weighted average is the sum of the weekday flows over four days plus the sum of the weekend flows over three days divided by seven days.

Based on the wastewater generation rates identified in **Table 2-6**, the WWTP must have the capability to treat and/or convey the project's maximum weekend demand of approximately 215,000 gpd.

2.3.2.2 Alternative C

Wastewater flow projections for Alternative C were estimated using the same method as presented in **Section 2.3.2.1** for Alternative A and B, except for the winery. Alternative C projections are based on the space program provided by Acorn.

The estimation of wastewater flows generated by the wine-making process was based on realtime data and experienced personnel from similar facilities. The quantity of process wastewater generated is approximately proportional to the number of cases of wine produced annually. To calculate the total annual estimated wastewater flow, the number of cases is then multiplied by the efficiency of the processes; larger wineries tend to have more efficient processes. The approximate efficiencies are:

Small Wineries (less than 20,000 cases/year) – 7 gal/case

Medium Wineries (20,000-50,000 cases/year) – 4.8 gal/case

Large Wineries (greater than 50,000 cases/year) – 2.5 gal/case

Acorn has identified the proposed winery as a small facility with a proposed production of 15,000 cases per year. Since this would be a new facility, we would expect the efficiency of production

to be better than an existing or older facility, thus the efficiency ratio used for the calculation of winery flows is 4.8 gallons per case.

Most of the water use, and wastewater generation, occurs during the crush season. Crush season is typically between September and November and is based on the climate, which varies from year to year – hotter weather typically results in an earlier crush season. For this analysis, it was assumed that the crush season occurred in October as the worst-case scenario for the facility since precipitation is beginning to increase thus irrigation demand is decreasing and seasonal surface water discharge is limited for this month. It was also assumed that 90% of the annual process wastewater flow for the winery occurs during the crush season, while the remaining 10% is distributed over the remainder of the year.

The length of the crush season also varies by winery size – smaller wineries have a shorter crush season because they are crushing a smaller quantity of grapes. Small wineries can spend one to two weeks crushing, while larger wineries can extend to two months. For this analysis, it was assumed that crush would occur within one month.

Anticipated crush flows were applied to the month of October and the average daily wastewater flow was calculated by dividing the total crush season flows by 31 days. Average daily wastewater flow for the remainder of the year (non-crush season) was calculated by dividing the remaining flow by the remaining number of days in the year – 11 months (334 days) for this analysis.

Alternative C projections for wastewater volumes generated are summarized in **Table 2-7**. Wastewater volumes for the winery represent typical flow during crush season.

Area Description	Estin	nated Occup	ancy	Wastewater Flow (gpd)		
Area Description	Number	Units	gpd/Unit	Wt. Average	Weekend	
Dining	4,700	SF	2.6	6,700	9,200	
Winery⁵	20,000	SF		2,200	2,200	
Visitor Center	2,500	SF	0.05	70	90	
Tasting Room	2,500	SF	0.3	400	600	
Spa	14,000 SF		0.1	1,000	1,300	
Hotel	200 Rooms		250	26,400	35,000	
Lobby	Lobby 5,000 LS					
Total Wastewat	40,100	53,400				

Table 2-7: Projected Wastewater Flows for Alternative C

Notes:

1. All flows are rounded to the nearest 1,000 gpd.

2. Total wastewater generated sum may be off due to rounding of individual facility wastewater generated.

3. Weighted average is the sum of the weekday flows over four days plus the sum of the weekend flows over three days divided by seven days.

4. The visitor center (building area of 5,000 SF) includes a section for a tasting area. The tasting area is assumed to be 50% of the visitor center area building space.

5. The winery flow projections represent typical average daily flow during crush season for one month. The water balance reflects the wastewater flow variation by month.

Based on the wastewater generation rates identified in **Table 2-7**, the WWTP must have the capability to treat and/or convey the project's maximum weekend demand of approximately 53,400 gpd.

2.3.2.3 Summary of Alternative WWTP Design Flows

Based on the weekend capacity, **Table 2-8** identifies the proposed design flows for the WWTP for Alternative A, B, and C. The design flows are higher than the projected flows in order to provide a safety factor for design to account for the typical diurnal variation. Additional storage will also be provided for equalization of the peak daily flows.

Program Alternative	Parameter	Projected Wastewater Flow (gpd)	Design flow (gpd)
Alternative A	Average Daily Flow	232,000	300,000
Allemative A	Average Weekend Flow	335,000	400,000
Alternative B	Average Daily Flow	158,000	200,000
Allemative B	Average Weekend Flow	215,000	300,000
Alternative C	Average Daily Flow	40,100	50,000
Allemalive C	Average Weekend Flow	53,400	75,000

Table 2-8: WWTP Design Flows for Alternative A, B & C

The wastewater treatment facilities for Alternative A and Alternative B must be designed with a wastewater treatment capacity of 400,000 and 300,000 gpd, respectively. For Alternative C, wastewater treatment facilities must be designed with a treatment capacity of 75,000 gpd.

2.3.3 Wastewater Treatment Facilities

Treatment for wastewater from the proposed alternatives would require the construction of an onsite WWTP to provide primary, secondary, and tertiary treatment of on-site sewage for both reuse and discharge on-site. The proposed location for an on-site WWTP is in the southeast corner of the property. However, there are significant space limitations within the site that require any wastewater treatment process to provide high quality effluent on a small footprint.

A proposed on-site WWTP treatment process for Alternative A would include:

- Coarse Screening Facility
- Influent Pump Station
- Headworks
- Equalization
- Packaged Immersed Membrane Bioreactors (MBRs)
- UV Disinfection & Chlorination
- Sludge Storage and Dewatering Station
- Plant Drain and Supernatant Return Pump Station
- Effluent Pump Station, and
- Operations Building

This treatment process was selected for various reasons, including: 1) the desire for a small footprint for an on-site WWTP, 2) the proven effectiveness of this process at other similar facilities, and 3) the production of high-quality effluent suitable for reuse and discharge. The justification for selection of the MBR treatment process is summarized below. A proposed location for the different alternative wastewater facilities is shown in **Figure 2-1**, **Figure 2-2** and **Figure 2-3**.

MBRs have successfully treated wastewater for similar-sized gaming facilities with discharge permits at other local gaming facility sites. The MBR treatment process is a tertiary treatment process similar to an activated sludge treatment plant, but with membranes immersed in an aeration basin. A typical MBR system consists of an anoxic tank for denitrification of the plant influent, followed by an aeration tank for oxidation of organic matter and nitrification. Membrane cartridges are suspended at the effluent end of the aeration tank. The membranes have a pore size in the sub-micron range, and are able to filter out most of the coliform bacteria and solids. Water is drawn through the membranes by blowers, which pull a slight vacuum and force this permeate into the center of the spaghetti-strand shaped membranes. Solids are left in the aeration tank for recirculation to the anoxic zone and/or wasting to solids handling process(es).

Effluent from these types of MBR plants typically contain no suspended solids and have a turbidity of less than 0.2 NTU. This treatment typically results in producing MBR effluent of excellent quality. The MBR process also provides aeration, nitrification, and denitrification processes within a compressed footprint. These processes have the effect of producing effluent with a neutral pH, lower nitrogen concentrations, and lower phosphorous concentrations than alternative tertiary treatment processes.

The MBR treatment process is capable of producing effluent meeting the Title 22 coliform bacteria effluent requirements without the use of chlorine or other common disinfectants. Other tertiary treatment systems typically require a disinfection process to meet the effluent coliform requirement. However, in order to comply with treatment and water reuse regulations, both a UV disinfection and chlorine disinfection processes will be provided downstream of the MBR processes.

Although the MBR treatment process is somewhat sophisticated, it is relatively simple to operate and maintain due to the absence of traditional WWTP components such as clarifier mechanisms or drives. In addition, there is a long history of effectiveness at similar facilities.

Operation: Typically, wastewater will flow by gravity from the facilities through a grease interceptor, coarse screening facility, and then into an influent pump station. The coarse screening facility would remove larger solids and debris that are typically found in Casino/hotel sewage. The influent pump station will lift the wastewater to the plant headworks facilities through a pressurized sewer main. After passing through the headworks, wastewater will flow by gravity to the influent distribution channel. The distribution channel will be used to distribute wastewater to the parallel MBR trains. Each train will be equipped with an anoxic basin and an aeration basin to provide oxidation, nitrification, and denitrification. Water will flow out of the aeration basin and into a membrane chamber that will be shared by both process trains. Permeate will be extracted through the membranes and conveyed to either the UV disinfection or chlorine disinfection processes. Water intended for reuse on-site for Title 22 purposes will be chlorinated with sodium hypochlorite. Water intended for discharge to the creek will be UV disinfected. The proposed wastewater flow diagram is shown in **Figure 2-5**.

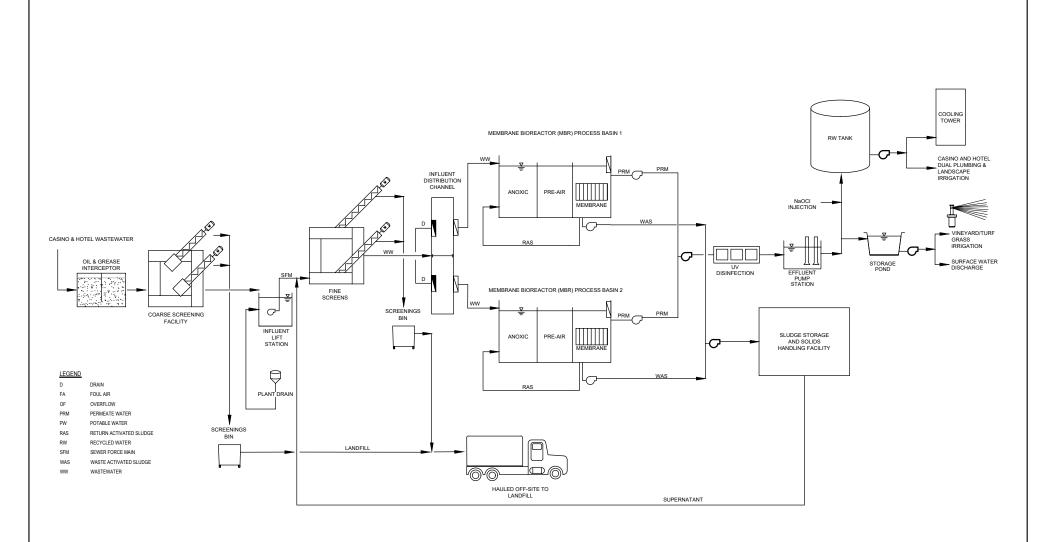


Figure 2-5 Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Wastewater Treatment Process Flow Diagram

2.3.4 Effluent Disposal

The on-site WWTP will treat wastewater to a tertiary level and allow the Project to consider a wide range of effluent disposal options. Tertiary treatment is typically defined as a process that has undergone primary treatment consisting of a gravity settling process, secondary treatment consisting of a biological process, and tertiary treatment consisting of both a filtration and a disinfection process. These treatment processes can be combined into one process spanning the different types of treatment.

Recycled water will be used in the casino/hotel restrooms for toilet and urinal flushing that will meet Title 22 criteria. Although the use of recycled water in the restrooms of the casino/hotel is on Trust lands, the recycled water quality will be designed to produce the equivalent water quality to disinfected tertiary recycled water as defined by Title 22. In general, this quality of recycled water is approved for all approved non-potable uses in the state of California.

Recycled water will also be used for cooling tower makeup. Using treated effluent for cooling tower makeup will help reduce storage requirements through cooling tower drift, evaporation system leakage losses, and blowdown. The brine generated as a byproduct of the recycled water treatment will be hauled offsite. The East Bay Municipal Utility District (EBMUD) accepts and treats a variety of liquid and solid wastes and offers a convenient disposal location 24 hours a day, seven days a week, 365 days a year. Other common disposal alternatives include evaporative ponds, disposal to ocean, deep well injection, incineration, additional treatment to concentrate waste, etc. Given the limited area for additional treatment or evaporative ponds, it is anticipated that the brine will be disposed of off-site. Estimation for brine volume, concentration, and disposal will be determined based on source water quality, generated wastewater volume and quality, and specific treatment components.

In order to evaluate other wastewater disposal strategies, the following assumptions were made:

- Recycled water use on-site will be maximized.
- The Project must identify a reliable wet season disposal method.
- The Project must comply with all applicable regulatory requirements.

Permitting Requirements: The new on-site WWTP will be located on Trust lands. Thus, project permitting will be regulated by the United States Environmental Protection Agency (USEPA). The USEPA is expected to implement the equivalent standards that would be adopted by the Regional Water Quality Control Board for discharges onto state lands, as defined by the Basin Plan. For additional information on the expected permitting requirements, the reader is referred to **Section 4.2**.

The following three potential methods of wastewater discharge are further discussed in this section:

- Vineyard and landscape irrigation
- Seasonal surface water discharge
- Seasonal storage pond

The beneficial uses of the potential receiving waters will also be identified because these uses must be maintained and protected from potential pollutants.

2.3.4.1 Vineyard and Landscape Irrigation

The primary criteria used to determine the required landscape irrigated acreage are evapotranspiration (ET) rates and precipitation information. Water demands per acre of irrigated area are calculated for each month based on evapotranspiration (ET) rates and precipitation records with an additional factor to account for a very wet year. This monthly demand is then used to calculate an annual disposal capacity per acre in such a wet year.

ET Rates: ET is a measure of water usage by a particular plant or crop, and is a function of the net solar radiation, air temperature, wind speed, and vapor pressure in a particular location. Evapotranspiration rates for a specific crop in a specific location are calculated on a monthly basis by the following equation:

$$ET = ET_o * k_c$$

where:

- ET₀ = Normal year reference crop evapotranspiration rate for a given geographic location (California Department of Water Resources [DWR], California Irrigation Management Information System [CIMIS] database)
- k_c = Crop coefficient for a given crop (DWR Leaflets)

For this Project, reference crop normal year evapotranspiration rates (ET₀) for the CIMIS station closest to the area were obtained from the DWR CIMIS database. Crop coefficients for cool weather turf grasses were obtained from University of California, Division of Agriculture and Natural Resources Center for Landscape and Urban Horticulture. Calculated ET rates and irrigation demands are shown in **Table 2-9**.

Precipitation: Precipitation data was obtained from the National Oceanic and Atmospheric Administration's (NOAA) online database using the closest station to the Project site. Monthly rainfall values from 1999 through the present were averaged to obtain typical monthly rainfall data.

Estimated Unit Irrigation Demands: Typical monthly unit irrigation demands for turf grasses are summarized in **Table 2-9** and were calculated using the following formula:

$$ID = \frac{(ET - Pe_p)l_r}{e_i}$$

where:

- *ID* = *Irrigation demand in inches*
- *ET* = *Evapotranspiration for turf grasses*
- P = Average precipitation, NOAA
- e_p = Precipitation irrigation efficiency, 0.95. Assumes 0.5% of rainfall during growing season is lost to evaporation, runoff, etc.
- I_r = Loss Rate, equal to 1.05. This assumes that approximately 5% of the applied water passes through the grass root zone and is lost.

ei = Irrigation efficiency, varies throughout the year between 0.60 in the summer and 0.95 in the winter. This assumes that 5-40% of the applied irrigation water is lost to the environment. For planning purposes an irrigation efficiency of 0.80 was used.

Month	ET (Inches)	P (Inches)	ID (Inches)	ID (Feet)
January	0.78	5.35	0.00	0.00
February	1.24	5.61	0.00	0.00
March	2.17	3.92	0.00	0.00
April	4.01	1.88	2.79	0.23
Мау	5.15	0.92	5.55	0.46
June	6.04	0.24	7.61	0.63
July	6.04	0.01	7.91	0.66
August	5.27	0.01	6.91	0.58
September	4.11	0.14	5.21	0.43
October	2.20	2.00	0.27	0.02
November	1.07	3.16	0.00	0.00
December	0.72	6.75	0.00	0.00
Total	38.81	30.00	36.26	3.02

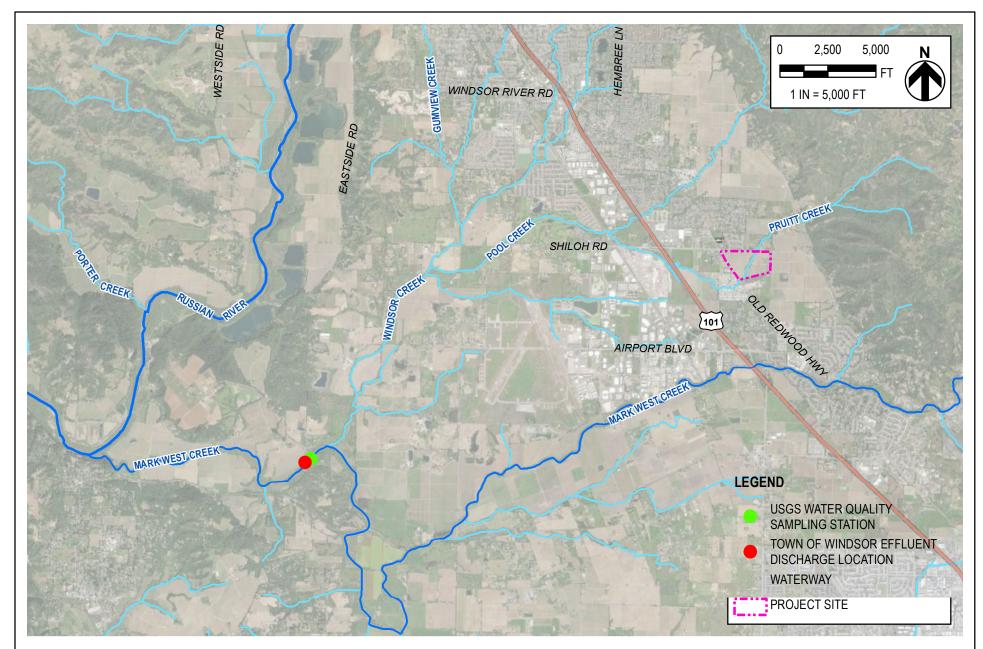
Table 2-9: Typical Irri	gation Demands for	Regional Turf Grasses
	gation Domanao ioi	

Notes:

1. The irrigation demand shown is for average rainfall. A lower irrigation demand was used in the 100-year annual precipitation event.

As shown, above, in **Table 2-9**, the typical annual unit irrigation demand for grasses is estimated at 36.3 inches or 3.02 feet.

Vineyards use much less water than turf grasses. To estimate irrigation demands for vineyards, local vineyard irrigation sources containing typical irrigation rates for Windsor, Carneros, Napa, and Sonoma County were consulted. For the purpose of this document, annual demands for vineyards were estimated to be 0.317 AF per acre.


Sizing: The irrigated areas are limited by the proposed Project site plan for Alternative A and Alternative B. The irrigated areas include on-site landscaping for the proposed Project and no capacity to expand or increase irrigation areas is available unless vineyard area is reduced (and replaced with a crop with a higher ET) or an off-site landscaped area alternative is identified.

2.3.4.2 Surface Water Discharge

For discharge of treated wastewater to the Russian River or its tributaries, a NPDES discharge permit is required. Any discharge to the Russian River and tributaries would be regulated by the RWQCB. Discharge to the creek would involve applying for a NPDES permit, which allows discharges to surface water in accordance with the Federal Clean Water Act and applicable provisions of the Water Quality Control Plan for the North Coast Region (Basin Plan). It is understood that the Basin Plan requirements do not apply to Tribal lands. However, the proposed effluent limitations identified in this Section are consistent with the Basin Plan.

The amount of effluent discharge allowed by the Basin Plan is typically limited to a percentage of the measured streamflow in the Russian River at the point of discharge. The initial permit point of the compliance would probably be granted based on conditions at the actual point of discharge. In all local discharge permits reviewed in this document, the existing USGS flow gauging station most representative of the flow in the receiving water was used for the purposes of complying with Basin Plan mandated limitations for flow. The most likely flow monitoring location would be at the USGS gauging station at Mark West Creek (USGS #11466800). The gauging station is shown on Figure 2-6. Gauging station #11466800 is the station closest to the Project site and directly downstream of the proposed discharge location near Mirabel Heights, CA. Historical flow data for gauging station #11466800 is shown in **Table 2-10**. This is the most practical site to determine flows, since data has been collected for over five years, and real-time data is available. This gauging station is located downstream of the confluence of Windsor Creek and Mark West Creek. Based on flow records obtained from this station, it is feasible to meet a 1% dilution requirement based on the project makeup and proposed wastewater treatment and disposal facilities using data from this station as the basis for the flow limitation in the Project's NPDES permit.

To comply with the surface water rate discharge flow limitation, it is expected that the WWTP will need to limit effluent discharge to Pruitt Creek to 1% of the measured flow in Mark West Creek at USGS Gauging Station #11466800 near Mirabel Heights, CA.

Figure 2-6

Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study USGS Gauging Station Location

Seasonal Surface Water Discharge

Seasonal surface water discharge means the utilization of different effluent disposal options during the dry and wet seasons to address local season-specific regulatory and environmental concerns. The use of different seasonal effluent disposal options is a common practice in the State of California. The disposal locations would be utilized only during the wet season. The wet season and dry season discharge methods are defined below.

- Dry season (May 15 through September 30): Disposal through a combination of on-site recycled water use for landscape irrigation, cooling towers, toilet flushing, and vineyard irrigation.
- Wet season (October 1 through May 14): Disposal through a combination of the dry season uses, and surface water discharge.

The RWQCB prohibits effluent discharges from WWTPs to the Russian River and its tributaries between May 15 and September 30 in their Basin Plan due to significant seasonal flow variations for the Russian River tributaries during the summer and winter months. Their goal was to ensure that these water bodies do not become effluent dominated streams. Discharges during the wetter winter months (October 1 to May 14) when flows are higher are typically allowed to be a certain percentage of the average daily streamflow. It is likely that any new WWTP discharge would be subject to similar seasonal discharge requirements. It is not expected that year-round discharges to a tributary of the Russian River would be permitted by the USEPA under any circumstances as the USEPA typically permits projects discharges of wastewater effluent to a percentage of the streamflow at the point of discharge. Although the proposed discharge location is more than 5.5 miles from an active USGS gauging station, historical streamflows are known and can be used as a basis for streamflow data. However, the percentage of the total streamflow the USEPA will allow the Project to discharge is unknown.

The monthly streamflow statistics for the USGS gauging station at Mark West Creek are presented in **Table 2-10**. From this data, it is apparent that discharges immediately before and after the summertime months (May and October) may be limiting for the project, and that streamflow rates are highly variable from year to year. For conservatism, the water balance used for this Project utilizes the dry year averages (2012-2015) for projecting the allowable 1% discharge to Pruitt Creek. Thus, for any discharge scenario developed for the Project, backup contingency plans should be developed for low flow conditions. **Table 2-10** suggests that at a minimum, discharge of at least 72,000 gpd could be permitted in Pruitt Creek during the month of October, with more allowed during the wetter winter months.

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2005										14	37	1,516
2006	1,317	487	1,585	1,282	83	29	12	7	4	10	52	315
2007	72	815	194	88	35	9	3	2	2	26	16	159
2008	1,369	719	101	35	14	5	2	0	0	2	36	
2009	29			39		11	3	1	0		13	56
2010						41	11	4	2			
2011										21	26	15
2012	360	73	841	353	41	11	3	1	1	5	164	1,497
2013	157	57	48	73	15	15	7	2	2	1	5	10
2014	5	807	343	308	19	6	1	0	4	3	22	1,368
2015	60	404	42	37	14	5	1	0	0	0	2	127
2016	964	141	1,461	78	30	8	1	0	0	64	193	794
2017	2,525	2,426	364	461	57	18	5	2	1	1	74	24
2018	305	53	653	491	38	12	3	2	1	7	62	175
2019	821	2,234	1,385	268	161	37	9	3	1	1	7	347
2020	241	81	35	61	29	5	1	0	0	0		
Avg. Monthly, cfs	633	691	588	275	45	15	4	2	1	11	51	493
Avg. Monthly, MGD	409	447	380	178	29	10	3	1	1	7	33	318
			Calo	culated '	1% Daily	Flow V	alues (g	pm)				
1% of Avg. Monthly Notes:	2,840	3,103	2,637	1,234	200	0	0	0	0	50	227	2,211

Table 2-10: Daily Average Streamflow at USGS Gauging Station #11466800

Notes:

Blank cells signify monthly flow data is incomplete. Blank readings are not counted in calculating average flows.

Beneficial Uses of Potential Receiving Waters

The receiving water, Pruitt Creek, is a tributary of the Russian River. The North Coast RWQCB assigned existing and potential beneficial uses to Mark West Creek and to the Russian River. Beneficial uses that are assigned to a surface water are applicable to its tributaries. Any surface water discharge by the Project to Mark West Creek would be designed to comply with the beneficial uses and water quality objectives of that water body, as well as the Russian River. It is understood that the Basin Plan requirements do not apply to Tribal lands.

Beneficial uses for both Mark West Creek and the Russian River are listed in Table 2-11.

	Beneficial Uses	Category
MUN	Municipal and Domestic Supply	E
AGR	Agricultural Supply	E
IND	Industrial Service Supply	E
PRO	Industrial Process Supply	Р
GWR	Groundwater Recharge	E
FRSH	Freshwater Replenishment	E
NAV	Navigation	E
POW	Hydropower Generation	Р
REC1	Water Contact Recreation	E
REC2	Non-Water Contact Recreation	E
COMM	Commercial and Sport Fishing	E
WARM	Warm Freshwater Habitat	E
COLD	Cold Freshwater Habitat	E
WILD	Wildlife Habitat	E
RARE	Rare, Threatened, or Endangered Species	E
MIGR	Migration of Aquatic Organisms	E
SPWN	Spawning, Reproduction, and/or Early Development	E
SHELL	Shellfish Harvesting	Р
EST	Estuarine Habitat	E
AQUA	Aquaculture	Р

Table 2-11: Beneficial Uses of Mark West Creek and Russian River

Source: Basin Plan, updated June 2018, North Coast Region. Notes:

E = Existing beneficial uses

P = Potential beneficial uses

Existing beneficial uses are uses as they exist at the present time, while potential uses are uses that:

- May have existed prior to November 1975;
- Are attainable via future plans;
- Conditions make future use likely;
- Have identified the water as a potential source of drinking water based on the quality and quantity available;
- May be classified as an existing use after future review; or
- Are listed as future water quality goals for possible use.

Beneficial uses of Waters of the United States are uses that must be protected against water quality degradation, and reflect the demands on the water resources for this stream. Water quality objectives for Mark West Creek are based on the identified beneficial uses. Some of these water quality objectives are summarized in **Table 2-12**.

Parameter	Description
Color	Water shall be free of coloration that causes a nuisance or adversely affects beneficial uses.
Taste & Odor	Water shall not contain taste or odor producing substances in concentrations that impart undesirable tastes or odors to fish flesh or other edible products of aquatic origin, or that causes nuisance or adversely affect beneficial uses. For waters designated MUN, chemical constituents, radionuclides, and pesticides shall not be present at levels prohibited by the drinking water standards set forth in Title 22 of the California Code of Regulations.
Turbidity	Shall not be increased more than 20% above naturally occurring background levels.
Bacteria	In waters designated REC-1, the median fecal coliform concentration on a minimum of not less than five samples for any 30-day period shall not exceed 50 per 100 mL, nor shall more than ten percent of the total samples during any 30-day period exceed 400 per 100 mL. In waters designated SHELL, the fecal coliform concentration throughout the water column shall not exceed 43 per 100 mL for a 5-tube serial dilution, or 49 per 100 mL for a 3-tube
	At no time or place shall the temperature of any waters designated COLD or WARM be
Temperature	increased by more than five degrees Fahrenheit.
Chemical Constituents, Radioactivity, and Pesticides	For waters designated MUN, chemical constituents, radionuclides, and pesticides shall not be present at levels prohibited by the drinking water standards set forth in Title 22 of the California Code of Regulations.
Other Parameters	The following are prohibited in concentrations that cause nuisance to or adversely affect beneficial uses: floating material, suspended material, suspended sediment, settleable material, oil and grease, biostimulatory substances.
Source: Pagin Plan	Discharges containing toxic substances, pesticides, chemical constituents, or radioactivity in concentrations that impact beneficial uses are prohibited.

Table 2-12: Water Quality Objectives of Receiving Waters

Source: Basin Plan, updated June 2018, North Coast Region.

2.3.4.3 Seasonal Storage Pond

The seasonal storage pond would be used to seasonally store WWTP effluent until it can be reused on-site or discharged to the surface water discharge. The regulatory requirements for the operation of seasonal storage ponds are typically minor, and the primary consideration is the disposition of the effluent contained therein. The ponds would need to be lined with a impermeable material such as clay or an impermeable plastic liner to minimize percolation into the groundwater. It is also suggested that any seasonal evaporation ponds be located downgradient from any proposed water supply well used for the Project and outside of the 100-year flood plain. There is expected to be sufficient area for pond(s) to be sited outside of the 100-year floodplain. If any pond were to be located within the 100-year floodplain, it would need to be bermed with adequate freeboard to bring the pond high water level above the 100-year flood level.

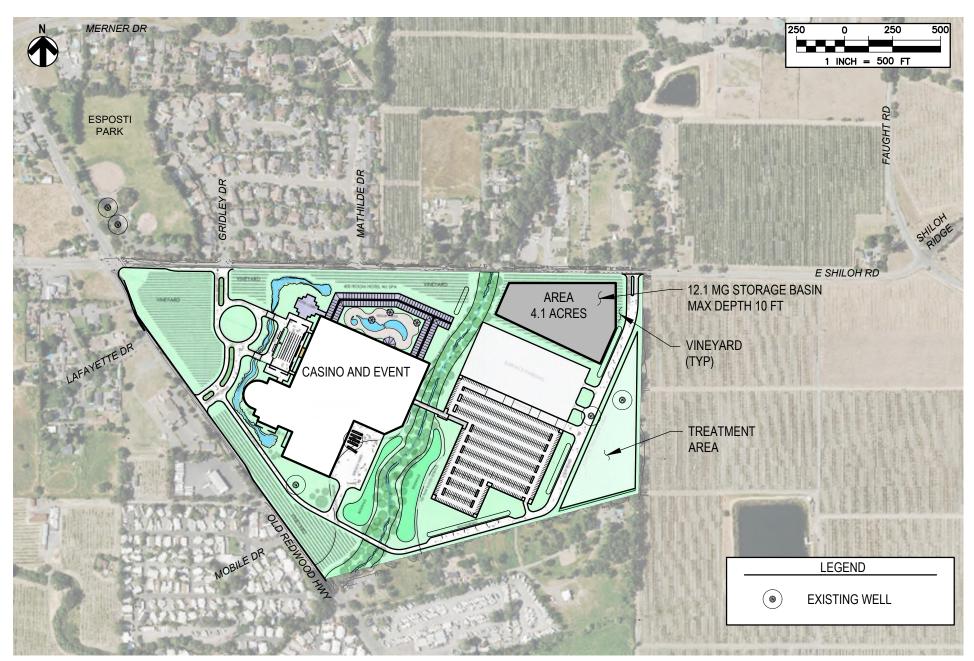
Seasonal storage ponds are sized according to the volume of disposal via all methods previously described (irrigation and surface water discharge) and the remaining carry-over volume required

from month to month. Seasonal storage ponds would be significantly upsized if it were determined that the Project either could not or is limited in its ability to discharge wastewater effluent on-site.

2.3.4.4 Effluent Disposal Summary

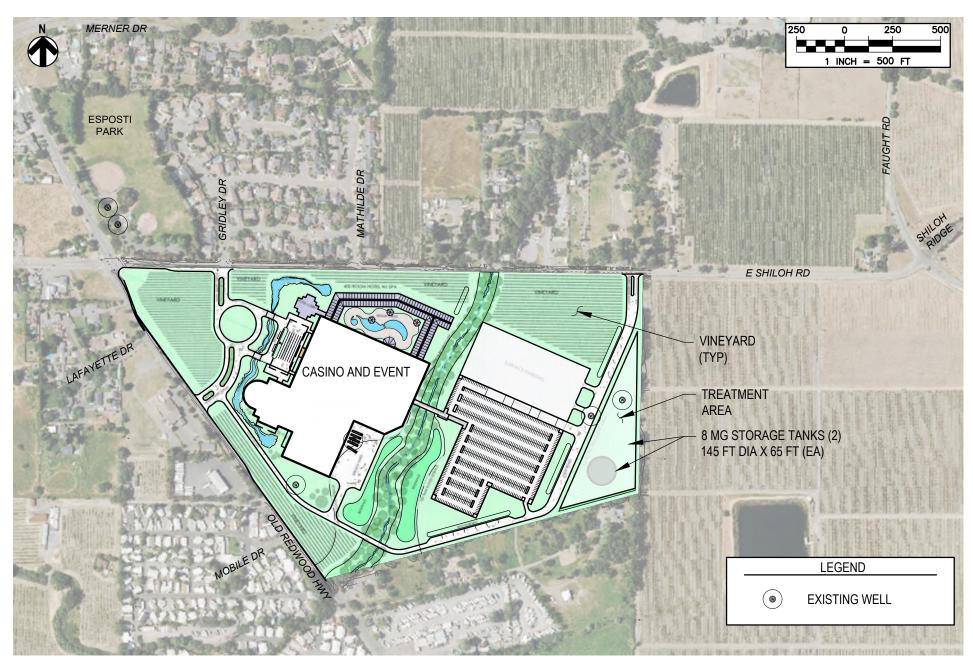
The preferred methods for effluent disposal would include seasonal surface water discharge, maximizing on-site recycled water use including vineyard and landscape irrigation, and use of seasonal storage ponds. Provided is a description of each option under Alternative A and Alternative B:

Alternative A

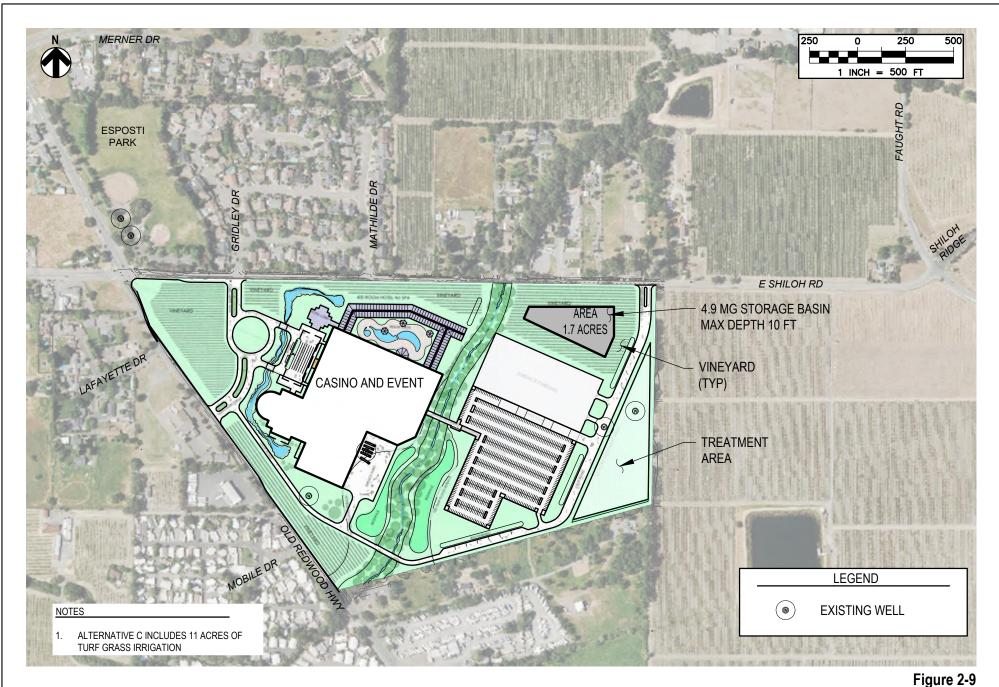

• **Option 1:** During the dry season, effluent from the on-site WWTP would be recycled and used on-site for dual plumbed and cooling tower makeup, as well as for landscape and vineyard irrigation at agronomic rates. Effluent that could not be used for either purpose would be stored in the seasonal storage pond.

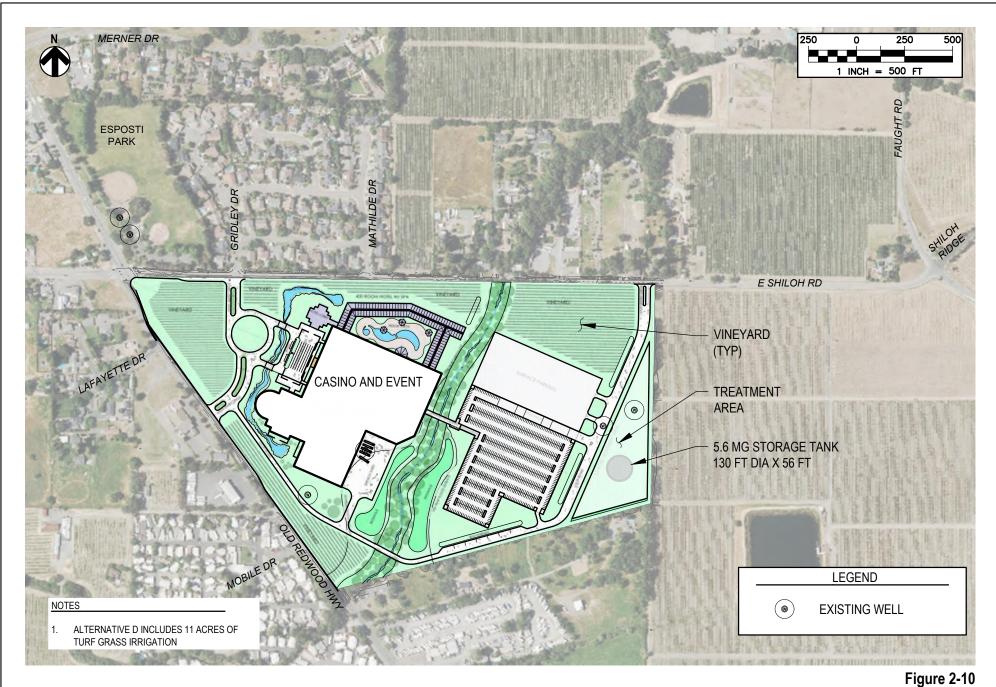
During the wet season, effluent from the on-site WWTP would be recycled and used on-site for dual plumbed and cooling purposes, discharged on-site to Pruitt Creek, stored in on-site seasonal storage ponds, and used to irrigate the vineyards and landscaping at agronomic rates. The landscaped areas and vineyard would be irrigated by pumping effluent out of the seasonal storage pond. Effluent stored in the seasonal storage pond would be discharged to Pruitt Creek, tributary to the Russian River, in accordance with flow limitation requirements.

- **Option 2:** Similar to Option 1, except that seasonal storage would be accomplished with a closed tank. The primary objective is to reduce the storage footprint such that it may fit within the proposed water treatment site. A tank will have a smaller footprint but will be a taller facility. Since evaporation loss would not occur in a closed tank, this option means a larger storage volume required overall.
- **Option 3:** Similar to Option 1 with the addition of 11 acres of off-site irrigation for effluent disposal and consequently reduced seasonal storage volume required.
- **Option 4:** Similar to Options 2 and 3, which includes a seasonal storage tank, and the addition of 11 acres of off-site irrigation for effluent disposal and consequently reduced seasonal storage volume. Since evaporation loss would not occur in a closed tank, this option means a larger storage volume required over Option 3.


Option 1 and 2 strategy assumes that the Project will be able to dispose of effluent only within the project site. The second effluent disposal strategy (Option 3 and 4) assume that effluent will be disposed of to offsite turf irrigation (yet to be identified) in addition to all other disposal methods listed. Option 2 and 4 assume a closed tank will be used for seasonal storage versus an open storage pond. **Table 2-13** summarizes conceptual estimates of the seasonal storage requirements and disposal requirements for the four effluent disposal strategies for Alternative A. These estimates are preliminary and are for planning purposes only.

The Alternative A storage pond, closed tank option and disposal areas for the wet season discharge and wet season storage are shown in **Figure 2-7** through **Figure 2-10**. Portions of the areas identified for vineyards are within the 100-year flood zone. This, however, is not expected to be an issue, during periods of rain since it is assumed that the vineyards will not be irrigated during the wet season.


Figure 2-7 Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Option 1 - Alternative A


Figure 2-8 Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Option 2 - Alternative A

Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Option 3 - Alternative A

HydroScience

Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Option 4 - Alternative A

Seasonal Disposal Strategy	Landscape Irrigation (AF)	Vineyard Irrigation (AF)	Offsite (AF)	Surface Water Discharge (AF)	Max Storage (AF)
Option 1	13.3	3.9	0	116.1	37.1
Option 2	13.3	5.5	0	122.7	48.7
Option 3	13.3	4.8	33.2	87.2	15.0
Option 4	13.3	5.5	33.2	89.3	17.0

Notes:

1. This disposal strategy assumes that all effluent will be disposed to the irrigated areas from April to October and stored in a reservoir for surface water discharge during the wet season.

2. Offsite irrigation assumes an additional 11 acres of offsite turf grass irrigation.

3. Landscape irrigation includes 4.4 acres of irrigated area. Vineyard irrigation consists of 17.4 acres of vineyards for a total disposal area of 21.8 acres.

It is noted that for open-air storage ponds in this region, evaporative losses are estimated to be greater than precipitation captured. Thus, required storage for tanks is greater than those of storage ponds as shown in **Table 2-13**. Additional offsite turfgrass would reduce the amount of onsite seasonal storage required up to a point. The limiting month at the end of the dry season is the month of October when irrigation demand is zero and surface water discharge is limited. It is estimated that at a minimum, approximately 3.4 MG (10.6 AF) of storage (closed tank or open storage basin) would be required regardless of the available irrigation area.

Alternative B

There are two effluent disposal strategies for Alternative B.

• **Option 1:** During the dry season, effluent from the on-site WWTP would be recycled and used on-site for dual plumbed and cooling purposes and used to irrigate the vineyards and landscaping at agronomic rates. Effluent that could not be used for either purpose would be stored in the seasonal storage pond. Some amount of evaporation will also occur out of the storage pond.

During the wet season, effluent from the on-site WWTP would be recycled and used on-site for dual plumbed and cooling purposes, discharged on-site to Pruitt Creek, stored in on-site seasonal storage ponds, and used to irrigate the vineyards and landscaping at agronomic rates. The landscaped areas and vineyard would be irrigated by pumping effluent out of the seasonal storage pond. Effluent stored in the seasonal storage pond would be discharged to Pruitt Creek, tributary to the Russian River, in accordance with flow limitation requirements.

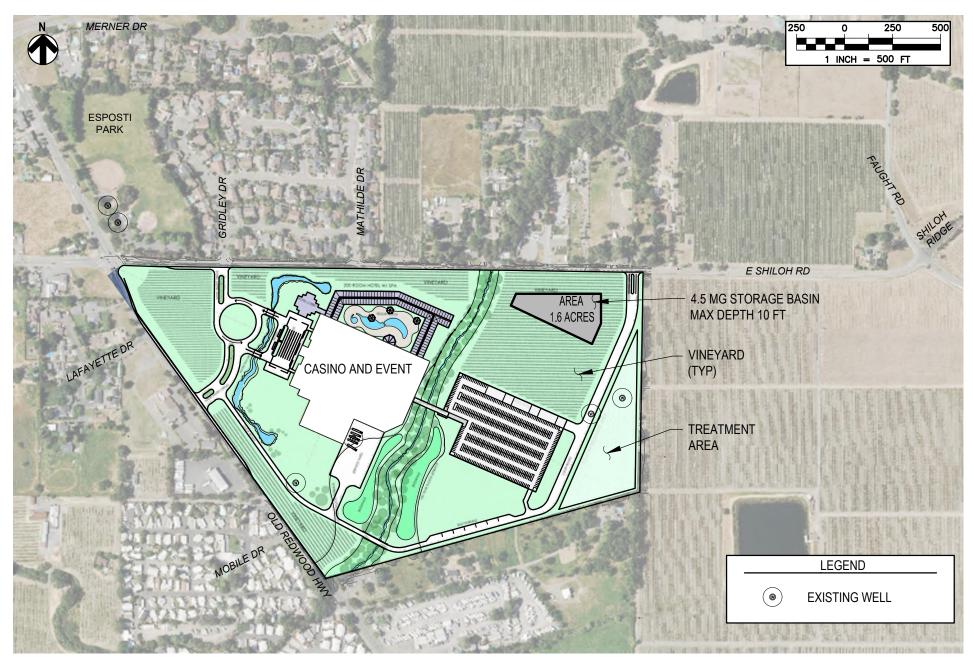
• **Option 2:** Similar to Option 1, with the addition of 9 acres of off-site irrigation for effluent disposal and consequently reduced seasonal storage volume required.

Option 1 strategy assumes that the Project will be able to dispose of effluent to only within the project site. The second effluent disposal strategy, Option 2, assumes that effluent will be disposed of to offsite landscape irrigation in addition to all other disposal methods listed. Both options assume an open storage pond will be used for seasonal storage. **Table 2-14** summarizes conceptual estimates of the seasonal storage requirements and disposal requirements for two effluent disposal strategies for Alternative B.

These estimates are preliminary and are for planning purposes only. The Alternative B options and disposal areas for the wet season discharge and wet season storage are shown in **Figure 2-11** and **Figure 2-12**. Portions of the areas identified for vineyards are within the 100-year flood zone. This, however, is not expected to be an issue, during periods of rain since it is assumed that the vineyards will not be irrigated during the wet season.

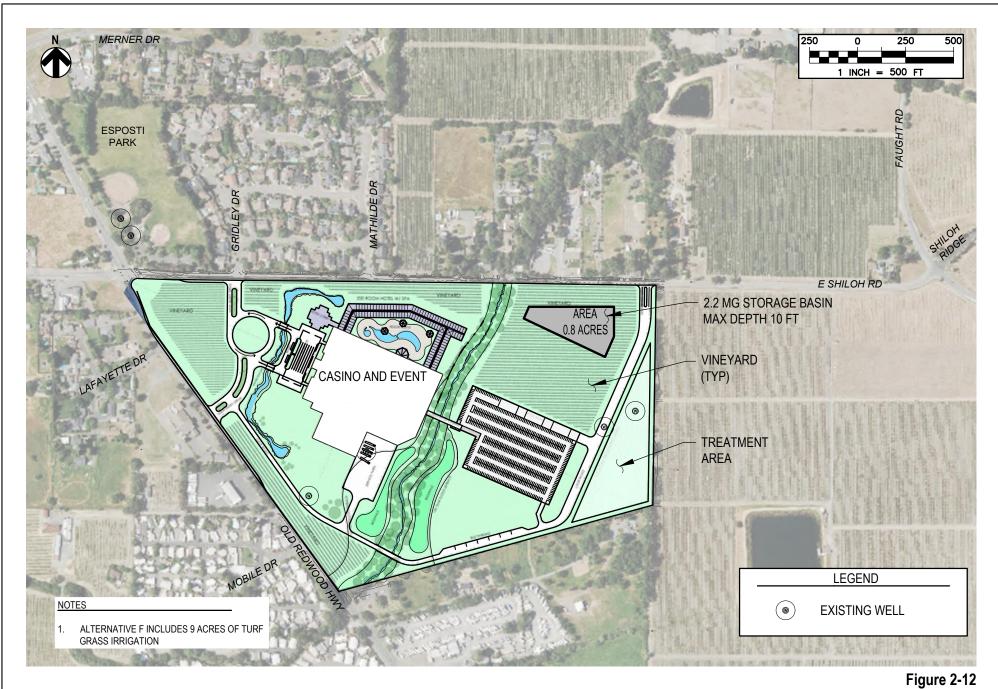
Seasonal Disposal Strategy	Landscape Irrigation (AF)	Vineyard Irrigation (AF)	Offsite (AF)	Surface Water Discharge (AF)	Max Storage (AF)
Option 1	20.2	6.3	0	66.9	13.9
Option 2	20.2	6.6	11.2	56.7	6.7

Table 2-14: Estimated On-Site Seasonal Dis	posal Requirements for Alternative B


Notes:

1. This disposal strategy assumes that all effluent will be disposed to the irrigated areas from April to October and stored in a reservoir for surface water discharge during the wet season.

2. Offsite irrigation assumes an additional 9 acres of offsite turf grass irrigation.


3. Landscape irrigation includes 6.7 acres of irrigated area. Vineyard irrigation consists of 22 acres of vineyards for a total disposal area of 28.7 acres.

Additional offsite turfgrass would reduce the amount of onsite seasonal storage required up to a point. The limiting month at the end of the dry season is the month of October when irrigation demand is zero and surface water discharge is limited. It is estimated that at a minimum, approximately 2.2 MG (6.7 AF) of storage in an open storage pond would be required regardless of the available irrigation area. If Option 1 was pursued with a closed storage tank instead, then the required volume would be approximately 6 MG (18.3 AF).

Figure 2-11 Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Option 1 - Alternative B

HydroScience

Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Option 2 - Alternative B

Alternative C

There is one option identified for Alternative C given the acreage available for landscape/vineyard irrigation with recycled water.

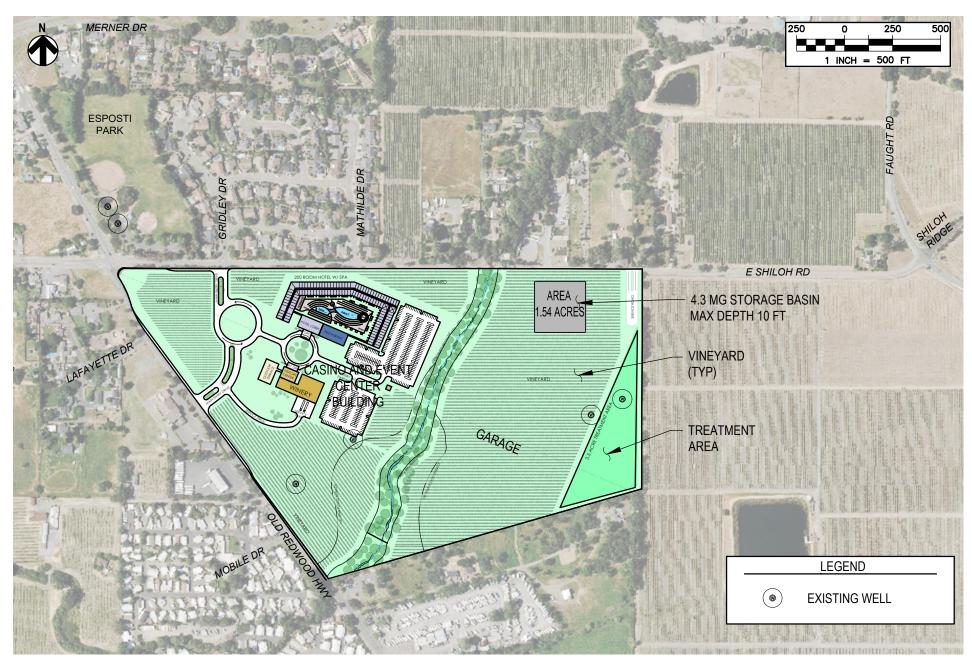
During the dry season, effluent from the on-site WWTP would be recycled and used on-site for dual plumbed and cooling purposes and used to irrigate the vineyards and landscaping at agronomic rates. Effluent that could not be used for either purpose would be stored in the seasonal storage pond. Some amount of evaporation will also occur out of the storage pond.

During the wet season, effluent from the on-site WWTP would be recycled and used on-site for dual plumbed and cooling purposes, discharged on-site to Pruitt Creek, stored in on-site seasonal storage ponds, and used to irrigate the vineyards and landscaping at agronomic rates. The landscaped areas and vineyard would be irrigated by pumping effluent out of the seasonal storage pond. Effluent stored in the seasonal storage pond would be discharged to Pruitt Creek, tributary to the Russian River, in accordance with flow limitation requirements.

Storage is sized so that sufficient recycled water is stored through the wet season to meet the irrigation demands of the dry season.

Seasonal Disposal Strategy	Landscape Irrigation (AF)	Vineyard Irrigation (AF)	Offsite (AF)	Surface Water Discharge (AF)	Max Storage (AF)
Option 1	0.3	13.7	0	2.3	13.2

Table 2-15: Estimated On-site Seasonal Disposal Requirements for Alternative C


Notes:

1. This disposal strategy assumes that all effluent will be disposed to the irrigated areas from April to October and stored in a reservoir for surface water discharge during the wet season.

2. Landscape irrigation includes 8.3 acres of irrigated area. Vineyard irrigation consists of 45.3 acres of vineyards for a total disposal area of 53.6 acres.

As shown in **Table 2-15** above, this strategy assumes that the Project will be able to dispose of effluent to only within the project site. If this alternative was pursued with a closed storage tank instead, then the required volume would be approximately 3.4 MG (10.4 AF).

These estimates are preliminary and are for planning purposes only. The Alternative C storage and disposal areas are shown in **Figure 2-13**. Portions of the areas identified for vineyards are within the 100-year flood zone. This, however, is not expected to be an issue, during periods of rain since it is assumed that the vineyards will not be irrigated during the wet season.

Figure 2-13 Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Option 1 - Alternative C

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 3 – LOCAL HYDROGEOLOGY

This section presents a summary of the available information regarding the hydrogeology at the Project site.

3.1 Santa Rosa Valley Basin

According to the DWR Bulletin 118, California's Groundwater Update 2020 (November 2021), the groundwater basin underlying the Town is the Santa Rosa Plain, a sub-basin (DWR number 1-055.01) of the Santa Rosa Valley Basin. The Santa Rosa Plain drains toward the Russian River and is part of the North Coast Hydrologic Region. The Santa Rosa Plain Sub-basin is the largest basin in the County and underlies the most populated areas of the County. The Windsor hydrogeologic subarea is located in the northern portion of the Santa Rosa Plain and underlies the Town of Windsor (Windsor Basin).

The following description is excerpted from the California's Groundwater Update 2013 (DWR April 2015):

The second largest groundwater basin in the North Coast region is the Santa Rosa Valley Groundwater Basin (1-055) in Sonoma County. The groundwater basin covers approximately 101,000 acres, and is divided into three groundwater subbasins: the Santa Rosa Plain (1-055.01), Healdsburg Area (1-055.02), and Rincon Valley (1-055.03). The groundwater basin extends to the northwest to the edge of the Russian River floodplain, west to the Mendocino Range, south to the hills dividing the Santa Rosa and Petaluma valleys, southeast to the Sonoma Mountains, and northeast to the Mayacamas Mountains.

The Santa Rosa Plain Groundwater Subbasin covers an area of approximately 80,000 acres and is home to approximately half of the population of Sonoma County. The four main geologic units, which form the primary aquifers in the Santa Rosa Plain Groundwater Subbasin, are sedimentary deposits of the Alluvium and Glen Ellen formations, the Wilson Grove Formation (previously described as the Merced Formation), and the Sonoma Volcanics. The groundwater subbasin's best water-producing units are stream channels filled with alluvial sands and gravels, groundwater basin-fill alluvium and alluvial fan deposits that connect the Santa Rosa Plain with its bordering hills, and massive sandstone units of the Wilson Grove Formation. The Sonoma Volcanics, a thick sequence of lava flows present along the eastern boundary of the groundwater basin, produce variable amounts of water. The Petaluma Formation also produces variable amounts of water, but underlies much of the groundwater basin at depth and is important in terms of its extensive distribution and the number of wells producing from it. Groundwater within the Santa Rosa Plain Groundwater Subbasin is generally present under confined conditions, except locally in the vicinity of clay or silt horizons where conditions may be semi-confined or confined.

The Glen Ellen Formation consists of continental deposits of partially cemented gravel, sand, silt, and clay, and also yields modest amounts of water to smaller groundwater wells. The thickness of the formation ranges from approximately 1,500 to 3,000 feet. Permeability of the formation varies greatly by location; data indicates that some wells can produce more than 500 gallons per minute (gpm), but most wells produce less and incur significant drawdowns. The Glen Ellen Formation produces groundwater primarily for domestic well use. This formation is notable because it is composed of continental sediments, rather than marine sediments, like many of the other water-bearing formations in the area.

3.1.1 Windsor Basin

The following is excerpted from the Hydrologic and Geochemical Characterization of the Santa Rosa Plain (SRP) Watershed – Scientific Investigations Report 2013–5118 (U.S. Geological Survey, 2013):

The analysis of gravity data reveals two deep, steep-sided sedimentary basins: the Windsor basin beneath the northern part of the SRP and the Cotati basin beneath the southern part, which are separated by a buried bedrock ridge (McPhee and others, 2007; Langenheim and others, 2008). The Windsor basin is about 5.5 by 7.5 mi in size and is centered near the town of Windsor. The thickest exposures of the Glen Ellen Formation in the Santa Rosa Plain Watershed are observed near this basin in the hills that flank the northeast side of the Santa Rosa Plain Watershed. The basin has a roughly triangular form, bounded by the Healdsburg fault segment on the northeast, the Trenton Ridge fault to the south, and a zone of poorly exposed normal faults on the west. Inversion of gravity data indicates the basin is 3,000–6,500 ft deep (Langenheim and others, 2008). The southern and western margins of the Windsor basin appear to have a series of downward steps into the basin (Langenheim and others, 2010), indicating that normal faulting played a role in basin subsidence. Based on outcrop and well data, the deeper parts of the Windsor basin are likely filled with tuff beds and lavas of the Sonoma Volcanics intercalated with sedimentary units of the Petaluma Formation (McLaughlin and others, 2008). Rocks of the Glen Ellen Formation and Quaternary alluvial fan deposits overlie these older rocks.

3.2 **Project Site Geotechnical Conditions**

A geotechnical study was conducted by Cal Engineering & Geology, Inc. and their observations and conclusions were documented in the Draft Geotechnical Data Memorandum on May 9, 2022. It was concluded that development was not precluded by the soil and geotechnical conditions observed at the site. It is noted that prior to any construction on the site, additional work associated with the preparation of a geotechnical report is required. However, the study provides a summary of the site's soil and geologic conditions.

Three general soil types were observed at the site. Alluvial deposits were encountered in each test pit to the maximum depth explored of 6 feet. The encountered alluvium within the upper four feet of several test pits primarily consisted of lean clays with varying amounts of sand, silt, and gravel and occasional silty sand layers. Shallow soils encountered in another test pit were more granular and consisted of moist to wet silty sand, clayey gravel, and clayey sand from 0 to 5 feet below the ground surface. Sandy lean clay and lean clay with sand was encountered in all test pits from approximately 5 to 6 feet below ground surface. For a more detailed description of the encountered soils, the test pit logs, and laboratory test results are included in **Appendix D**.

3.3 Local Groundwater Supply

The Windsor Water District serves the Town and select parcels south of Shiloh Road and west of Old Redwood Highway. The following details about the water supply are excerpted from the 2020 Draft Urban Water Management Plan (July 2021).

The Town's active potable water supply sources are the Russian River Well Field and Sonoma Water's transmission system (aqueduct). Both provide surface water from the Russian River. The Russian River Well Field has been in operation since 1984. The well field is located on a 27-

acre parcel located near the Russian River. It currently contains five production wells which intercept underflow from the Russian River with individual capacities of approximately 1,300 gallons per minute (gpm). The well field is owned by the Town, and water is extracted under water rights maintained by Sonoma Water. The Town currently has an application pending with the State Water Resources Control Board (SWRCB) Division of Drinking Water (submitted by the Windsor Water District in 1990) to obtain its own water rights for diversion via these wells.

The Town has purchased surface water from Sonoma Water since 1985 (Town of Windsor, 2015). Purchased water is delivered through Sonoma Water's 36-inch diameter Santa Rosa Aqueduct, and continues through a 12-inch diameter water transmission main at the southern end of the Charles M. Schulz–Sonoma County Airport where it connects to the Town's water system. Sonoma Water diverts water into the Santa Rosa Aqueduct via Ranney Collectors under the Russian River and supplements this supply with groundwater wells located in the Santa Rosa Plain Groundwater Basin.

The Town owns five off-river groundwater wells. These wells include the Esposti Park irrigation well, the Esposti Park potable well, Bluebird Well 1, Bluebird Well 2 and the Keiser Park irrigation well. Only one of the five wells, the Esposti irrigation well, is active; the remaining four off-river groundwater wells are inactive. The Esposti irrigation well provides raw water for park irrigation and is not used as a potable source.

The Town has begun implementation of a well drilling program beginning with the Esposti Park potable well to evaluate the thickness and productivity of the deeper sedimentary units in the Windsor area to develop groundwater wells that can be used to augment the Town's water supply.

Other local domestic wells located within the vicinity of the Project site are generally shallow from 100 up to 200 ft below ground surface (bgs). (*Sustainable Groundwater Management Act (SGMA) Data Viewer*, DWR, https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#gwlevels)

3.3.1 Esposti Park Well

The Town is in the process of developing the Esposti potable well as a potable water source. In 2010, the Town initiated exploratory drilling, well construction, and testing at Bluebird Court and Esposti Park. For the purpose of this Study due to its proximity to the Project site, the Esposti Park well will be discussed in detail. Esposti Park shares the intersection of Shiloh Road and Old Redwood Highway with the Project site. It is expected that the subsurface conditions at the Project site will be similar if not identical to those at Esposti Park.

An exploratory borehole was drilled to 1,040 ft bgs. Drill cutting samples were logged during pilot drilling by a California-licensed hydrogeologist. In general, the sand and gravel units encountered during drilling correlate with the Glen Ellen Formation. The generalized lithology encountered during drilling is summarized in **Table 3-1**.

Table 3-1: Esposti I	Park Lithologic	Summary
----------------------	-----------------	---------

Top Depth (feet)	Bottom Depth (feet)	Lithology
0	60	Light brown sandy clay
60	82	Variably colored well-sorted sand
82	90	Light gray sandy clay
90	115	Poorly sorted medium gravel, variably-colored; grading to green gray with depth
115	132	Dark gray-green silty clay
132	152	Gray-green sand with rare cobble; poorly sorted. Increasing coarseness with depth
152	163	Light brown sandy clay
163	223	Gray-green sand with rare cobble; poorly sorted. Increasing coarseness with depth to fine-to-medium sand
223	232	Light gray silty clay
232	336	Poorly sorted sand with rate pebbles. Increasing coarseness. Changing to gravel with sand and then to medium sand with pebbles
336	350	Light gray sandy clay. Light brown volcanic ash identified starting at 341 feet bgs
350	377	Variably colored gravel and sand. Grades from fine to medium. Some volcanic ash.
377	381	Ash predominant with sand and gravel
381	650	Variably-colored gravel and sand. Some ash interspersed at intervening layers. Interspersed clay with sand and gravel between 510 and 520 feet bgs.
650	700	Interbedded clay and ash with some sand. Trending to tan clay with depth
700	736	Gravel and sand
736	804	Dark gray micaceous clay with layers of sand ranging from fine to medium.
804	826	Gray-green fine to medium sand. Abundant ash starting at 810 feet bgs.
826	832	Light gray sandy clay
832	841	Sand and gravel
841	854	Dark gray fat clay
854	862	Poorly sorted sand with gravel, variably colored
862	970	Dark gray fat clay
970	1030	Silty sands to poorly sorted sand
1030	1040	Clay

The well screen was designed to screen permeable sands and gravels with good water quality as identified by field observations, soil cuttings and depth-specific water quality samples collected during borehole advancement. A total screen length of 160 feet was installed over six intervals as detailed in **Table 3-2**. The screen consists of stainless-steel continuous wire-wrap construction with a 0.125 inch slot size. Stainless steel blank casing ranging in length from 10 to 50 feet in length separates the screened intervals and was placed opposite lower permeability strata within the more permeable strata.

Screened Interval Depths (feet bgs)	Screen Length (feet)
380 to 420	40
430 to 450	20
460 to 470	10
480 to 510	30
545 to 565	20
615 to 655	40
Total Length	160

After well construction and development, groundwater samples were collected and analyzed. Results indicated concentrations of arsenic and manganese that exceeded drinking water standards. Further investigation was stalled due in part to the water quality issues coupled with a lack of urgency to develop additional water supply. The original well testing report: *Windsor Groundwater Well Installation and Testing Project Summary Report (September 2010)* detailing the subsurface conditions and well construction is included as **Appendix B**.

In 2016 and 2017, the Town reinitiated the well investigation and pursued redevelopment of the Esposti Supply Well; performing a pump test and evaluating water quality and treatment options. Results of this work determined that the well can reliability produce 400 gpm. Pumping at a rate of 800 gpm is possible but is not sustainable for more than a day due to hydrogeologic limitations to aquifer permeability. The groundwater production is from confined aquifer units located below 380 ft bgs. Pumping from the confined aquifer did not result in a significant effect on the overlying shallow groundwater. Thus it is not expected to affect local domestic wells installed at shallower depths (up to 200 ft bgs).

The well produces water that meets all of the requirements for drinking water with the exception of arsenic and manganese. The 2016 concentration of arsenic was 0.057 milligrams per liter (mg/L) and manganese was 0.860 mg/L. These concentrations are significantly above the maximum contaminant levels (MCLs) of 0.010 mg/L and 0.050 mg/L, respectively. The testing also confirmed that these elevated concentrations of arsenic and manganese are repeatable and consistent, screened across multiple aquifer zones.

The recommended option for water treatment is a two-step process; the first step removes manganese through catalytic oxidation (greensand filtration) and the second step removes arsenic through media adsorption.

The redevelopment, testing, and recommendations for the Esposti Well are documented in the Town of Windsor and Windsor Water District Esposti Supply Well Redevelopment, Pumping Test and Treatment Feasibility Study (October 3, 2017), included as **Appendix C**.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 4 – BACKGROUND AND REGULATORY ISSUES

This section identifies the typical regulatory requirements applicable to the Project with respect to the proposed water supply, wastewater treatment, and wastewater discharge methods identified in this report.

4.1 Water Supply

In general, Sonoma Valley water supply issues are characterized by limited groundwater supply and over-committed surface water supplies. Thus, the primary options that exist for securing water for the Project include evaluating the existing irrigation wells and their suitability as a potable water supply and constructing a new on-site water supply well.

4.1.1 Groundwater Supply and Management

Historically, shallow zone wells (<200 feet deep) showed no significant decline in groundwater levels. There are several shallow wells located within the vicinity of the Project site, as is typical for the periphery of the Town. It was noted during the pumping tests at Esposti well that there was no decline in groundwater levels in the shallow zone (Esposti irrigation well) indicating that pumping from the intermediate zone (>380 ft bgs) does not generally affect shallow zone water levels in those wells. Water level elevations in three shallow wells located south of the Project site (Figure 2-4) and monitored by DWR are historically stable.

Groundwater quality in neighboring wells commonly include higher levels of iron, manganese, and arsenic requiring treatment for elevated levels. Each of these constituents is found in higher-than-normal concentrations in certain areas of Sonoma County.

Neither iron nor manganese in water presents a health hazard. Iron will cause reddish-brown staining of laundry, porcelain, dishes, utensils, and even glassware. Manganese acts in a similar way but causes a brownish-black stain. Soaps and detergents do not remove these stains, and the use of chlorine bleach and alkaline builders (such as sodium carbonate) can actually intensify the stains. If these constituents are present in groundwater, treatment of the groundwater to remove these constituents is recommended.

Arsenic occurs naturally as a trace component in many rocks and sediments. Whether the arsenic is released from these geologic sources into groundwater depends on the chemical form of the arsenic, the geochemical conditions in the aquifer, and the biogeochemical processes that occur. Arsenic also can be released into groundwater as a result of human activities, such as mining, and from its various uses in industry, in animal feed, as a wood preservative, and as a pesticide. In drinking-water supplies, arsenic poses a problem because it is toxic at low levels and is a known carcinogen. In 2001, the USEPA lowered the MCL for arsenic in public-water supplies to 10 micrograms per liter (μ g/L) from 50 μ g/L.

Construction of an on-site well will be largely exempt from local environmental and public reviews associated with off-site impacts, but will be subject to Federal environmental and public reviews through the National Environmental Policy Act (NEPA) and regulatory oversight by the USEPA and the IHS.

Adjacent Domestic Wells: The well drillers logs for the Esposti well show that the water bearing zones in the local soils are separated by impervious clay layers preventing the vertical movement of water from the upper bearing zones, where most domestic wells terminate, if the lower zones are being pumped. The Esposti potable well is drilled to 675 feet. Domestic wells, on the other hand, are not typically drilled to depths greater than 200 feet. This suggests that these wells draw from the shallow alluvial aquifer. During testing of the Esposti potable well there was no change in the water levels of the irrigation well, which was drilled to 300 feet bgs and is located 30 feet from the potable well. There are several domestic wells located to the west and southwest of the Project site. To prevent significant impacts to local domestic wells, the proposed Project should also construct deep terminating wells, screen in the deeper water bearing formations below a depth of 200 feet, similar to the Town's local well construction. It is not anticipated that properly constructed on-site wells for the Project will adversely affect local wells.

No information was available regarding the construction of the existing on-site irrigation wells. It is recommended that the well is tested and investigated further to understand its construction, capacity, and water quality.

Groundwater Sustainability Plan (GSP): The Santa Rosa Plain groundwater basin is monitored by the Groundwater Sustainability Agency. The recently updated GSP (January 2022), indicates that groundwater is typically a primary source for water supply for irrigated agriculture and a secondary source of supply for many municipal water purveyors (except California American Water Company's Larkfield District); most of the water supply is imported water and local surface water. The Project will evaluate the current GSP to maintain the integrity of the subbasin water quality and available supply for the future. The Project's intent is to use recycled water where appropriate to reduce the potable water consumption it would otherwise require. The recycled water quality will be per Title 22 standards for tertiary treated effluent for reuse as described in the next section.

4.2 Recycled Water

It is expected that the WWTP will produce recycled water for on-site reuse, which will add to the water quality requirements of the effluent from the WWTP. In order to reuse recycled water on non-trust land in California, a Title 22 reclamation permit would be required. The RWQCB typically issues this permit in California. However, on trust land, the USEPA would regulate the use of recycled water use and would be responsible for granting a NPDES permit to use recycled water on-site. The USEPA has typically deferred their recycled water standards to California's Title 22 standards for trust land projects in California. IHS would regulate the use of recycled water on trust lands. For the range of uses considered for this project, it would be expected that the WWTP would need to produce disinfected tertiary recycled water in accordance with Title 22 requirements. Disinfected tertiary recycled water meets the following water quality requirements, which are specific to the MBR treatment process expected for the Project's wastewater treatment facility:

- Has been passed through a microfiltration, ultrafiltration, nanofiltration, or reverse osmosis membrane so that the turbidity of the filtered wastewater does not exceed any of the following:
 - ° 0.2 NTU more than 95 percent of the time within a 24-hour period; and
 - ° 0.5 NTU at any time.

- The filtered wastewater has been disinfected by either:
 - A chlorine disinfection process following filtration that provides a CT (the product of total chlorine residual and modal contact time measured at the same point) value of not less than 450 milligram-minutes per liter at all times with a modal contact time of at least 90 minutes, based on peak dry weather design flow; or
 - ^o A disinfection process that, when combined with the filtration process, has been demonstrated to inactivate and/or remove 99.999 percent of the plaque forming units of F-specific bacteriophage MS2, or polio virus in the wastewater. A virus that is at least as resistant to disinfection as polio virus may be used for purposes of the demonstration. The median concentration of total coliform bacteria measured in the disinfected effluent does not exceed an MPN of 2.2 per 100 milliliters utilizing the bacteriological results of the last seven days for which analyses have been completed and the number of total coliform bacteria does not exceed an MPN of 23 per 100 milliliters in more than one sample in any 30 day period. No sample shall exceed an MPN of 240 total coliform bacteria per 100 milliliters.

In addition to the aforementioned recycled water quality requirements, there are a number of operational, use, and reporting restrictions identified in Title 22. However, it is not expected that any of these requirements will limit the viability of recycled water reuse on-site, and these requirements are typical for any recycled water use application. All uses of recycled water would have to be approved by USEPA. As long as disinfected tertiary recycled water is produced, there would appear to be no issues associated with this intended use. It is also noted that the minimum quality of discharge to the Russian River is typically disinfected tertiary recycled water.

4.3 Wastewater

The regulatory requirements pertinent to wastewater treatment and wastewater discharge methods are identified in *Section 2.3 Wastewater* and *Section 2.3.4 Effluent Disposal*, respectively. The reader is referred to those sections for additional details.

The WWTP will be designed to comply with the effluent quality requirements of the NPDES permit when these are determined. The MBR process discussed in *Section 2.3.3 Wastewater Treatment Facilities* is expected to be capable of meeting these requirements with minimal modifications.

Nitrogen removal will be achieved in the anoxic basin of the MBR process as discussed in *Section* 6.2.3 *Immersed Membrane Bioreactor System (Packaged)*. It is expected that the effluent nitrogen concentrations will meet the limitations imposed by the USEPA in their NPDES permit.

If phosphorus removal is required, the MBR process is well suited to provide for phosphorous removal to very low concentrations. Phosphorus removal is enhanced in MBR treatment plants by employing one or multiple of the following operational methods: 1) addition of a coagulant to the aeration basin, 2) a higher solids retention time in the MBR basins, 3) ensuring there is an ample carbon source for the microorganisms, and 4) utilization of a membrane, which virtually eliminates any particulate phosphorus in the effluent. The method(s) the Tribe will employ for phosphorus removal will be determined during the WWTP design phase, but those methods would be designed to comply with the NPDES permit effluent limitations.

This section will present the requirements for determining the potential impacts of receiving waters upon discharge of tertiary treated wastewater, and the sludge disposal options and pertinent disposal regulations.

4.3.1 Baseline Monitoring Program

Baseline water quality for receiving waters, Mark West Creek tributary to Russian River, is required as a basis for determining if the beneficial uses of the receiving waters will be impacted by the proposed discharge of tertiary treated wastewater.

The current NPDES permits for the Dry Creek Rancheria WWTP (Dry Creek WWTP), Ukiah WWTP, and Windsor WWTP may be reviewed to gain a sense of the requirements specified in local NPDES permits issued by the USEPA and North Coast RWQCB and are publicly available. These WWTPs are the nearest to the proposed Shiloh Resort WWTP with a surface water discharge to the Russian River or its tributaries, and are the most applicable surface water discharge permits for the WWTP. These permits all include seasonal surface water discharge to the Russian River or its tributaries, and land disposal.

The primary unknown regulatory issues associated with the proposed wet season discharge of wastewater to Mark West Creek is the surface water quality at the discharge location. Since there is an existing gauge station at Mark West Creek, and streamflows are highest at that location, this is a logical area to begin baseline water quality monitoring.

In order to begin detailed discussions with the RWQCB on the feasibility of discharging to the Pruitt Creek, the Project would need to begin to collect receiving water quality data near the anticipated discharge site and at the Mark West Creek gauge station. This data would help the RWQCB evaluate the background water quality of the receiving waters, identify potential water quality restrictions, and understand the impacts of the proposed new discharge on the aquatic habitat.

4.3.2 Sludge Disposal

Sludge (biosolids) produced by the WWTP must also be disposed of in accordance with the California Code of Regulations, Water Code, Resource Conservation and Recovery Act, and the RWQCB policy. These regulations are commonly referred to as the 40 CFR Part 503 Biosolids Rule promulgated by the USEPA. It is anticipated that biosolids produced by the project WWTP will be disposed of to an off-site landfill in accordance with all regulatory requirements. Prior to off-site disposal, biosolids will be dewatered. The dewatered sludge, also known as cake, would be periodically hauled to a Class III landfill for disposal. The frequency and volume of dewatered sludge is typically determined during the design phase of the project, as more data is available on the source water quality and treatment process.

4.3.3 Cooling Tower Brine Generation and Disposal

The flowrate and water quality of brine generation from cooling tower processes is unknown. It will ultimately depend on the water chemistry of the makeup water, type/model of the cooling system and operation of the cooling system. Disposal sources for brine generation from cooling processes generally include offsite disposal or discharge to: surface water bodies, sewer system, ocean outfall, deep well injection, incineration, and environmental service providers. If disposal to the WWTP is the preferred option, further evaluation will be required to determine the maximum limits of constituents of concern, expected brine flow rates, expected water quality monitoring parameters, cycles of concentration, etc. Further evaluation will be needed to determine the brine generated from the recycled water treatment process (see **Section 2.3.4**), EBMUD accepts and treats this type of waste.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 5 – WATER FACILITY REQUIREMENTS

This section identifies preliminary water supply, water treatment, water storage, and pumping requirements to supply the proposed Project with water.

The facilities identified in this section are based on HydroScience's experience with similar projects. The general concept for the water supply facility is that the Project will maximize the reuse of recycled water in order to minimize the water supply requirements for the Project. This section describes the following facilities:

- Water Production Wells
- Water Treatment Plant
- Water Storage Tank and Pump Station

The overall water facilities will be located based on the final design of the Project facilities. All of the recommended water supply facilities described in this section are preliminary and should be utilized for planning purposes only.

5.1 Water Production Wells

The potable water supply system must have a firm reliable supply based on projected water demands. Firm capacity is the remaining water supply capacity with the largest single source out of service. In a well system, it is generally recommended to have a minimum of two wells available for service, so one can be serviced without interrupting the water supply. The actual well capacity, location, and operating strategy will be further developed during the design phase.

A key design requirement that must be addressed during the construction of the wells is the need to minimize impacts to neighboring domestic wells. The test hole should be drilled a minimum of approximately 700 feet deep, and screen sections should be placed primarily in the deeper aquifer sections, and not in the upper aquifers above 200 feet. Per DWR, the new well or existing well to used will require a minimum radius of 50-ft control zone around the well, to protect the source from vandalism, tampering, and other possible sources of contamination. The wells are anticipated to have similar lithographic, water production, and water quality characteristics as the existing Esposti Park Supply Well. The Town has detected high concentrations of arsenic and manganese thus, the implementation of water treatment to remove arsenic and manganese, as described in **Section 5.2**, will likely be required to treat the well water.

Table 5-1 shows the recommended design criteria for on-site wells. Each well is expected to have an approximate footprint of 20 feet by 30 feet, including the pump, well, piping, and miscellaneous equipment. Each well would also be setback from any recycled water use area or impoundment as required by Title 22 criteria.

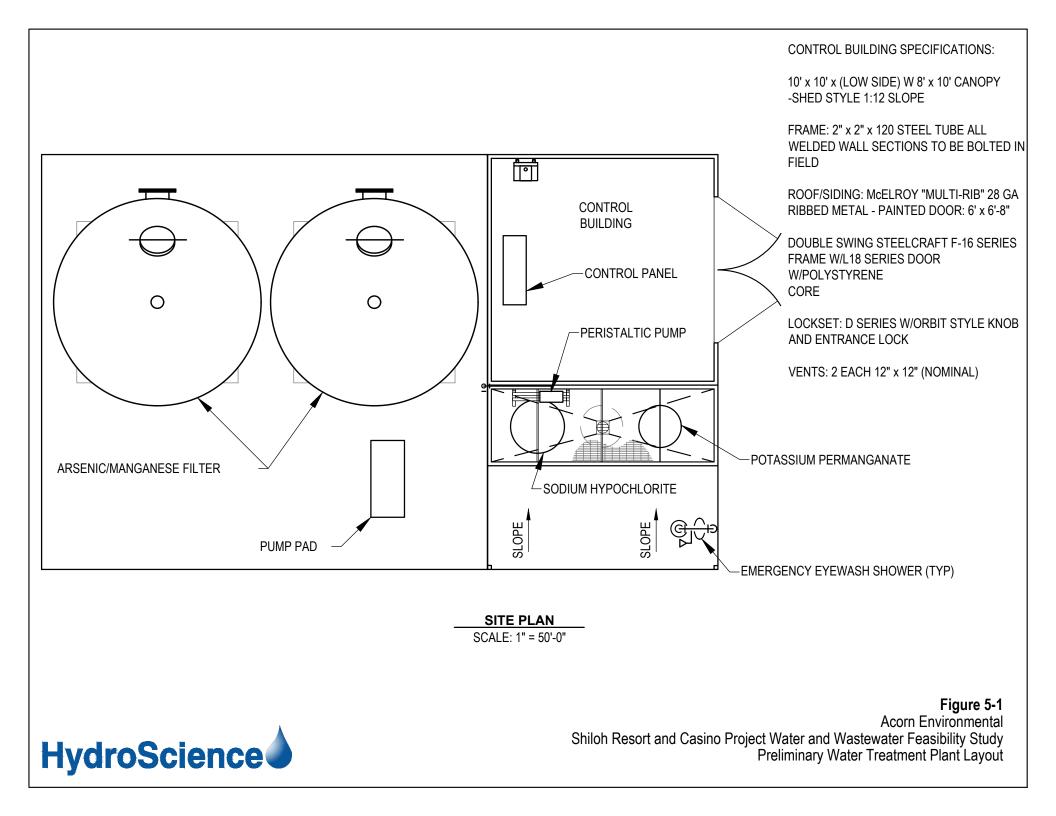

Parameter	Value
Approximate depth	700 ft
Casing diameter	12-inch
Surface seal depth	100 feet minimum
Casing material	Copper bearing steel
Screen material	Wire-wrapped stainless steel
Approximate screen depth range	Between 350 ft and 650 ft
Pump type	Vertical turbine multistage
Method of control	On/off by tank level

Table 5-1: Recommended Water	Production Well Design Criteria
	i loudonon rion Doorgii ornorna

5.2 Water Treatment Plant

Based on the groundwater conditions identified in **Section 3**, and the known arsenic and manganese issues found in local wells described in **Section 4**, it is anticipated that water supplied from any on-site well will exceed the State drinking water standards for arsenic and manganese. Thus, an on-site water treatment plant to remove these constituents will be required. It is recommended that the treatment plant utilize a manganese greensand pressure filtration process to remove manganese to acceptable levels. The backwash waste stream would be directed into a holding tank and settled water would be recycled back into the front of the plant at a rate not exceeding 10% of the plant's rated capacity. Manganese sludge would be periodically discharged from the tank to the sewer system. Media adsorption is recommended for the removal of arsenic. Arsenic is removed by filtering the water through media consisting of oxides and/or hydroxides of Fe, Ti, or Al. There are a variety of media on the market for the removal of arsenic. Treatment modeling of the specific water chemistry is required to narrow down the various media options. On-site pilot testing or testing using rapid small-scale column testing follows treatment modeling.

The two treatment vessels would be installed in series. A typical layout of the treatment plant is shown in **Figure 5-1**. A process flow diagram showing how water is treated within the treatment plant is shown as **Figure 5-2**.

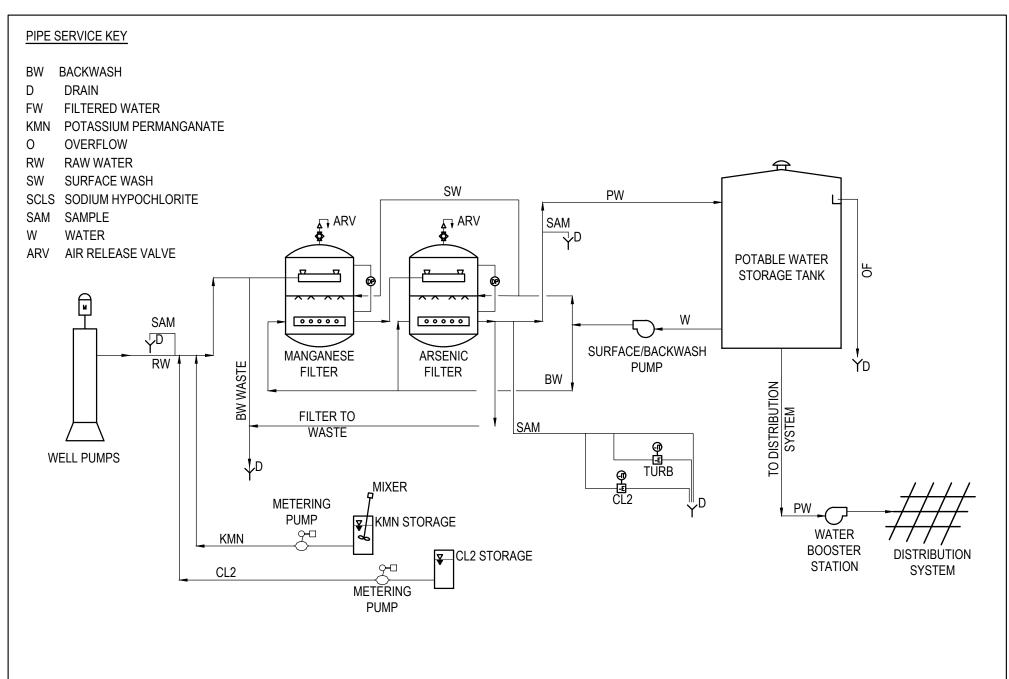


Figure 5-2 Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Preliminary Process Flow Diagram

The manganese filtration process consists of oxidation using a feed stream of sodium hypochlorite, and filtration through a manganese greensand filtration media. The function of the manganese greensand is to provide a catalyst to fully oxidize manganese, which may not be accomplished solely with a sodium hypochlorite oxidant. Potassium permanganate will be used to initially condition and prepare the media, and it may be used continuously or intermittently to aid in oxidation, if required. Arsenic is removed with simple on/off cycling and infrequent backwashing is required. Gentle breakthrough curve allows for reduced sampling frequency. Pilot testing is required to determine adsorption capacity. Efficiency is subject to competing adsorption by non-target compounds. Sodium hypochlorite would be used to disinfect the water before onsite distribution. A continuous monitoring residual analyzer will monitor chlorine residual at the end of the filters, before entering a water storage tank. Chlorine dosage control would be manual, with options for automatic pacing based on residual. The water treatment plant process facilities would be located within an enclosed building.

Significant features of the plant would include:

- PLC control system interlinked to a common water/wastewater SCADA system.
- Surface wash to reduce the possibility of "mudball" formation on the media surface.
- Fail-safe control valves that would fail in the filter-forward mode of operation.

The recommended Water Treatment Plant design criteria are summarized in Table 5-2.

Parameter	Value
Process	Pressure filtration
Media for Catalytic Oxidation	Anthracite/greensand
Number of filters ¹	1
Filter loading rate	3 gpm/sf
Filter size	10 ft diameter
Media for Adsorption	TBD
Number of filters ¹	1
Filter loading rate	3 gpm/sf
Filter size	10 ft diameter
Oxidant	Sodium Hypochlorite
Process control	PLC/on with service well

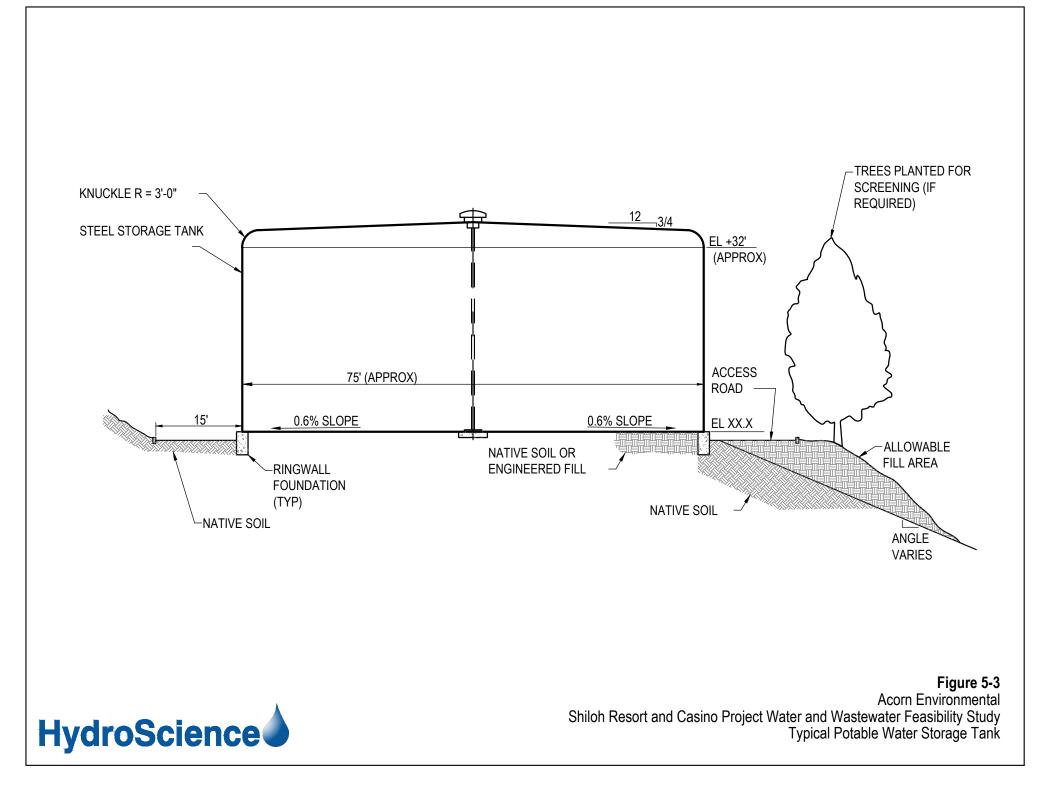
Table 5-2: Recommended Water Treatment Plant Design Criteria for Alternative A

Notes:

1. Number of filters does not include redundant unit. Systems are typically designed for N+1 redundancy; two total filters per filter type is recommended.

5.3 Water Storage Tank and Pump Station

A water storage tank would be constructed to store water produced by the water treatment plant. The actual required capacity of the tank is dependent on the Project's fire flow requirements, however, the anticipated capacity is approximately 1.0 million gallons (MG), and would be of welded steel construction meeting all American Water Works Association (AWWA) specifications


for welded steel tanks. A typical section of a tank is shown in **Figure 5-3**. The tank would be a cylindrical shape. Having a shorter tank will make it easier to camouflage, and would hide the tank better from the site's guests. The tank sizing would be based on standard pre-engineered tank dimensions, which are typically in 8-foot increments. It is also possible that the tank would be partially or completely buried, but for the purposes of this analysis, it is assumed that the tank would be located at grade.

Since the site is largely flat, with no land at an elevation suitable for gravity feed to the distribution system, it is recommended that this tank be utilized as the supply, and a pump station be utilized to maintain pressure in the distribution system. This potable water pump station will be required to convey water from the storage tank to the facilities requiring potable water, and would be sized to handle both fire flow and domestic demands. The ultimate pumping capacity will be dependent on fire flow requirements, and would be satisfied by two variable-speed high-service pumps that are half the capacity of the projected flow requirement. **Table 5-3** shows the design criteria for the water storage tank and pump station.

Value		
Water Storage Tank		
1.0 MG		
75 feet		
32 feet		
Welded steel		
Station		
2		
Variable speed turbine		
2		
1,000 - 2,000 gallons		

Notes:

1. Exact volume is TBD and will be determined during the design phase of the project. Tank volume is dependent on the flowrate and pressure the hydropneumatics tank is expected to provide.

THIS PAGE INTENTIONALLY LEFT BLANK

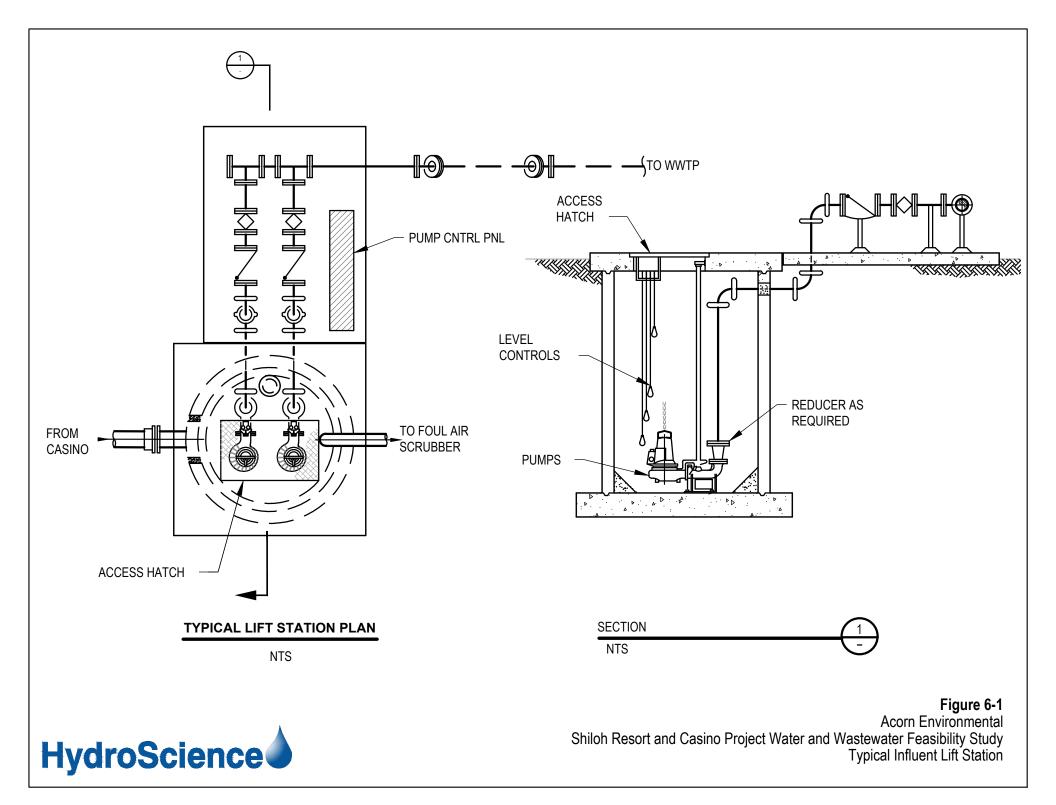
SECTION 6 – WASTEWATER FACILITY REQUIREMENTS

This section identifies preliminary wastewater collection, wastewater treatment, effluent discharge, and recycled water facilities required to manage wastewater generated by the proposed Project.

The general concepts for the wastewater facilities are to comply with all applicable permitting requirements, maximize on-site water reuse, and ensure that the wastewater and recycled water facilities are designed in a manner that does not limit existing uses or future expansion. This section describes the following facilities:

- Collection System
- Treatment Plant
- Discharge Facilities
- Operations and Maintenance
- Recycled Water Facilities

The overall wastewater facilities will be located based on the final design of the Project facilities. All of the recommended wastewater facilities described in this section are preliminary, and should be utilized for planning purposes only.


6.1 Wastewater Collection System

Wastewater from casino facilities is typically gravity fed to a lift station. Gravity sewer would likely be laid along planned roadways within the parcel to facilitate future maintenance. The gravity sewer main will require crossing beneath the existing creek to reach the proposed lift station and WWTP site. This may require a siphon under the creek, depending on the depth of the gravity main relative to the depth of the creek bed.

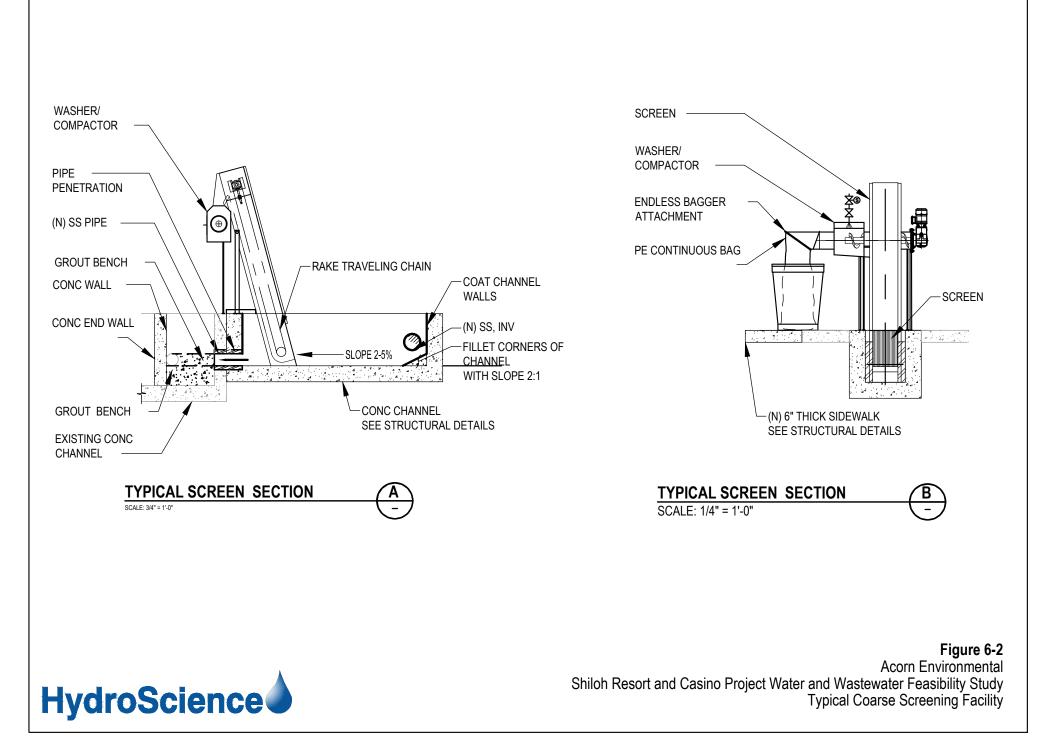
Wastewater will be pumped through a sewage transmission pipeline from the casino lift station to the headworks of the WWTP. It is likely that a duplex wet well sewage lift station with a standby pump will be required to convey sanitary sewage to the WWTP. The lift station wet well will also be used to collect surface water runoff from the treatment site.

Recommended design criteria for the lift station(s) are shown in **Table 6-1**. A figure showing a typical sewage lift station layout is shown in **Figure 6-1**. The station should be designed to lift the maximum daily flow with one pump out of service.

Parameter	Value
Purpose	Lift raw water to WWTP facilities
Туре	Submersible non-clog centrifugal
Quantity	Three (2 duty, 1 standby)
Controls	Variable speed, level switch start and shutoff

6.2 Wastewater Treatment Plant

This section provides a description of the recommended wastewater treatment components required for the Project. Each of the following major process components is described below:

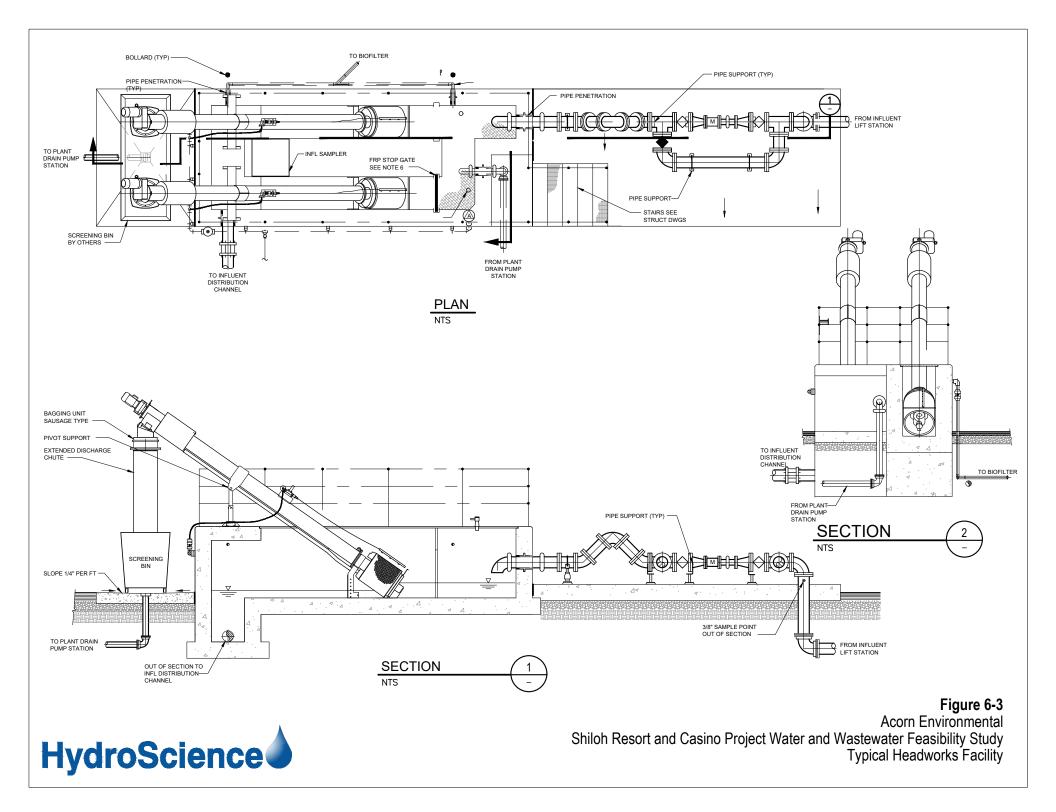

- Coarse Screening Facility;
- Headworks;
- Immersed Membrane Bioreactors;
- UV Disinfection;
- Chlorine Disinfection;

6.2.1 Coarse Screening Facility

The coarse screening facility for the WWTP is typically gravity fed and upstream of the casino lift station wet well. Due to the sources and quality of the wastewater, it is important to remove large debris to protect the downstream processes, specifically the pumps. Sewage lift station pumps typically handle solids less than 3" in diameter, so large towels, bedsheets, etc., may cause clogging and significant downtime. A typical layout for the coarse screening facility is shown as **Figure 6-2**. **Table 6-2** shows some of the design criteria for the headworks facility.

Table 6-2: Coarse Screen Design Criteria

Parameter	Value	
Coarse Screening facilities	Enclosed bar screen, multi-rake style, ¼" bar spacing, washer/compactor system, and bar screen bypass system	
Metering facilities	Magnetic flow meter on influent pipe	
Odor control	Corrosion resistant plate covered channels, soil filter	
Control	Continuous operation	


6.2.2 Headworks

The headworks for the WWTP would typically include influent flow measurement, rotary type fine screens, and any required grit removal facilities. Due to the sources and quality of the wastewater, it is not expected that grit removal facilities are required at this time. However, fine screens are required to protect excessive fouling of the MBR membranes. The fine screens typically include a built-in washer/compactor and 2-mm openings that remove hair, inorganics, and wastes. The 2-mm opening is necessary to protect the integrity of the membrane filters downstream. The washed and compacted screenings collected at the headworks are typically stored in bins on-site to be periodically disposed of at a landfill.

The raw influent would be pumped by the collection system pump station through the headworks facility. After flow measurement, influent would be routed to a covered headworks influent box for distribution to two influent channels. During normal operation, one channel would be inservice, with the other available as a standby. Slide gates would control flow to each channel. Each headworks channel would be sized to match the hydraulic capacity of the plant. Within the channels would be rotary type fine screens to remove large materials from the raw influent. A map showing a typical layout for the headworks facility is shown as **Figure 6-3**. **Table 6-3** shows some of the design criteria for the headworks facility.

Parameter	Value
Screening facilities	Enclosed cylindrical screen with 2-mm circular perforations, integral shaftless helical scraper/conveyor and compactor, mechanical washer to break up fecal material
Metering facilities	Magnetic flow meter on influent pipe
Odor control	Corrosion resistant plate covered channels, soil filter
Control	Continuous operation

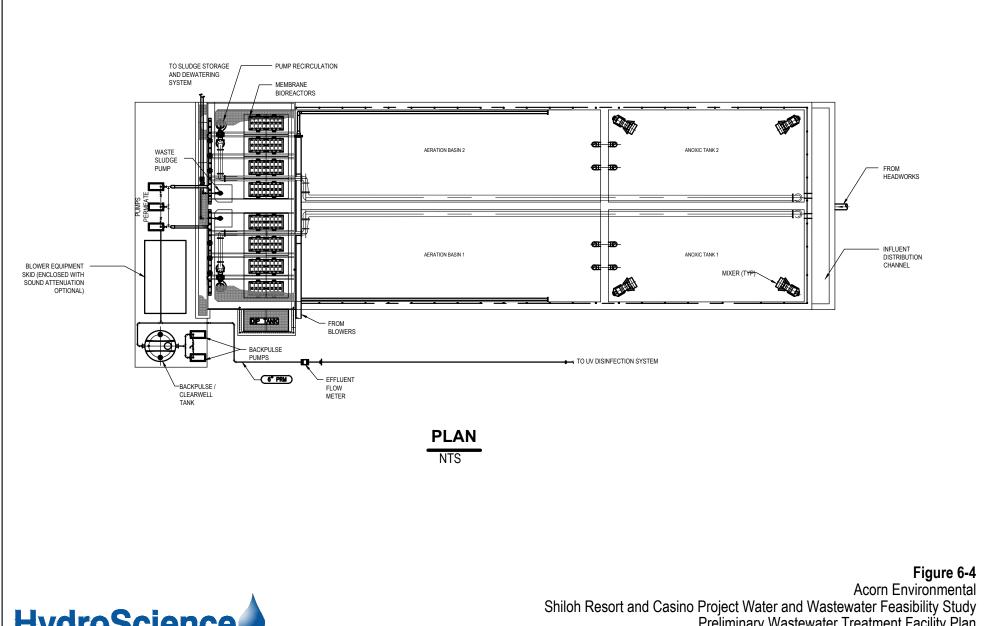
Table 6-3: Headworks Design Criteria

6.2.3 Immersed Membrane Bioreactor System (Packaged)

An MBR is recommended because of the ease of permitting the plant due to the high-quality effluent, and the effluent's potential suitability for discharge. Sewage would travel between the headworks and the MBRs within a covered influent distribution force main. The force main would pass through headworks to an influent splitter box that would evenly distribute the flow to the two MBR process trains. Sluice gates would be provided to isolate basins for maintenance.

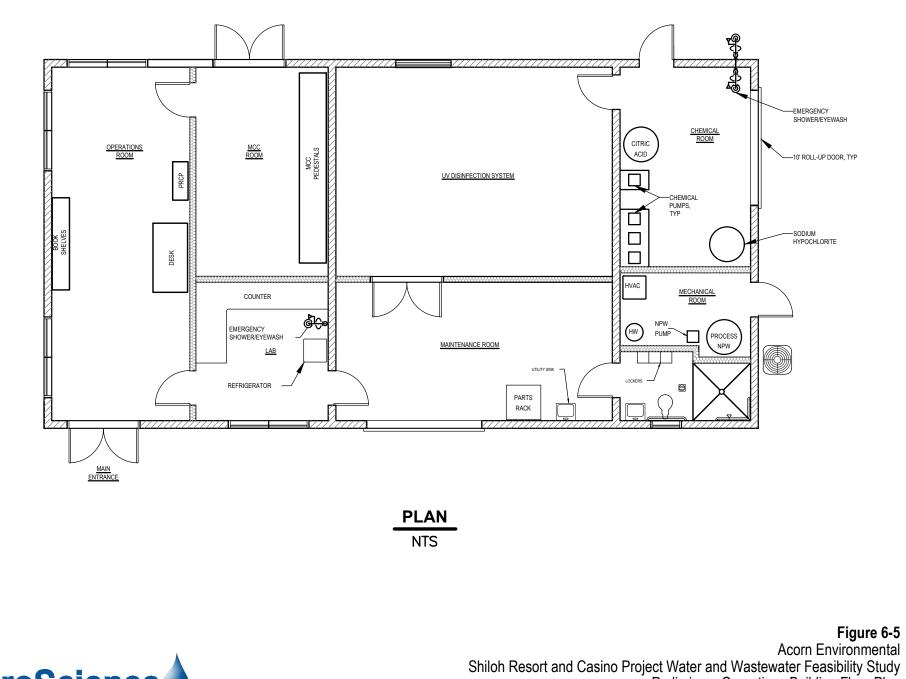
Each MBR process train is divided into three sections: an anoxic section, an aerobic section with mechanical mixers, and an aerobic section containing the immersed membranes. A typical layout for the MBR is shown as **Figure 6-4**. The proposed wastewater treatment plant would meet the design flow requirements specified in **Section 2.3.2**. The general configuration of the packaged MBR would be as follows.

Anoxic Basin: Within the anoxic basin, the influent is mixed with mixed liquor in a tank with a dissolved oxygen (DO) equal to zero. The mixed liquor is pumped back to the anoxic basin from the immersed membrane section of the MBR. The introduction of new influent wastewater to the basin provides a substrate for the return activated sludge to respire and synthesize. The lack of DO in the basin facilitates nitrification and denitrification. Ammonia compounds are converted to nitrates by nitrifying bacteria. Denitrifying bacteria convert nitrates to nitrogen gas, which volatilize out of the basin. The proportion of recirculated mixed liquor to the volume of influent is approximately 6:1. The anoxic basin has a relatively small retention time compared to the aeration basin or the immersed membrane section, due to its smaller volume.


Aeration Basins: The mixed liquor produced by the anoxic basin would flow by gravity through a short channel to the adjacent aeration basin. The aeration basin differs from the anoxic basin in that this basin contains DO, which is introduced to the tank through a series of fine bubble diffusers, connected by headers and pumped by a series of blowers. The DO is required to convert dissolved organic material into a filterable solid material. In this process, aerobic bacteria utilize the carbon in the wastewater for respiration and cell synthesis. The primary outcome result from this basin is an overall reduction in the biochemical oxygen demand (BOD), and the production of a filterable floc.

Immersed Membranes: The microfiltration membranes are long, hollow, spaghetti-like fibers with a nominal pore size of between 0.1 - 0.4 microns. Each of the individual microfiltration membranes is bundled together into modules, and each module is approximately 6 inches in diameter and 5 feet tall. The modules are grouped into sets, called cassettes, which are immersed into the mixed liquor solution. Each of the membrane modules is attached to headers, which create a suction and force water (permeate) through the membrane into the hollow center and onwards to the disinfection process. The mixed liquor that is not forced through the membrane is recirculated back to the anoxic zone. A portion of this recirculated mixed liquor is wasted to the dewatering system and disposal.

Each MBR train contains one permeate pump to force water through the membrane, including an additional standby permeate pump for the overall process that can draw from either train. These pumps can also pump permeate to the backpulse tanks, where water is stored in order to backwash the membrane. The permeate pumps also function as backpulse pumps, which pump permeate from the permeate tanks back to the membranes and keeps solids from accumulating on the membrane surface. The membranes are typically backwashed every 15 minutes, and each backwash lasts about two minutes. The entire backwash process is controlled by a PLC, which operates automatic control valves and isolates the membranes from the permeate pumping process. Sodium hypochlorite and/or citric acid is typically injected into the backpulse flow to facilitate membrane cleaning and prevent regrowth in the membrane modules.


Other facilities: A number of pumps, blowers, chemical storage, chemical metering, control, and electronic facilities are required in order to operate the MBR process. Some of these facilities are typically located in a building near the MBR process or are included on an equipment pad near the MBR system fully enclosed with sound attenuation provisions. Typically, an operations building is constructed which houses plant controls, the motor control center, maintenance facilities, chemical storage and metering, a laboratory, restroom/ washroom, and offices/space for staff. During design development, these facilities will be further defined. **Figure 6-5** shows the proposed electrical, controls, and operations building.

It is typical for a wastewater facility design to include equalization and emergency storage capacity. Equalization capacity will moderate the peak daily flows entering the WWTP. Emergency storage is typically plumbed into the sewage lift station designed to provide sufficient capacity for a peak flow event (or to-be-determined volume) if the lift station fails to deliver. The equalization tank would consist of a concrete tank either at or below grade, of a to-be-determined volume and size. Emergency storage is typically buried concrete or reinforced plastic that is gravity fed and drained from the sewage lift station.

HydroScience

Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Preliminary Wastewater Treatment Facility Plan

HydroScience

Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Preliminary Operations Building Floor Plan

6.2.4 Ultraviolet Disinfection

Disinfection to meet discharge and reclamation virus and coliform water quality standards would be provided by constructing or installing an ultraviolet (UV) disinfection system in the operations building. UV disinfection facilities are typically contained within a long, narrow steel channel tank or pipe channel, with banks of UV lamps situated in a laminar flowing channel. A weir would control the water level in the channel, ensuring that the lamps are always submerged. Each UV lamp emits a light with a specific wavelength that is capable of inactivating bacteria and virus, preventing them from reproducing. A proposed location for UV facilities is shown in **Figure 6-5** in the operations building floor plan. **Table 6-4** shows a summary of the recommended UV disinfection design criteria.

Table 6-4: UV Disinfection Design Criteria

Parameter	Value
Lamp location	In-line
Type of lamps	2020W medium pressure UV lamps
Transmittance	65% through quartz sleeve
Flow metering	Magnetic flow meter

6.2.5 Chlorine Disinfection

Though the UV facilities would be designed to disinfect the treated wastewater, they do not continue to disinfect the wastewater after it leaves the UV channel. In order to prevent regrowth of bacteria in the recycled water distribution system, sodium hypochlorite is typically added in small quantities. The introduction of this chemical creates a residual concentration of chlorine that persists in the recycled water and ensures that it is safe to use after it leaves the WWTP. Typical recycled water distribution systems require at least a positive chlorine residual at the point of use, and the dosing of sodium hypochlorite will be adjusted to meet this goal. It is believed that a dose of between 2-3 mg/L for recycled water used for on-site irrigation, cooling, or toilet/urinal flushing would suffice. Chlorine would be dosed at a location downstream of the UV disinfection facilities, and before recycled water is pumped to the recycled water storage tank. Any water discharged to surface waters would be non-chlorinated or fully de-chlorinated prior to discharge.

Chlorine is a very common disinfectant in the treatment and disinfection of wastewater. Sodium hypochlorite is used throughout the wastewater industry for chlorine disinfection, and when used in accordance with that chemical's SDS, is safe for use for this purpose.

6.2.6 Effluent Pump Station

The purpose of the effluent pump station would be to pump treated wastewater to the recycled water storage tank for storage and disposal. This pump station is expected to be a low head pump station that fills the recycled water tank to provide system storage. This pump station would also provide pumping capacity to convey treated effluent directly to the seasonal storage basin/tank if needed, during a higher-than-normal precipitation year for surface water disposal.

6.2.7 Operation and Maintenance

A detailed description of the operations and maintenance program will be prepared following completion of the WWTP design. However, it is expected that the WWTP would be operated and maintained similarly to the standards of other tertiary WWTPs in California.

To this effect, this WWTP will be staffed with operators who are qualified to operate the plant safely, effectively, and in compliance with all permit requirements and regulations. It is expected that the operators will have qualifications similar to those required by the SWRCB Operator Certification Program. This program specifies that for tertiary level WWTPs with design capacities of 1.0 MGD or less, the chief plant operator must be at least a Grade III operator. Supervisors and Shift Supervisors must be at least a Grade II.

6.3 Recycled Water

This section discusses the recommended design criteria for the Project's recycled water facilities. The recommended on-site recycled water facilities include:

- Recycled Water Storage Tank and Pump Station for On-site Landscape Irrigation/Dual Plumbing Facilities/Vineyard Irrigation/Cooling Tower Makeup
- Seasonal Storage Ponds/Tank and Distribution Pump Station

Each of the recycled water facilities is described in the following sections. The overall recycled facilities will be located based on the final design of the Project facilities. All of the recommended facilities described in this section are preliminary and should be utilized for planning purposes only.

6.3.1 Recycled Water Storage Tank and Pump Station

The purpose of this tank would be to provide equalization storage for on-site recycled water use used by the Project for toilet flushing, on-site landscaping, vineyard irrigation, and other uses. Should seasonal storage facilities be constructed, the water may also be pumped to the seasonal storage basins from this storage tank. If desired, recycled water could be utilized to supply water for fire protection, such as the sprinkler systems and fire hydrants.

A typical section for the tank is shown as **Figure 6-6**. The recycled water storage tank would be constructed within the proposed WWTP site. Since the proposed site is relatively flat, the tank would not maintain pressure in the recycled water distribution system. This storage tank would be similar to the potable water storage tank with respect to construction methods. **Table 6-5** shows a summary of the recommended storage tank design criteria assuming the stored recycled water would supply only the Casino and Hotel facilities, Casino landscape and vineyards.

Table 6-5: Recycled Water Storage Tank Design Criteria

Parameter	Value
Approximate size	1 MG
Approximate diameter	60 feet
Approximate height	43 feet
Construction	Welded steel

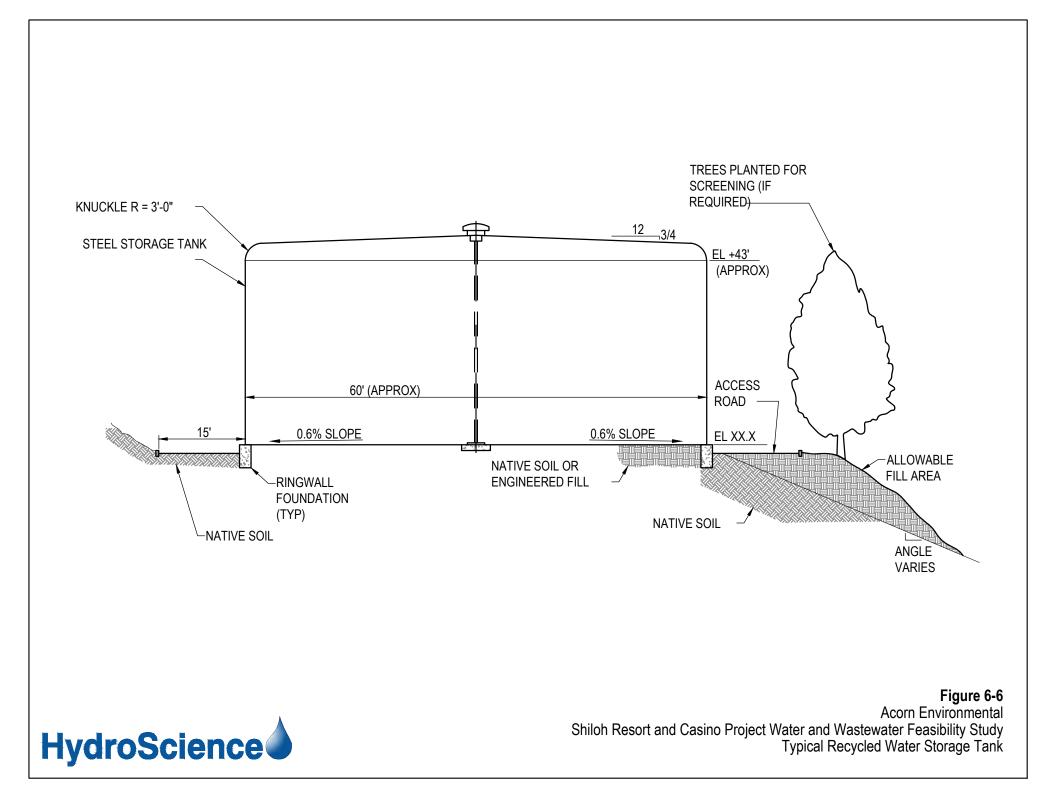
The recycled water pump station would pump water from the recycled water storage tank to the recycled water distribution system. This pump station would likely need to continuously operate, since there will be no system storage. There are no suitable locations at the proposed Project site for a recycled water storage tank at an elevation that would allow gravity to maintain distribution system pressure.

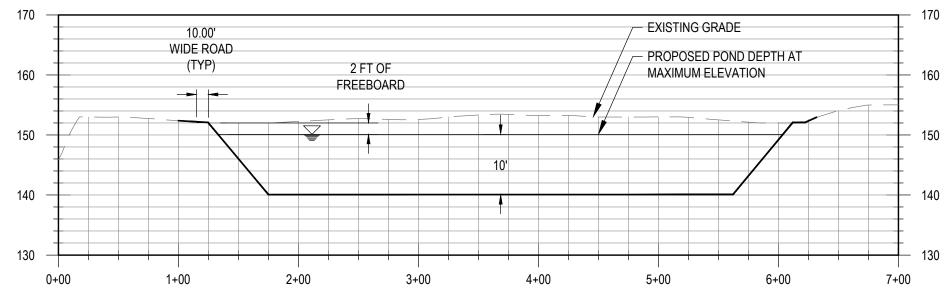
Optionally, and if layout area permits, the recycled water storage tank and pump station may be sized to meet the recycled water demands of the Project in addition to providing seasonal storage capacity. However, this would require further evaluation and planning.

6.3.1.1 On-Site Water Reuse Facilities

This report assumes that the casino building will be dual-plumbed with both potable and recycled water. The primary uses of recycled water will be for toilet and urinal flushing, on-site landscape irrigation, on-site vineyard irrigation, and cooling tower makeup. The on-site recycled water reuse facilities will be designed to ensure that they comply with all SWRCB standards. The required on-site facilities will be identified upon completion of a site plan and preliminary engineering. The primary on-site design requirements include:

- Recycled water irrigation facilities marked in a purple color.
- Signage informing the public recycled water is used.
- Pipelines in separate trenches a minimum distance away from other water pipelines.
- Labeling of recycled water valves, boxes, and sprinkler heads.


Within the building, the interior plumbing system will have to be plumbed separately from the building's potable water system and contain no cross connections. The dual plumbed piping systems must be distinctly marked and color-coded.


6.3.2 Seasonal Storage and Discharge Facilities

The proposed seasonal discharge strategy will rely heavily on utilizing the irrigated areas for the summer application of recycled water that cannot be discharged off-site. Seasonal holding ponds, if required, would be constructed using semi-buried ponds and berms. The ponds would need to be lined with a relatively impermeable material such as clay or concrete to minimize percolation into the groundwater and are expected to be located outside of the 100-year flood plain. A typical section for the pond is shown as **Figure 6-7**.

The discharge pump station would pump out of the seasonal storage ponds/tank to the irrigated areas for re-use. These pumps will operate seasonally, typically between April and October, and would be sized to convey the entire volume of recycled water stored in the seasonal storage ponds plus a portion of the daily summertime wastewater flows within a 5-day a week, 8 hours per day time period between March and October.

If a discharge permit is obtained from the RWQCB, the preferred location for a discharge facility is near Pruitt Creek, tributary to Pool Creek and Mark West Creek. This would include a new discharge pipeline, outfall structure, and facility since currently none exist. The outfall structure would be designed to prevent erosion of the natural creek banks and erosion downstream. The elevation of the outfall pipe invert is typically determined during the design phase of the project. The outfall pipe outlet will likely include a duckbill check valve or similar component to protect against settlement/silting inside the pipe or nesting of small animals or rodents. The area around the outfall pipe will be covered with rip rap or similar material to prevent natural erosion around the pipe from occurring and to protect the banks during periods of discharge. The pipe material will need to be suitable for permanent exposure to sunlight and creek water quality conditions.

TYPICAL BASIN SECTION (ELEVATIONS SHOWN ARE FOR INFORMATIONAL PURPOSES ONLY)

HydroScience

Figure 6-7 Acorn Environmental Shiloh Resort and Casino Project Water and Wastewater Feasibility Study Typical Open Storage Basin Elevation

SECTION 7 – RECOMMENDATIONS

This feasibility study report makes the following preliminary recommendations with respect to the proposed Project. This section identifies the recommendations for Alternative A and Alternative B program alternatives.

7.1 Water Supply

The Project should drill two on-site water supply wells to a depth of approximately 700 feet. Each well should be capable of meeting the peak day Project water demands.

The wells should screen off the more shallow aquifers above approximately 200 feet drawing from the deeper aquifer at depths around 400-600 feet.

The Project should plan on the following water supply facilities:

- Investigate the disposition of the existing onsite irrigation well and determine its suitability as a potable water supply source
- One additional potable well (assuming the existing well could be utilized as a second supply)
- Arsenic and Manganese water treatment plant
- Steel water storage tank
- Water distribution pump station

7.2 Wastewater Handling

The Project should construct an on-site WWTP to treat an average weekend flow of 400,000 gpd, 300,000 gpd, and 75,000 gpd for Alternatives A, B, and C, respectively.

The Project should maximize the on-site recycling of wastewater.

The Project should apply for a NPDES permit to discharge effluent to Pruitt Creek.

Flow limitations for off-site discharged should be monitored with the existing USGS gauging station at Mark West Creek. The Project should prepare contingency plans for on-site disposal of wastewater in the event that the NPDES permit is delayed or denied.

The Project should plan on constructing the following wastewater handling facilities:

- Immersed membrane bioreactor WWTP with UV Disinfection & Chlorination
- Effluent pump station
- Recycled water storage tank and pump station
- Recycled water distribution pump station
- Seasonal storage pond
- Acquiring additional property for turf grass irrigation (Alternative A and B only)

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 8 – REFERENCES

Cal Engineering & Geology, Inc. Draft Geotechnical Data Memorandum, 2022.

California Department of Water Resources. California's Groundwater Update 2020 Highlights, 2021.

California Department of Water Resources. Well Completion Report Map Application, <u>https://www.arcgis.com/apps/webappviewer/index.html?id=181078580a214c0986e2da28f8623b</u> <u>37</u>

GHD, Inc. Town of Windsor and Windsor Water District Esposti Well Redevelopment, Pumping Test and Treatment Feasibility Study, 2017.

Regional Water Quality Control Board, North Coast. *North Coast RWQCB Basin Plan,* 2018 (last amended).

RMC Water and Environment. Windsor Groundwater Well Installation and Testing Project Summary Report, 2010.

State of California Natural Resources Agency Department of Water Resources. California's Groundwater Update 2013 North Coast Hydrologic Region, 2015, p. 10-11.

State of California The Resources Agency Department of Water Resources. California's Groundwater Bulletin 118 Update 2003, 2003.

Town of Windsor. 2020 Urban Water Management Plan, 2021, p.3-6.

United States Geological Survey, *Daily Streamflow for the Nation USGS 11466800 MARK WEST CREEK C NR MIRABEL HEIGHTS CA,* <u>http://nwis.waterdata.usgs.gov/nwis/discharge/?site_no=11465680&agency_cd=USGS</u>, 2005 – 2020.

USGS. Hydrologic and Geochemical Characterization of the Santa Rosa Plain Watershed, Sonoma County, California, 2013, p.34.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A

Acorn Environmental Water and Wastewater Feasibility Study Projected Water and Wastewater Flows

Koi Full Build-out Space Program

	SF	SUBTOTAL	TOTAL	COMMENTS
CASINO		•		
Casino - Grade Level				
Vestibule	780			
Lobby	12110			
Event Center	53380			2800 Seats
BOH	56750			
Loading Dock	6750			
Net to Conversion	12,977	129,770.00		
Casino - 2nd floor		•		•
Gaming Floor	114,345			3000 Slots / 110 Table Games
Casino Bar	7,855			
Reception Lobby	1,500			
Retail	2,250			
Unassigned 1	2,700			
Service Bar 1	1,250			
Mens Restroom 1	1,250			
Womens Restroom 1	1,250			
High Limits	8,250			
Board Room 1	2,500			
Board room 2	3,700			
Breakout	14,535			
Ballroom	12,400			
Mens Restroom 2	1,000			
Women's Restroom 2	1,000			
Service Bar 2	1,000			
BOH/ Service Elevator	1,240			
Mens Restroom 3	1,000			
Womens Restroom 3	1,000			
Service Bar 3	1,000			
Unassigned 2	11,035			
Cage/ Bank	5,400			
Bridge	5,240			
Sports Book	9,900			
ВОН	1,680			
BOH/ Service Elevator	2,100			
Kitchen 1	5,100			
Restaurant 1	7,000			230 Seats
Food Hall	14,000			465 Seats
Mens Restroom 4	830			
Womens Restroom 4	830			
Service Bar 4	830			
Coffee Shop	2,750			
Unassigned 3	2,000			
Large Ballroom	32,500			
Breakout	8,550			

	SF	SUBTOTAL	TOTAL	COMMENTS
Mens Restroom 5	1,600			
Womens Restroom 5	1,600			
ВОН	6,300			
Circulation	45,547			
Net to gross conversion	34,582	345,817		
Casino - 3rd floor				•
Restaurant 2	5,870			195 Seats
Kitchen 2	3,790			
Restaurant 3	13,940			465 Seats
Restaurant 4	5,290			175 Seats
Kitchen 3	4,390			
Restaurant 5	5,340			175 Seats
Circulation	16,050			
ВОН	5,300			
Net to gross conversion	5,997	59,970	535,557	
HOTEL				
Hotel - Grade Level				
Check -in	11,900			
Guestrooms (100)	51,885			100 Rooms per floor
Circulation	5,720			
ВОН	3,170			
Net to gross conversion	7,268	72,675		
Hotel - 2nd Floor				
Guestrooms (100)	51,885			100 Rooms per floor
Circulation	5,720			
BOH	3,170			
Net to gross conversion	6,078	60,775		
Hotel - 3rd Floor				
Guestrooms (100)	51,885			100 Rooms per floor
Circulation	5,720			
ВОН	3,170			
Net to gross conversion	6,078	60,775		
Hotel - 4th Floor				
Guestrooms (100)	51,885			100 Rooms per floor
Circulation	5,720			
ВОН	3,170			
Net to gross conversion	6,078	60,775		
Hotel - 5th Floor				
Spa	13,930			10 Occupants + Staff
Net to gross conversion	1,393	13,930	268,930	
Heated and Cooled Total			804,487	
PARKING				
Casino				
Drop-off	51,000			
Covered - On Grade	235,000			
Bus	6,200	292,200		
Garage				
Garage - Grade level	303,520			
Garage - 2nd floor	303,520			

	SF	SUBTOTAL	TOTAL	COMMENTS
Garage - 3rd Floor	303,520			
Garage - 4th floor	303,520	1,214,080		
Paved Multi-purpose Area				
Parking	183,100	183,100	1,689,380	
Sq Footage Grand Total			3,298,354	
Parking Count Summary				
Casino/ Drop-off	800			
Garage - 1st Floor	923			
Garage - 2nd Floor	923			
Garage - 3rd Floor	923			
Garage - 4th Floor	923			
Paved Multi-Purpose Area	618			
Bus	9	5119		

Koi Reduced Intensity Space Program

	SF	SUBTOTAL	TOTAL	COMMENTS
CASINO				
Casino - Grade Level				
Vestibule	780			
Lobby	12110			
ВОН	28423			
Loading Dock	6750			
Net to Conversion	4,806	48,063.00		
Casino - 2nd floor				
Gaming Floor	114,345			3000 Slots / 110 Table Games
Casino Bar	7,855			
Reception Lobby	1,500			
Retail	2,250			
Unassigned 1	2,700			
Service Bar 1	1,250			
Mens Restroom 1	1,250			
Womens Restroom 1	1,250			
High Limits	8,250			
Board Room 1	2,500			
Board room 2	3,700			
Breakout	14,535			
Ballroom	12,400			
Mens Restroom 2	1,000			
Women's Restroom 2	1,000			
Service Bar 2	1,000			
BOH/ Service Elevator	1,240			
Mens Restroom 3	1,000			
Womens Restroom 3	1,000			
Service Bar 3	1,000			
Unassigned 2	11,035			
Cage/ Bank	5,400			
Bridge	5,240			
Sports Book	9,900			
BOH	1,680			
BOH/ Service Elevator	2,100			
Kitchen 1	5,100			
Restaurant 1	7,000			230 Seats
Food Hall	14,000			465 Seats
Mens Restroom 4	830			
Womens Restroom 4	830	1		
Service Bar 4	830	1		
Coffee Shop	2,750			
Unassigned 3	2,000			
Mens Restroom 5	1,600			
Womens Restroom 5	1,600			
ВОН	6,300			

	SF	SUBTOTAL	TOTAL	COMMENTS
Circulation	38,629			
Net to gross conversion	29,785	297,849		
Casino - 3rd floor	-	· · ·		
Restaurant 2	5,870			195 Seats
Kitchen 2	3,790			
Restaurant 3	13,940			465 Seats
Restaurant 4	5,290			175 Seats
Kitchen 3	4,390			
Restaurant 5	5,340			175 Seats
Circulation	16,050			
ВОН	5,300			
Net to gross conversion	5,997	59,970	405,882	
HOTEL	,	,	,	
Hotel - Grade Level				
Check -in	11,900			
Guestrooms (100)	51,885			100 Rooms per floor
Circulation	5,720			
ВОН	3,170			
Net to gross conversion	7,268	72,675		
Hotel - 2nd Floor				
Guestrooms (100)	51,885			100 Rooms per floor
Circulation	5,720			· · · · ·
ВОН	3,170			
Net to gross conversion	6,078	60,775		
Hotel - 3rd Floor				
Spa	13,930			10 Occupants + Staff
Net to gross conversion	1,393	13,930	147,380	
Heated and Cooled Total			553,262	
PARKING				•
Casino				
Drop-off	51,000			
Covered - On Grade	235,000			
Bus	6,200	292,200		
Garage				
Garage - Grade level	303,520			
Garage - 2nd floor	303,520			
Garage - 3rd Floor	303,520			
Garage - 4th floor	303,520	1,214,080		
Sq Footage Grand Total			1,106,524	
Parking Count Summary				
Casino/ Drop-off	760			
Garage - 1st Floor	923			
Garage - 2nd Floor	923			
Garage - 3rd Floor	923			
Garage - 4th Floor	923			
Bus	9	4461		

	SF	SUBTOTAL	TOTAL	0.L.	COMMENTS
Koi Non - Gaming Square	e Footages				
Hotel	65,000 / Level	130,000 SF			
Hotel Lobby	8,000 SF				
Spa	14,000 SF			760 (Incluc	les Hotel/Lobby)
Restaurant	4,700 SF	4,700 SF Kitchen		337	
Winery	20,000 SF			67	
Visitor Center	5,000 SF			17	
			212,400 SF	1,181	

	Regulation			
Parking Calculations	Summary	SF/Room Count		Spaces Required
Hotel				
	1 space/unit plus 1		5 Managers/	
	space for manager	200 Rooms	Staff	205 Req'd
Dining	1 Space/60 sq. ft.			
	dining area	4,700 SF		79 Req'd
Spa	1 Space/100 SF	14,000 SF		140 Req'd
Winery	1 Space/2000 SF	46,000 SF		23 Req'd
Visitor Center	1 Space/250 SF	5,000 SF		20 Req'd
				Total
				467 Req'd

*O.L. Stands for Occuapant Load

Koi Full Build-out Space Program

	0				
	SF	SUBTOTAL	TOTAL	0.L.	COMMENTS
CASINO					

Casino - Grade Level

2800 Seats 2,750 Slots/105 Table Games
2,750 Slots/105
2,750 Slots/105
30 Seats
65 Seats

	SF	SUBTOTAL	TOTAL	0.L.	COMMENTS
Large Ballroom	32,500			3250	
Breakout	8,550				
Mens Restroom 5	1,600				
Womens Restroom 5	1,600				
BOH	6,300				
Circulation	45,547				
Net to gross conversion	34,582	345,817		17,397	
Casino - 3rd floor	<i>,</i>				
Restaurant 2	5,870			392	195 Seats
Kitchen 2	3,790			19	
Restaurant 3	13,940			930	465 Seats
Restaurant 4	5,290			353	175 Seats
Kitchen 3	4,390			22	
Restaurant 5	5,340			356	175 Seats
Circulation	16,050			550	175 56415
BOH	5,300				
Net to gross conversion	5,997	59,970		2,072	
Net to gross conversion	5,557	59,970	538,137	19,469	
HOTEL			550,157	19,409	
Hotel - Grade Level					
Check -in	11 000				
Check -In	11,900				100
C	54.005				100 Rooms per
Guestrooms (100)	51,885				floor
Circulation	5,720				
BOH	3,170				
Net to gross conversion	7,268	72,675			
Hotel - 2nd Floor					
					100 Rooms per
Guestrooms (100)	51,885				floor
Circulation	5,720				
BOH	3,170				
Net to gross conversion	6,078	60,775			
Hotel - 3rd Floor					
					100 Rooms per
Guestrooms (100)	51,885				floor
Circulation	5,720				
BOH	3,170				
Net to gross conversion	6,078	60,775			
					1
Hotel - 4th Floor					100 Rooms per
Hotel - 4th Floor					100 Rooms per floor
Hotel - 4th Floor Guestrooms (100)	51,885				100 Rooms per floor
Hotel - 4th Floor Guestrooms (100) Circulation	51,885 5,720				
Hotel - 4th Floor Guestrooms (100)	51,885	60,775			

	SF	SUBTOTAL	TOTAL	0.L.	COMMENTS
					10 Occupants +
Spa	13,930				Staff
Net to gross conversion	1,393	13,930	268,930	1,345	
Heated and Cooled Total			807,067	20,814	
PARKING					
Casino					
Drop-off	51,000				
Covered - On Grade	235,000				
Bus	6,200	292,200			
Garage					
Garage - Grade level	303,520				
Garage - 2nd floor	303,520				
Garage - 3rd Floor	303,520				
Garage - 4th floor	303,520	1,214,080			
Paved Multi-purpose Area					
Parking	183,100	183,100	1,689,380		
Sq Footage Grand Total			3,303,51		

Parking Count Summary

Casino/ Drop-off	800			
Garage - 1st Floor	923			
Garage - 2nd Floor	923			
Garage - 3rd Floor	923			
Garage - 4th Floor	923			
Paved Multi-Purpose Area	618			
Bus	9	5119		

	Regulation			
Parking Calculations	Summary	SF/Room Count		Spaces Required
	1 space/unit plus 1		40 Managers/	
Hotel	space for manager	400 rooms	Staff	440 Req'd
	1 Space/60 sq. ft.			
Dining	dining area	51,440 SF		857 Req'd
	1 Space/4 seats or			
	1 space/75 sq. ft.			
	floor area,			
	whichever is	2800 Seats/		
Event Center	greater	53380 SF		712 Req'd
	1 Space per slot			
	machine/2 Space			
Casino	per table game	2,960		2,960 Req'd
				Spaces Required
				4,969

 Project:
 Shiloh Resort and Casino Project

 Program
 Alternative A

 Date:
 12/7/2022

 Title:
 Water Demand and Wastewater Flow Projection

							A.M.		P.M.	Typical WEEKDAY Flows		A.M.		P.M.	Typical WEEKEND Peak Flows	WEIGHTED AVEI Day Flows
Element	Units	Quantity	Quantity	Unit Flow (gpd/unit)	Base Flow	Factor		Factor			Factor		Factor			
			SF	gpd/unit	gpd	%	gpd	%	gpd	gpd	%	gpd	%	gpd	gpd	gpd
SINO			535,557			İ				•						
ino - Grade Level																
Vestibule	SF		780	0	0	0%	0	0%	0	0	0%	0	0%	0	0	0
Lobby	SF		12,110	0.0	0	30%	0	50%	0	0	70%	0	80%	0	0	0
Event Center	seats	2800	53,380	35	98,000	0%	0	30%	29,400	14,700	30%	29,400	90%	88,200	58,800	33,600
BOH	LS	1	56,750	7,000	7,000	30%	2,100	50%	3,500	2,800	70%	4,900	100%	7,000	5,950	4,150
Loading Dock	SF		6,750	0	0	0%	0	0%	0	0	0%	0	0%	0	0	0
Subtotal					105,000		-		-	17,500		-		-	64,750	37,750
asino - Second Floor					,			-		,					01,100	01,100
Gaming Floor	SF		114,345	0.6	68,607	30%	20,582	50%	34,304	27,443	60%	41,164	90%	61,746	51,455	37,734
Casino Bar	SF		7,855	0.7	5,106	30%	1,532	50%	2,553	2,042	60%	3,063	100%	5,106	4,085	2,918
Reception Lobby	SF		1,500	0.0	0	30%	0	50%	0	0	60%	0	80%	0	0	0
Retail	SF		2,250	0.05	113	30%	34	50%	56	45	60%	68	80%	90	79	59
Unassigned	SF		15,735	0.1	1,574	30%	472	50%	787	629	60%	944	80%	1,259	1,101	832
Service Bar	SF		4,080	0.1	408	30%	122	50%	204	163	60%	245	80%	326	286	216
Men's Restroom	SF		5,680	0.0	0	0%	0	0%	0	0	0%	0	0%	0	0	0
Women's Restroom	SF		5,680	0.0	0	0%	0	0%	0	0	0%	0	0%	0	0	0
High Limits	LS	1	8,250	2,500	2,500	30%	750	50%	1,250	1,000	60%	1,500	80%	2,000	1,750	1,321
Board Room	SF		6,200	0.5	3,100	30%	930	50%	1,550	1,240	60%	1,860	80%	2,480	2,170	1,639
Breakout	SF		23,085	0.5	11,543	30%	3,463	50%	5,771	4,617	50%	5,771	80%	9,234	7,503	5,854
Ballroom	SF		44,900	0.75	33,675	0%	0	0%	0	0	50%	16,838	90%	30,308	23,573	10,103
BOH/Service Elevator	SF	1	9,220	1,500	1,500	0%	0	0%	0	0	0%	0	0%	0	0	0
Cage/Bank Bridge	SF		5,400	0	0	0%	0	0%	0	0	0%	0	0%	0	0	0
Bridge Sporte Rook	SF		5,240	0	0	0%	0	0%	0	0	0%	0	0%	0	0	0
Sports Book Kitchen	SF SF		9,900 5,100	0.7	6,435 0	30% 30%	1,931 0	50% 50%	3,218 0	2,574 0	50% 70%	3,218 0	80% 100%	5,148 0	4,183	3,263 0
Restaurant 1	seats	230	7,000	70	16,100	30%	4,830	50%	8,050	6,440	60%	9,660	90%	14,490	12,075	8,855
Food Hall	seats	465	14,000	60	27,900	30%	8,370	50%	13,950	11,160	60%	16,740	90%	25,110	20,925	15,345
Coffee Shop	SF	400	2,750	2.6	7,150	50%	3,575	50%	3,575	3,575	90%	6,435	60%	4,290	5,363	4,341
Circulation	SF		45,547	0.0	0	0%	0	50%	0	0	50%	0	80%	0	0	0
Subtotal	0.		10,011	0.0	185,709	0.0		0070	Ŭ	60,929	0070		0070		134,546	92,479
asino - Third Floor					,					,						,
Restaurant 2	seats	195	5,870	70	13,650	30%	4,095	50%	6,825	5,460	60%	8,190	90%	12,285	10,238	7,508
Restaurant 3	seats	465	13,940	70	32,550	30%	9,765	50%	16,275	13,020	60%	19,530	90%	29,295	24,413	17,903
Restaurant 4	seats	175	5,290	70	12,250	30%	3,675	50%	6,125	4,900	60%	7,350	90%	11,025	9,188	6,738
Restaurant 5	seats	175	5,340	70	12,250	30%	3,675	50%	6,125	4,900	60%	7,350	90%	11,025	9,188	6,738
Kitchen	SF		8,180	0.0	0	30%	0	65%	0	0	70%	0	100%	0	0	0
Circulation	SF		16,050	0.0	0	30%	0	65%	0	0	50%	0	80%	0	0	0
BOH	LS	1	5,300	7,000	7,000	30%	2,100	65%	4,550	3,325	50%	3,500	80%	5,600	4,550	3,850
Subtotal					77,700					31,605					57,575	42,735
OTEL																
otel - Grade Level Check-In	SF		11,900	0.0	0	30%	0	50%	0	0	100%	0	100%	0	0	0
Guestrooms	rooms	100	51,885	250	25,000	30%	7,500	50%	12,500	10,000	50%	12,500	90%	22,500	17,500	13,214
Circulation	SF	100	5,720	0.0	23,000	30%	0	50%	0	0	100%	0	100%	0	0	0
BOH	LS	1	3,170	2,500	2,500	30%	750	50%	1,250	1,000	80%	2,000	50%	1,250	1,625	1,268
Subtotal	20		0,110	2,000	27,500	0070	100	0070	1,200	11,000	0070	2,000	0070	1,200	19,125	14,482
otel - Second Floor					21,000					11,000					10,120	,
Guestrooms	rooms	100	51,885	250	25,000	30%	7,500	50%	12,500	10,000	50%	12,500	90%	22,500	17,500	13,214
Circulation	SF		5,720	0.0	0	30%	0	50%	0	0	100%	0	100%	0	0	0
BOH	LS	1	3,170	2,500	2,500	30%	750	50%	1,250	1,000	80%	2,000	50%	1,250	1,625	1,268
Subtotal					27,500					11,000					19,125	14,482
otel - Third Floor																
Guestrooms	rooms	100	51,885	250	25,000	30%	7,500	50%	12,500	10,000	50%	12,500	90%	22,500	17,500	13,214
Circulation	SF		5,720	0.0	0	30%	0	50%	0	0	100%	0	100%	0	0	0
BOH	LS	1	3,170	2,500	2,500	30%	750	50%	1,250	1,000	80%	2,000	50%	1,250	1,625	1,268
Subtotal					27,500					11,000					19,125	14,482
otel - Fourth Floor Guestrooms	100000	100	51,885	250	25,000	30%	7,500	50%	12,500	10,000	50%	12,500	00%	22,500	17,500	13,214
Circulation	rooms SF	100	51,885	250	25,000	30% 30%	7,500	50%	12,500	0	50%	12,500	90% 100%	22,500	17,500	13,214
BOH	LS	1	3,170	2,500	2,500	30%	750	50%	1,250	1,000	80%	2,000	50%	1,250	1,625	1,268
Subtotal	20		5,170	2,000	27,500	5570		0070	.,200	11,000	5570	2,000	0070	1,200	19,125	14,482
otel - Fifth Floor										,					,	,
Spa	No. Occup	10	13,930	0.10	1,393	50%	697	50%	697	697	90%	1,254	90%	1,254	1,254	935
Subtotal					1,393					697					1,254	935
Total Area			802,387													
RAND TOTAL WW FLOWS				BASE FLOW	479,900		WEE	KDAY AV	ERAGE FLOW	154,800		WEEI	KEND AV	ERAGE FLOW	334,700	231,900
alculated Peaking Factor										1.00					2.16	1.50
VG POTABLE WATER DEMA	ND (20% INCR	EASE OVER W	W FLOW EST	MATE)	575,900					185,800					401,700	278,300
				,	0.0,000					,						210,000
<u>Assumptions -</u> 1. Circulation, check-in and simila 2. All dining facilities will see high 3. Unit flows used were based on	ar areas were ind usage due to pr	cluded in BOH li roximity to majo	ump sums for H r road. Dining fa	otel and Casino.	Ides kitchen use											

Project: Shiloh Resort and Casino Project

Program Alternative B Date: 12/7/2022

Title: Water Demand and Wastewater Flow Projection

							А.М.		Р.М.	Typical WEEKDAY Flows		A.M.		P.M.	Typical WEEKEND Peak Flows	<u>WEIGHTED</u> AVERA Day Flows
Element	Units	Quantity	Quantity	Unit Flow (gpd/unit)	Base Flow	Factor		Factor			Factor		Factor			
			SF	gpd/unit	gpd	%	gpd	%	gpd	gpd	%	gpd	%	gpd	gpd	gpd
CASINO																
Casino - Grade Level																
Vestibule	SF		780	0	0	0%	0	0%	0	0	0%	0	0%	0	0	0
Lobby	SF		12,110	0.0	0	30%	0	50%	0	0	70%	0	80%	0	0	0
BOH	LS	1	28.423	3,500	3.500	30%	1,050	50%	1,750	1.400	70%	2.450	100%	3,500	2,975	2,075
		1								,		1				
Loading Dock	SF		6,750	0	0	0%	0	0%	0	0	0%	0	0%	0	0	0
Subtotal					3,500					1,400					2,975	2,075
Casino - Second Floor																
Gaming Floor	SF		114,345	0.6	68,607	30%	20,582	50%	34,304	27,443	60%	41,164	90%	61,746	51,455	37,734
Casino Bar	SF		7,855	0.7	5,106	30%	1,532	50%	2,553	2,042	60%	3,063	100%	5,106	4,085	2,918
Reception Lobby	SF		1,500	0.0	0	30%	0	50%	0	0	60%	0	80%	0	0	0
Retail	SF		2,250	0.05	113	30%	34	50%	56	45	60%	68	80%	90	79	59
Unassigned	SF		15,735	0.05	1,574	30%	472	50%	787	629	60%	944	80%	1,259	1,101	832
Service Bar	SF		4.080	0.1	408	30%	122	50%	204	163	60%	245	80%	326	286	216
Men's Restroom	SF		4,080	0.1	406	0%	0	0%	204	0	0%	245	0%	0	200	0
	SF SF			0.0	-			0%					0%		0	0
Women's Restroom			5,680		0	0%	0		0	0	0%	0		0		
High Limits	LS	1	8,250	2,500	2,500	30%	750	50%	1,250	1,000	60%	1,500	80%	2,000	1,750	1,321
Board Room	SF		6,200	0.50	3,100	30%	930	50%	1,550	1,240	60%	1,860	80%	2,480	2,170	1,639
Breakout	SF		14,535	0.50	7,268	30%	2,180	50%	3,634	2,907	50%	3,634	80%	5,814	4,724	3,686
Ballroom	SF		12,400	1	9,300	0%	0	0%	0	0	50%	4,650	90%	8,370	6,510	2,790
BOH/Service Elevator	SF	1	11,320	2,500	2,500	0%	0	0%	0	0	0%	0	0%	0	0	0
Cage/Bank	SF		5,400	0	0	0%	0	0%	0	0	0%	0	0%	0	0	0
Bridge	SF		5,240	0	0	0%	0	0%	0	0	0%	0	0%	0	0	0
Sports Book	SF		9,900	0.7	6,435	30%	1,931	50%	3,218	2,574	50%	3,218	80%	5,148	4,183	3,263
Kitchen	SF		5,100	0.0	0	30%	0	50%	0	0	70%	0	100%	0	0	0
Restaurant 1	seats	230	7,000	70	16,100	30%	4,830	50%	8,050	6,440	60%	9,660	90%	14,490	12,075	8,855
Food Hall	seats	465	14,000	60	27,900	30%	8,370	50%	13,950	11,160	60%	16,740	90%	25,110	20,925	15,345
Coffee Shop	SF		2,750	2.6	7,150	50%	3,575	50%	3,575	3,575	90%	6,435	60%	4,290	5,363	4,341
Circulation	SF		38,629	0.0	0	0%	0	50%	0	0	50%	0	80%	0	0	0
Subtotal				***	158,059				-	59.219		-		-	114,705	82.998
Casino - Third Floor					,			<u> </u>		,			-		,	,
Restaurant 2	seats	195	5,870	70	13,650	30%	4,095	50%	6,825	5,460	60%	8,190	90%	12,285	10,238	7,508
Restaurant 3	seats	465	13,940	70	32,550	30%	9,765	50%	16,275	13,020	60%	19,530	90%	29,295	24,413	17,903
Restaurant 4	seats	175	5,290	70	12,250	30%	3,675	50%	6,125	4,900	60%	7,350	90%	11,025	9,188	6,738
Restaurant 5	seats	175	5,340	70	12,250	30%	3,675	50%	6,125	4,900	60%	7,350	90%	11,025	9,188	6,738
	Seals	175	8,180	0.0		30%										
Kitchen				0.0	0	30%	0	65%	0	0	70%	0	100%	0	0	0
Circulation	SF		16,050				0	65%	0	0	50%	0	80%	0	0	
BOH	LS	1	5,300	7,000	7,000	30%	2,100	65%	4,550	3,325	50%	3,500	80%	5,600	4,550	3,850
Subtotal					77,700					31,605					57,575	42,735
IOTEL ⁶																
lotel - Grade Level																
Check-In	SF		11,900	0.0	0	30%	0	50%	0	0	100%	0	100%	0	0	0
Guestrooms	rooms	100	51,885	250	25,000	30%	7,500	50%	12,500	10,000	50%	12,500	90%	22,500	17,500	13,214
Circulation	SF		5,720	0.0	0	30%	0	50%	0	0	100%	0	100%	0	0	0
BOH	LS	1	3,170	2,500	2,500	30%	750	50%	1,250	1,000	80%	2,000	50%	1,250	1,625	1,268
Subtotal					27,500					11,000					19,125	14,482
lotel - Second Floor										,						,
Guestrooms	rooms	100	51,885	250	25,000	30%	7,500	50%	12,500	10,000	50%	12,500	90%	22,500	17,500	13,214
Circulation	SF		5,720	0.0	0	30%	0	50%	0	0	100%	0	100%	0	0	0
BOH	LS	1	3,170	2.500	2,500	30%	750	50%	1,250	1,000	80%	2,000	50%	1,250	1,625	1,268
Subtotal	10		133,450	2,000	2,500	0070	, 30	0070	1,200	11.000	0070	2,000	0070	1,200	19,125	14.482
lotel - Third Floor			100,400		21,000					11,000					10,120	14,402
	Na Osaur	10	12.020	0.10	1 202	50%	607	50%	607	697	0.00%	1.054	0.00%	1.054	4.054	935
Spa	No. Occup	10	13,930	0.10	1,393	50%	697	50%	697		90%	1,254	90%	1,254	1,254	
Subtotal			000 740		1,393					697					1,254	935
Total Area			686,712													
RAND TOTAL WW FLOWS				BASE FLOW	295,700		WEE	KDAY ÁV	ERAGE FLOW	115,000		WEE	KEND AV	ERAGE FLOW	214,800	157,800
alculated Peaking Factor										1.00					1.87	1.37

Assumptions -

1. Circulation, check-in and similar areas were included in BOH lump sums for Hotel and Casino.

All dining facilities will see high usage due to proximity to major rad. Dining facility usage includes kitchen use.
 Unit flows used were based on the most conservative values found in online data, real time data from previous projects, etc.
 Unassigned element will see similar usage as a service bar.
 Usage for restrooms included in the other demands.

6. The swimming pool is expected to experience nominal water loss through evaporation.

Project: Shiloh Resort and Winery (Non-Gaming)

Program Alternative C Date: 12/7/2022

Title: Water Demand and Wastewater Flow Projection

							A.M.		P.M.	Typical WEEKDAY Flows		A.M.		P.M.	Typical WEEKEND Peak Flows	WEIGHTED AVERAGE Day Flows
Element	Units	Quantity	Quantity	Unit Flow ² (gpd/unit)	Base Flow	Factor		Factor			Factor		Factor			
			SF	gpd/unit	gpd	%	gpd	%	gpd	gpd	%	gpd	%	gpd	gpd	gpd
FACILITY																
Dining ¹			4,700	2.6	12,220	30%	3,666	50%	6,110	4,888	60%	7,332	90%	10,998	9,165	6,721
Kitchen			4,700	0.0	0	0%	0	0%	0	0	0%	0	0%	0	0	0
Winery ⁴			20,000	-											2,112	2,112
Visitor Center	SF	5,000	2,500	0.05	125	30%	38	50%	63	50	60%	75	90%	113	94	69
Tasting Room ⁵			2,500	0.30	750	30%	225	50%	375	300	60%	450	90%	675	563	413
Subtotal					13,095					5,238					11,933	9,314
HOTEL ³																
Hotel - Grade Level																
Lobby	LS	1	8,000	5,000	5,000	30%	1,500	50%	2,500	2,000	100%	5,000	100%	5,000	5,000	3,286
Guestrooms	rooms	100	65,000	250	25,000	30%	7,500	50%	12,500	10,000	50%	12,500	90%	22,500	17,500	13,214
Subtotal					30,000					12,000					22,500	16,500
Hotel - Second Floor Guestrooms		100	65.000	250	25,000	30%	7.500	50%	12,500	10.000	50%	12.500	90%	22,500	17,500	13.214
Subtotal	rooms	100	65,000	250	25,000	30%	7,500	50%	12,500	10,000	50%	12,500	90%	22,500	17,500	13,214
Hotel - Third Floor					25,000					10,000					17,500	13,214
Spa			14.000	0.10	1.400	50%	700	50%	700	700	90%	1.260	90%	1.260	1.260	940
Subtotal			11,000	0.10	1,400	0070	100	0070	100	700	0070	1,200	0070	1,200	1.260	940
Total Area			186,400		.,	•									.,200	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
GRAND TOTAL WW FLOWS			,	BASE FLOW	69,500		WEE	KDAY AV	ERAGE FLOW	28,000		WEE	KEND AV	ERAGE FLOW	53,200	40,000
Calculated Peaking Factor										1.00					1.90	1.43
VG POTABLE WATER DEMAN	ND (20% INCR	EASE OVER W	W FLOW ESTI		83.400					33.600					63.900	48.000

Assumptions -1. All dining facilities will see high usage due to proximity to major road. Dining facility usage includes kitchen use. 2. Unit flows used were based on the most conservative values found in online data, real time data from previous projects, etc. 3. The swimming pool is expected to experience nominal water loss through evaporation.

4. See separate table for winery calculations. Winery flow projections are not affected by time of day, but are affected by duration of crush season. The projections have been included in the water balance. 5. Assumed tasting room is 50% of the visitor center area building space.

Project: Shiloh Resort (Non-Gaming) Program Alternative C Date: 12/7/2022

Title: Water Demand and Wastewater Flow Projection - Winery

							Crush Sea	ison	Noi	n-Crush S	Season	Average	Day Flows	AVERAGE Day Flows
Element	Units	Quantity	Production	Efficiency ¹	Annual Flow	Factor ²	Length	Flow	Factor	Length		Crush Season	Non-Crush Season	
		SF	cases/year	gal/case	gal	%	days	gal	%	days	gpd	gpd	gpd	gpd
FACILITY														
Winery (Production)		20,000	15,000	4.8	72,000	90%	31	64,800	10%	334	7,200	2,090	22	2,112
Subtotal					72,000							2,090	22	2,112
Total Area GRAND TOTAL WW FLOWS	;		20,000	BASE FLOW	72,000				WEEKD	AY AVER	AGE FLOW	2,100	100	2,200
Calculated Peaking Factor												1.00	0.05	1.05
AVG POTABLE WATER DEP	MAND (20% I	NCREASE OVE	R WW FLOW	ESTIMATE)	86,400							2,600	200	2,700

Assumptions -1. Efficiency was assumed to be better than what is typical for a small facility due to being a new facility/infrastructure. 2. Percentage of grapes harvested during crush season is higher than typical due to relatively flat topography for the site and assumption that all grapes will be ready for harvesting around the same time.

Scenario: Alternative A - Option 1

August 2022 By: Jory Benitez/Angela Singer, HydroScience

Daily Average Wastewater Influ I/I (PWW	_	231,900	231,900 gpd Basin Volume 12.1 MG 100-YR Multiplier 2.06 unitless andscap 250,452 gpd Basin Area 4.08 acres Pan Evap Coefficient 0.75 unitless IOD-YEAR ANNUAL PRECIPITATION RETURN PERIOD						gation (Casino) Dual Plumbing		acres MG	Viney	D WATER D vards (Casino) ater Discharge	12.4	N AND DISP acres MG	Landso	RNATIVES 2 cpe Irrig (TBD) nal Turf Grass	0.0) acres) acres								
					100-Y	EAR ANN	UAL PRE	-	ION RET	URN PER	IOD								-	NUAL PR	ECIPITA	TION RE	TURN PEI	RIOD			
Ν	No. Days	31	30	31	31	28	31	30	31	30	31	31	30	Water	31	30	31	31	28	31	30	31	30	31	31	30	Wate
	Units	October	November	December	January	February	March	April	Мау	June	July	August	September	Year	October	November	December	January	February	March	April	Мау	June	July	August	September	r Yea
LIMATE INPUTS																											
Precipitation	in	4.32	6.85	14.63	11.59	12.16	8.50	4.08	2.00	0.51	0.02	0.02	0.31	65.00	2.10	3.33	7.11	5.63	5.91	4.13	1.98	0.97	0.25	0.01	0.01	0.15	31.58
Pan Evaporation	in	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00
Effective Water Surface Evaporation	in	4.29	1.40	0.93	0.86	1.21	2.13	4.37	6.68	8.25	9.92	9.05	6.50	55.57	4.29	1.86	1.25	1.15	1.61	2.84	4.37	6.68	8.25	9.92	9.05	6.50	57.75
ASTEWATER GENERATION																											
Facility Wastewater Influent (ADWF)	MG	7.2	7.0	7.2	7.2	6.5	7.2	7.0	7.2	7.0	7.2	7.2	7.0	84.6	7.2	7.0	7.2	7.2	6.5	7.2	7.0	7.2	7.0	7.2	7.2	7.0	84.6
I/I Contributions	MG	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0	0	0	0.1	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0	0	0	0.1
TOTAL Wastewater Influent	ac-ft	22.1	21.4	22.1	22.1	20.0	22.1	21.4	22.1	21.4	22.1	22.1	21.4	260.0	22.1	21.4	22.1	22.1	20.0	22.1	21.4	22.1	21.4	22.1	22.1	21.4	260.0
WTP CONTRIBUTIONS																											
Site Run-off	ac-ft	0.2	0.4	0.8	0.6	0.6	0.5	0.2	0.1	0.0	0.0	0.0	0.0	3.5	0.1	0.2	0.4	0.3	0.3	0.2	0.1	0.1	0.0	0.0	0.0	0.0	1.7
Open Storage Basin	acre	3.3	3.4	3.5	3.5	3.6	3.7	3.7	3.8	3.9	3.9	4.0	4.1		4.1	4.0	3.9	3.9	3.8	3.7	3.7	3.6	3.5	3.5	3.4	3.3	
Total Water Surface Area	acre	3.3	3.4	3.5	3.5	3.6	3.7	3.7	3.8	3.9	3.9	4.0	4.1		4.1	4.0	3.9	3.9	3.8	3.7	3.7	3.6	3.5	3.5	3.4	3.3	
Cooling Tower Evaporation/Drift Loss ⁵	ac-ft	-0.05	-0.04	-0.04	-0.04	-0.04	-0.04	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.5	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.6
Total Evaporation	ac-ft	-1.2	-0.4	-0.3	-0.3	-0.4	-0.7	-1.4	-2.1	-2.7	-3.3	-3.0	-2.2	-17.8	-1.5	-0.6	-0.4	-0.4	-0.5	-0.9	-1.3	-2.0	-2.4	-2.9	-2.6	-1.8	-17.3
Total Precipitation	ac-ft	1.2	1.9	4.2	3.4	3.7	2.6	1.3	0.6	0.2	0.0	0.0	0.1	19.3	0.7	1.1	2.3	1.8	1.9	1.3	0.6	0.3	0.1	0.0	0.0	0.0	10.2
Total Percolation	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ECYCLED WATER DISTRIBUTION																											
Dual Plumbing	ac-ft	-6.9	-6.7	-6.9	-6.9	-6.2	-6.9	-6.7	-6.9	-6.7	-6.9	-6.9	-6.7	-81.1	-6.9	-6.7	-6.9	-6.9	-6.2	-6.9	-6.7	-6.9	-6.7	-6.9	-6.9	-6.7	-81.1
Cooling Tower	ac-ft	-3.3	-2.6	-2.7	-2.7	-2.4	-2.7	-3.2	-3.3	-3.2	-3.3	-3.3	-3.2	-35.9	-3.3	-3.2	-3.3	-3.3	-3.0	-3.3	-3.2	-3.3	-3.2	-3.3	-3.3	-3.2	-39.2
Landscape Irrigation (TBD)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Landscape Irrigation (Casino)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-1.6	-2.7	-2.9	-2.5	-1.8	-11.6	-0.1	0.0	0.0	0.0	0.0	0.0	-1.0	-2.0	-2.8	-2.9	-2.5	-1.9	-13.3
Vineyard Irrigation (Casino)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.5	-1.3	-1.2	-0.7	-0.2	-3.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.5	-1.3	-1.2	-0.7	-0.2	-3.9
Additional Turf Grass	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Surface Water Discharge (Creek)	ac-ft	-1.5	-16.6	-16.6	-16.6	-16.6	-16.6	-16.6	-3.1	0.0	0.0	0.0	0.0	-104.3	-1.5	-18.6	-18.6	-18.6	-18.6	-18.6	-18.6	-3.1	0.0	0.0	0.0	0.0	-116.
																											+
AW WATER MAKE-UP Blend Raw Water ¹	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ONTHLY STORAGE BALANCE																											+
Beginning Storage Volume	ac-ft	0.0	10.6	7.9	8.6	8.2	6.8	5.1	0.0	5.3	10.3	14.7	20.3		27.5	37.1	30.7	26.2	21.2	14.9	8.8	0.0	4.5	9.5	14.3	20.3	
Change in Water Volume ⁴	ac-n ac-ft	10.6	-2.6	0.6	-0.3	-1.4	-1.7	-5.1	5.3	5.0	4.4	5.5	7.3		9.6	-6.5	-4.5	-5.0	-6.2	-6.1	-8.8	4.5	4.5 5.0	9.5 4.8	6.0	7.6	
Final Storage Volume	ac-n ac-ft	10.6	-2.6 7.9	0.6 8.6	-0.3 8.2	-1.4	-1.7	-5.1 0.0	5.3 5.3	5.0 10.3	4.4 14.7	5.5 20.3	27.5		37.1	-6.5	-4.5 26.2	-5.0 21.2	-0.2 14.9	-0.1	-o.o 0.0	4.5 4.5	5.0 9.5	4.0 14.3	20.3	27.9	

Maximum Seasonal Storage (ac-ft) 27.5 mg 9.0

Note:

1. Blend Raw Water is the deficit in ww flow generated to meet recycled water demands, to resolve then less water would be discharged for irrigation or surface water.

2. Total available area for vineyard/spray/leach field is 17.4 acres approximately.

Assumed all equipment open basin/tankage would include covers and won't contribute to ww flows, confirm as more information becomes available.
 Change in water volume negative since stored volume is available to be transferred out to distribution.

5. Cooling tower evaporation loss estimated at 1.5% of monthly water demand.

Maximum Seasonal Storage (ac-ft) 37.1

mg 12.1

Scenario: Alternative A - Option 2

August 2022 By: Jory Benitez/Angela Singer, HydroScience

<u>WASTEWATER</u> Daily Average Wastewater Inf I/I (PWV		<u>FLOW</u> 231,900 250,452	01	Tank(s)	<u>STORA</u> Total Volume	<u>GE DATA</u> e 15.9	MG		OTHER O-YR Multiplier vap Coefficient		unitless unitless		gation (Casino) Dual Plumbing		acres MG	Viney	D WATER Di vards (Casino) ater Discharge		N AND DISP acres MG	Lands	ERNATIVES ² cpe Irrig (TBD) nal Turf Grass	0.0) acres) acres				
					100-)	EAR ANN	UAL PRE	CIPITAT	ION RET	URN PER	IOD							AVE	RAGE ANI	NUAL PR	RECIPITA	TION RE	TURN PEI	RIOD			
	No. Days	31	30	31	31	28	31	30	31	30	31	31	30	Water	31	30	31	31	28	31	30	31	30	31	31	30	Wate
	Units	October	Novembe	r December	January	February	March	April	Мау	June	July	August	September	Year	October	November	December	January	February	March	April	Мау	June	July	August	September	r Yea
CLIMATE INPUTS																											
Precipitation	in	4.32	6.85	14.63	11.59	12.16	8.50	4.08	2.00	0.51	0.02	0.02	0.31	65.00	2.10	3.33	7.11	5.63	5.91	4.13	1.98	0.97	0.25	0.01	0.01	0.15	31.5
Pan Evaporation	in	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.0
Effective Water Surface Evaporation	in	4.29	1.40	0.93	0.86	1.21	2.13	4.37	6.68	8.25	9.92	9.05	6.50	55.57	4.29	1.86	1.25	1.15	1.61	2.84	4.37	6.68	8.25	9.92	9.05	6.50	57.7
WASTEWATER GENERATION																											
Facility Wastewater Influent (ADWF)	MG	7.2	7.0	7.2	7.2	6.5	7.2	7.0	7.2	7.0	7.2	7.2	7.0	84.6	7.2	7.0	7.2	7.2	6.5	7.2	7.0	7.2	7.0	7.2	7.2	7.0	84.6
I/I Contributions TOTAL Wastewater Influent	MG ac-ft	0 22.1	0.01 21.4	0.01	0.01 22.1	0.01 20.0	0.01 22.1	0.01 21.4	0.01 22.1	0 21.4	0 22.1	0 22.1	0 21.4	0.1 260.0	0 22.1	0.01 21.4	0.01 22.1	0.01	0.01 20.0	0.01 22.1	0.01 21.4	0.01 22.1	0 21.4	0 22.1	0 22.1	0 21.4	0.1 260.0
	ac-it	22.1	21.4	22.1	22.1	20.0	22.1	21.4	22.1	21.4	ZZ. I	22.1	21.4	260.0	22.1	21.4	22.1	22.1	20.0	22.1	21.4	22.1	21.4	22.1	ZZ. I	21.4	260.0
WWTP CONTRIBUTIONS																											
Site Run-off	ac-ft	0.2	0.4	0.8	0.6	0.6	0.5	0.2	0.1	0.0	0.0	0.0	0.0	3.5	0.1	0.2	0.4	0.3	0.3	0.2	0.1	0.1	0.0	0.0	0.0	0.0	1.7
Open Storage Basin	acre	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Water Surface Area Cooling Tower Evaporation/Drift Loss ⁵	acre ac-ft	0.0 -0.05	0.0 -0.04	0.0 -0.04	0.0 -0.04	0.0 -0.04	0.0 -0.04	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	-0.5	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	0.0 -0.05	-0.6
Total Evaporation	ac-n ac-ft	-0.05	-0.04	-0.04	-0.04	-0.04	-0.04	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.5	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.0
Total Precipitation	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Percolation	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RECYCLED WATER DISTRIBUTION																											
Dual Plumbing	ac-ft	-6.9	-6.7	-6.9	-6.9	-6.2	-6.9	-6.7	-6.9	-6.7	-6.9	-6.9	-6.7	-81.1	-6.9	-6.7	-6.9	-6.9	-6.2	-6.9	-6.7	-6.9	-6.7	-6.9	-6.9	-6.7	-81.1
Cooling Tower	ac-ft	-3.3	-2.6	-2.7	-2.7	-2.4	-2.7	-3.2	-3.3	-3.2	-3.3	-3.3	-3.2	-35.9	-3.3	-3.2	-3.3	-3.3	-3.0	-3.3	-3.2	-3.3	-3.2	-3.3	-3.3	-3.2	-39.2
Landscape Irrigation (TBD)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Landscape Irrigation (Casino)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-1.6	-2.7	-2.9	-2.5	-1.8	-11.6	-0.1	0.0	0.0	0.0	0.0	0.0	-1.0	-2.0	-2.8	-2.9	-2.5	-1.9	-13.3
Vineyard Irrigation (Casino)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.8	-1.8	-1.7	-1.0	-0.3	-5.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.8	-1.8	-1.7	-1.0	-0.3	-5.5
Additional Turf Grass	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Surface Water Discharge (Creek)	ac-ft	-1.5	-14.3	-14.3	-14.3	-14.3	-14.3	-14.3	-3.1	0.0	0.0	0.0	0.0	-90.5	-1.5	-19.7	-19.7	-19.7	-19.7	-19.7	-19.7	-3.1	0.0	0.0	0.0	0.0	-122.
																											<u> </u>
RAW WATER MAKE-UP Blend Raw Water ¹		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	<u> </u>
MONTHLY STORAGE BALANCE																											
Beginning Storage Volume	ac-ft	0.0	10.5	8.7	7.7	6.5	4.1	2.7	0.0	6.5	13.5	20.7	29.0		38.3	48.7	40.6	33.1	25.5	16.8	9.2	0.0	6.0	12.9	20.1	28.3	
Change in Water Volume ⁴	ac-ft	10.5	-1.9	-1.0	-1.2	-2.4	-1.4	-2.7	6.5	7.0	7.2	8.3	9.3		10.3	-8.1	-7.5	-7.6	-8.7	-7.7	-9.2	6.0	6.9	7.2	8.3	9.2	
Final Storage Volume	ac-ft	10.5	8.7	7.7	6.5	4.1	2.7	0.0	6.5	13.5	20.7	29.0	38.3		48.7	40.6	33.1	25.5	16.8	9.2	0.0	6.0	12.9	20.1	28.3	37.6	

Maximum Seasonal Storage (ac-ft) 38.3

mg 12.5

Note: 1. Blend Raw Water is the deficit in ww flow generated to meet recycled water demands, to resolve then less water would be discharged for irrigation or surface water.

2. Total available area for vineyard/spray/leach field is 17.4 acres approximately.

Assumed all equipment open basin/tankage would include covers and won't contribute to ww flows, confirm as more information becomes available.
 Change in water volume negative since stored volume is available to be transferred out to distribution.

5. Cooling tower evaporation loss estimated at 1.5% of monthly water demand.

Maximum Seasonal Storage (ac-ft) 48.7

mg 15.9

Scenario: Alternative A - Option 3

August 2022 By: Jory Benitez/Angela Singer, HydroScience

<u>WASTEWATE</u> Daily Average Wastewater In I/I (PW		<u>FLOW</u> 231,900 250,452	0.		<u>STORA</u> Basin Volume Basin Area		MG acres	-	<u>OTHER</u> 0-YR Multiplier vap Coefficient		unitless unitless		gation (Casino) Dual Plumbing		acres MG	Vineya	D WATER D ards (Casino) ter Discharge	15.0	N AND DISPO acres MG	Landso	RNATIVES ² pe Irrig (TBD) al Turf Grass		acres acres	7.8			
					100-Y	EAR ANN	UAL PRE	CIPITAT	ION RET	URN PER	IOD							AVE	RAGE ANI	NUAL PR	ECIPITA	ION RE	TURN PER	RIOD			
	No. Days	31	30	31	31	28	31	30	31	30	31	31	30	Water	31	30	31	31	28	31	30	31	30	31	31	30	Wate
	Units	October	November	December	January	February	March	April	Мау	June	July	August	September	Year	October	November	December	January	February	March	April	Мау	June	July	August	September	er Year
LIMATE INPUTS																											
Precipitation	in	4.32	6.85	14.63	11.59	12.16	8.50	4.08	2.00	0.51	0.02	0.02	0.31	65.00	2.10	3.33	7.11	5.63	5.91	4.13	1.98	0.97	0.25	0.01	0.01	0.15	31.58
Pan Evaporation	in	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00
Effective Water Surface Evaporation	in	4.29	1.40	0.93	0.86	1.21	2.13	4.37	6.68	8.25	9.92	9.05	6.50	55.57	4.29	1.86	1.25	1.15	1.61	2.84	4.37	6.68	8.25	9.92	9.05	6.50	57.75
VASTEWATER GENERATION																											
Facility Wastewater Influent (ADWF)	MG	7.2	7.0	7.2	7.2	6.5	7.2	7.0	7.2	7.0	7.2	7.2	7.0	84.6	7.2	7.0	7.2	7.2	6.5	7.2	7.0	7.2	7.0	7.2	7.2	7.0	84.6
I/I Contributions	MG	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0	0	0	0.1	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0	0	0	0.1
TOTAL Wastewater Influent	ac-ft	22.1	21.4	22.1	22.1	20.0	22.1	21.4	22.1	21.4	22.1	22.1	21.4	260.0	22.1	21.4	22.1	22.1	20.0	22.1	21.4	22.1	21.4	22.1	22.1	21.4	260.0
WWTP CONTRIBUTIONS																											
Site Run-off	ac-ft	0.2	0.4	0.8	0.6	0.6	0.5	0.2	0.1	0.0	0.0	0.0	0.0	3.5	0.1	0.2	0.4	0.3	0.3	0.2	0.1	0.1	0.0	0.0	0.0	0.0	1.7
Open Storage Basin	acre	1.7	1.7	1.7	1.6	1.6	1.5	1.5	1.4	1.4	1.4	1.3	1.3		1.7	1.7	1.7	1.6	1.6	1.5	1.5	1.4	1.4	1.4	1.3	1.3	
Total Water Surface Area Cooling Tower Evaporation/Drift Loss	acre	1.7	1.7	1.7	1.6	1.6	1.5	1.5	1.4	1.4	1.4	1.3	1.3	0.5	1.7	1.7	1.7	1.6	1.6	1.5	1.5	1.4	1.4	1.4	1.3	1.3	0.0
Total Evaporation	ac-ft ac-ft	-0.05 -0.6	-0.04 -0.2	-0.04 -0.1	-0.04 -0.1	-0.04 -0.2	-0.04 -0.3	-0.05 -0.5	-0.05 -0.8	-0.05 -1.0	-0.05 -1.1	-0.05 -1.0	-0.05 -0.7	-0.5 -6.6	-0.05 -0.6	-0.05 -0.3	-0.05 -0.2	-0.05 -0.2	-0.05 -0.2	-0.05 -0.4	-0.05 -0.5	-0.05 -0.8	-0.05 -1.0	-0.05 -1.1	-0.05 -1.0	-0.05 -0.7	-0.6 -6.9
Total Precipitation	ac-ft	0.6	1.0	2.0	1.6	1.6	1.1	0.5	0.2	0.1	0.0	0.0	0.0	8.7	0.3	0.5	1.0	0.8	0.8	-0.4	0.2	-0.0	0.0	0.0	0.0	0.0	4.2
Total Percolation	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RECYCLED WATER DISTRIBUTION																											
Dual Plumbing	ac-ft	-6.9	-6.7	-6.9	-6.9	-6.2	-6.9	-6.7	-6.9	-6.7	-6.9	-6.9	-6.7	-81.1	-6.9	-6.7	-6.9	-6.9	-6.2	-6.9	-6.7	-6.9	-6.7	-6.9	-6.9	-6.7	-81.1
Cooling Tower	ac-ft	-3.3	-2.6	-2.7	-2.7	-2.4	-2.7	-3.2	-3.3	-3.2	-3.3	-3.3	-3.2	-35.9	-3.3	-3.2	-3.3	-3.3	-3.0	-3.3	-3.2	-3.3	-3.2	-3.3	-3.3	-3.2	-39.2
Landscape Irrigation (TBD)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	-3.9	-6.7	-7.2	-6.3	-4.6	-28.9	-0.3	0.0	0.0	0.0	0.0	0.0	-2.6	-5.1	-7.0	-7.3	-6.3	-4.8	-33.2
Landscape Irrigation (Casino)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	-3.5	-0.7	-2.9	-2.5	-4.0	-11.6	-0.3	0.0	0.0	0.0	0.0	0.0	-1.0	-2.0	-2.8	-2.9	-0.5	-4.0	-13.3
		0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-1.0	-2.7	-2.9	-2.5	-0.2	-4.8	-0.1	0.0	0.0	0.0	0.0	0.0	-1.0	-2.0	-2.6	-2.9	-2.5	-0.2	-13.3
Vineyard Irrigation (Casino)	ac-ft																										
Additional Turf Grass	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Surface Water Discharge (Creek)	ac-ft	-1.5	-15.3	-15.3	-15.3	-15.3	-15.3	-15.3	-3.9	0.0	0.0	0.0	0.0	-97.4	-1.5	-14.0	-14.0	-14.0	-14.0	-14.0	-14.0	-1.7	0.0	0.0	0.0	0.0	-87.2
AW WATER MAKE-UP																		-									
Blend Raw Water ¹	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
IONTHLY STORAGE BALANCE															1												+
Beginning Storage Volume	ac-ft	0.0	10.6	8.4	8.3	7.5	5.5	3.9	0.0	1.3	1.0	0.1	1.2		5.3	15.0	12.9	11.9	10.6	8.1	6.3	0.0	1.7	0.9	0.0	1.1	
Change in Water Volume ⁴	ac-ft	10.6	-2.1	-0.2	-0.8	-2.0	-1.6	-3.9	1.3	-0.3	-0.9	1.1	4.1		9.8	-2.2	-1.0	-1.3	-2.5	-1.8	-6.3	1.7	-0.8	-0.9	1.1	3.8	
Final Storage Volume	ac-ft	10.6	8.4	8.3	7.5	5.5	3.9	0.0	1.3	1.0	0.1	1.2	5.3		15.0	12.9	11.9	10.6	8.1	6.3	0.0	1.7	0.9	0.0	1.1	4.9	

Maximum Seasonal Storage (ac-ft) 10.6

mg 3.4

Note: 1. Blend Raw Water is the deficit in ww flow generated to meet recycled water demands, to resolve then less water would be discharged for irrigation or surface water.

2. Total available area for vineyard/spray/leach field is 17.4 acres approximately.

Assumed all equipment open basin/tankage would include covers and won't contribute to ww flows, confirm as more information becomes available.
 Change in water volume negative since stored volume is available to be transferred out to distribution.

5. Cooling tower evaporation loss estimated at 1.5% of monthly water demand.

Maximum Seasonal Storage (ac-ft) 15.0

mg **4.9**

Scenario: Alternative A - Option 4

August 2022 By: Jory Benitez/Angela Singer, HydroScience

WASTEWATER INFLUENT FLOW Daily Average Wastewater Influent Flow 231,900 gpd I/I (PWWF-PDWF) 250,452 gpd				<u>STORAGE DATA</u> Tank(s) Total Volume 5.6 MG				OTHER INPUTS100-YR Multiplier2.06 unitlessPan Evap Coefficient0.75 unitless				andscape Irrigation (Casino) 4.4 acres Dual Plumbing 26.4 MG				RECYCLED WATER DISTRIBUTION AND DIS Vineyards (Casino) 17.4 acres Surface Water Discharge 301 MG			acres	SPOSAL ALTERNATIVES 2 Landscpe Irrig (TBD) 11.0 Additonal Turf Grass 0.0							
					100-YEAR ANNUAL PRE				CIPITATION RETURN PERIOD									AVE	RAGE AN	UAL PRECIPITATION RETUR			TURN PEI	RIOD			
1	No. Days Units	31 October	30 November	31 r December	31 • January	28 / February	31 March	30 April	31 May	30 June	31 July	31 August	30 September	Water	31 October	30 • November	31 er December	31 January	28 February	31	30 April	31 May	30 June	31 July	31 August	30	Water Year
														Year						March						Septembe	
CLIMATE INPUTS																											-
Precipitation	in	4.32	6.85	14.63	11.59	12.16	8.50	4.08	2.00	0.51	0.02	0.02	0.31	65.00	2.10	3.33	7.11	5.63	5.91	4.13	1.98	0.97	0.25	0.01	0.01	0.15	31.58
Pan Evaporation	in	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00
Effective Water Surface Evaporation	in	4.29	1.40	0.93	0.86	1.21	2.13	4.37	6.68	8.25	9.92	9.05	6.50	55.57	4.29	1.86	1.25	1.15	1.61	2.84	4.37	6.68	8.25	9.92	9.05	6.50	57.75
WASTEWATER GENERATION																											
Facility Wastewater Influent (ADWF)	MG	7.2	7.0	7.2	7.2	6.5	7.2	7.0	7.2	7.0	7.2	7.2	7.0	84.6	7.2	7.0	7.2	7.2	6.5	7.2	7.0	7.2	7.0	7.2	7.2	7.0	84.6
I/I Contributions	MG	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0	0	0	0.1	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0	0	0	0.1
TOTAL Wastewater Influent	ac-ft	22.1	21.4	22.1	22.1	20.0	22.1	21.4	22.1	21.4	22.1	22.1	21.4	260.0	22.1	21.4	22.1	22.1	20.0	22.1	21.4	22.1	21.4	22.1	22.1	21.4	260.0
WWTP CONTRIBUTIONS																											
Site Run-off	ac-ft	0.2	0.4	0.8	0.6	0.6	0.5	0.2	0.1	0.0	0.0	0.0	0.0	3.5	0.1	0.2	0.4	0.3	0.3	0.2	0.1	0.1	0.0	0.0	0.0	0.0	1.7
Open Storage Basin	acre	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Water Surface Area	acre	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Cooling Tower Evaporation/Drift Loss ⁵	ac-ft	-0.05	-0.04	-0.04	-0.04	-0.04	-0.04	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.5	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.6
Total Evaporation Total Precipitation	ac-ft ac-ft	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
Total Percolation	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RECYCLED WATER DISTRIBUTION																											
Dual Plumbing	ac-ft	-6.9	-6.7	-6.9	-6.9	-6.2	-6.9	-6.7	-6.9	-6.7	-6.9	-6.9	-6.7	-81.1	-6.9	-6.7	-6.9	-6.9	-6.2	-6.9	-6.7	-6.9	-6.7	-6.9	-6.9	-6.7	-81.1
Cooling Tower	ac-ft	-3.3	-2.6	-2.7	-2.7	-2.4	-2.7	-3.2	-3.3	-3.2	-3.3	-3.3	-3.2	-35.9	-3.3	-3.2	-3.3	-3.3	-3.0	-3.3	-3.2	-3.3	-3.2	-3.3	-3.3	-3.2	-39.2
Landscape Irrigation (TBD)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	-3.9	-6.7	-7.2	-6.3	-4.6	-28.9	-0.3	0.0	0.0	0.0	0.0	0.0	-2.6	-5.1	-7.0	-7.3	-6.3	-4.8	-33.2
	ac-ft	0.0			0.0			-0.2	-1.6			-0.5		-11.6	-0.1	0.0			0.0	0.0							-13.3
Landscape Irrigation (Casino)			0.0 0.0	0.0	0.0	0.0	0.0	-0.1	-1.0	-2.7 -1.8	-2.9 -1.7	-2.5	-1.8	-5.5		0.0	0.0 0.0	0.0	0.0	0.0	-1.0 0.0	-2.0	-2.8 -1.8	-2.9	-2.5	-1.9 -0.3	
Vineyard Irrigation (Casino)	ac-ft	0.0		0.0		0.0	0.0						-0.3		0.0			0.0				-0.8		-1.7	-1.0		-5.5
Additional Turf Grass	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Surface Water Discharge (Creek)	ac-ft	-1.5	-14.3	-14.3	-14.3	-14.3	-14.3	-14.3	-5.7	0.0	0.0	0.0	0.0	-92.9	-1.5	-14.0	-14.0	-14.0	-14.0	-14.0	-14.0	-3.8	0.0	0.0	0.0	0.0	-89.3
RAW WATER MAKE-UP																											
Blend Raw Water ¹	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MONTHLY STORAGE BALANCE																											
Beginning Storage Volume	ac-ft	0.0	10.5	8.7	7.7	6.5	4.2	2.9	0.0	0.0	0.3	0.3	2.2		7.0	17.0	14.7	12.9	11.0	8.0	6.0	0.0	0.2	0.1	0.0	2.0	
Change in Water Volume ⁴	ac-ft	10.5	-1.8	-1.0	-1.2	-2.3	-1.3	-2.9	0.0	0.3	0.0	1.9	4.7		10.1	-2.4	-1.8	-1.9	-3.0	-2.0	-6.0	0.2	-0.1	-0.1	1.9	4.5	
Final Storage Volume	ac-ft	10.5	8.7	7.7	6.5	4.2	2.9	0.0	0.0	0.3	0.3	2.2	7.0		17.0	14.7	12.9	11.0	8.0	6.0	0.0	0.2	0.1	0.0	2.0	6.4	

Maximum Seasonal Storage (ac-ft) 10.5

mg 3.4

Note: 1. Blend Raw Water is the deficit in ww flow generated to meet recycled water demands, to resolve then less water would be discharged for irrigation or surface water.

2. Total available area for vineyard/spray/leach field is 17.4 acres approximately.

Assumed all equipment open basin/tankage would include covers and won't contribute to ww flows, confirm as more information becomes available.
 Change in water volume negative since stored volume is available to be transferred out to distribution.

5. Cooling tower evaporation loss estimated at 1.5% of monthly water demand.

Maximum Seasonal Storage (ac-ft) 17.0

mg 5.6

Water Balance - Shiloh Resort and Casino Feasibility Study - Reduced Intensity (Alternative B)

Scenario: Alternative B - Option 1

August 2022 By: Jory Benitez/Angela Singer, HydroScience

<u>WASTEWATER</u> Daily Average Wastewater Infl I/I (PWW	uent Flow	<u>FLOW</u> 157,800 170,424	01		<u>STORA</u> Basin Volume Basin Area		MG acres		OTHER)-YR Multiplier vap Coefficient		unitless unitless		gation (Casino) Dual Plumbing		acres MG	Viney	D WATER D yards (Casino) ater Discharge	19.8	N AND DISPO acres MG	Landsca	RNATIVES ² ape Irrig (TBD) nal Turf Grass	0.0	acres acres				
					100-)	EAR ANN	UAL PRE	CIPITAT	ION RET	URN PER	IOD							AVE	RAGE ANI	NUAL PR	ECIPITA	TION RE	TURN PEI	RIOD			
1	No. Days	31	30	31	31	28	31	30	31	30	31	31	30	Water	31	30	31	31	28	31	30	31	30	31	31	30	Wate
	Units	October	November	December	January	February	March	April	Мау	June	July	August	September	Year	October	November	December	January	February	March	April	Мау	June	July	August	Septembe	er Yea
CLIMATE INPUTS																											
Precipitation	in	4.32	6.85	14.63	11.59	12.16	8.50	4.08	2.00	0.51	0.02	0.02	0.31	65.00	2.10	3.33	7.11	5.63	5.91	4.13	1.98	0.97	0.25	0.01	0.01	0.15	31.5
Pan Evaporation	in	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.0
Effective Water Surface Evaporation	in	4.29	1.40	0.93	0.86	1.21	2.13	4.37	6.68	8.25	9.92	9.05	6.50	55.57	4.29	1.86	1.25	1.15	1.61	2.84	4.37	6.68	8.25	9.92	9.05	6.50	57.7
VASTEWATER GENERATION																											
Facility Wastewater Influent (ADWF)	MG	4.9	4.7	4.9	4.9	4.4	4.9	4.7	4.9	4.7	4.9	4.9	4.7	57.6	4.9	4.7	4.9	4.9	4.4	4.9	4.7	4.9	4.7	4.9	4.9	4.7	57.6
I/I Contributions	MG	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0	0	0	0.1	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0	0	0	0.1
TOTAL Wastewater Influent	ac-ft	15.0	14.6	15.0	15.0	13.6	15.0	14.6	15.0	14.5	15.0	15.0	14.5	177.0	15.0	14.6	15.0	15.0	13.6	15.0	14.6	15.0	14.5	15.0	15.0	14.5	177.
WWTP CONTRIBUTIONS																											
Site Run-off	ac-ft	0.2	0.4	0.8	0.6	0.6	0.5	0.2	0.1	0.0	0.0	0.0	0.0	3.5	0.1	0.2	0.4	0.3	0.3	0.2	0.1	0.1	0.0	0.0	0.0	0.0	1.7
Open Storage Basin	acre	1.2	1.2	1.2	1.3	1.3	1.4	1.4	1.4	1.5	1.5	1.6	1.6		1.6	1.6	1.5	1.5	1.4	1.4	1.4	1.3	1.3	1.2	1.2	1.2	1
Total Water Surface Area	acre	1.2	1.2	1.2	1.3	1.3	1.4	1.4	1.4	1.5	1.5	1.6	1.6		1.6	1.6	1.5	1.5	1.4	1.4	1.4	1.3	1.3	1.2	1.2	1.2	1
Cooling Tower Evaporation/Drift Loss ⁵	ac-ft	-0.03	-0.03	-0.03	-0.03	-0.02	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.4	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.4
Total Evaporation	ac-ft	-0.4	-0.1	-0.1	-0.1	-0.1	-0.2	-0.5	-0.8	-1.0	-1.3	-1.2	-0.9	-6.8	-0.6	-0.2	-0.2	-0.1	-0.2	-0.3	-0.5	-0.7	-0.9	-1.0	-0.9	-0.6	-6.3
Total Precipitation	ac-ft	0.4	0.7	1.5	1.2	1.3	1.0	0.5	0.2	0.1	0.0	0.0	0.0	7.0	0.3	0.4	0.9	0.7	0.7	0.5	0.2	0.1	0.0	0.0	0.0	0.0	3.9
Total Percolation	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RECYCLED WATER DISTRIBUTION																											
Dual Plumbing	ac-ft	-4.7	-4.6	-4.7	-4.7	-4.3	-4.7	-4.6	-4.7	-4.6	-4.7	-4.7	-4.6	-55.8	-4.7	-4.6	-4.7	-4.7	-4.3	-4.7	-4.6	-4.7	-4.6	-4.7	-4.7	-4.6	-55.
Cooling Tower	ac-ft	-2.3	-1.8	-1.8	-1.8	-1.7	-1.8	-2.2	-2.3	-2.2	-2.3	-2.3	-2.2	-24.7	-2.3	-2.2	-2.3	-2.3	-2.1	-2.3	-2.2	-2.3	-2.2	-2.3	-2.3	-2.2	-26.
Landscape Irrigation (TBD)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Landscape Irrigation (Casino)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-2.4	-4.1	-4.4	-3.9	-2.8	-17.6	-0.2	0.0	0.0	0.0	0.0	0.0	-1.6	-3.1	-4.3	-4.4	-3.9	-2.9	-20.3
Vineyard Irrigation (Casino)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.9	-4.1	-4.4	-3.9	-2.3	-6.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.9	-4.3	-4.4	-3.9	-2.9	-6.3
Additional Turf Grass	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Surface Water Discharge (Creek)	ac-ft	-1.5	-10.6	-10.6	-10.6	-10.6	-10.6	-10.6	-3.1	0.0	0.0	0.0	0.0	-68.1	-1.5	-10.4	-10.4	-10.4	-10.4	-10.4	-10.4	-3.1	0.0	0.0	0.0	0.0	-66.
RAW WATER MAKE-UP																											
Blend Raw Water ¹	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MONTHLY STORAGE BALANCE																											
Beginning Storage Volume	ac-ft	0.0	6.7	5.2	5.2	4.9	3.8	2.8	0.0	1.2	1.9	2.2	4.0		7.8	13.9	11.6	10.4	8.8	6.4	4.4	0.0	0.4	1.0	1.5	3.6	
Change in Water Volume ⁴	ac-ft	6.7	-1.5	0.0	-0.4	-1.1	-1.0	-2.8	1.2	0.7	0.4	1.8	3.8		6.1	-2.3	-1.3	-1.6	-2.4	-2.0	-4.4	0.4	0.6	0.6	2.1	3.9	
Final Storage Volume	ac-ft	6.7	5.2	5.2	4.9	3.8	2.8	0.0	1.2	1.9	2.2	4.0	7.8		13.9	11.6	10.4	8.8	6.4	4.4	0.0	0.4	1.0	1.5	3.6	7.5	

Maximum Seasonal Storage (ac-ft) 7.8

mg 2.5

Note: 1. Blend Raw Water is the deficit in ww flow generated to meet recycled water demands, to resolve then less water would be discharged for irrigation or surface water.

2. Total available area for vineyard field is 22 acres approximately.

Assumed all equipment open basin/tankage would include covers and won't contribute to ww flows, confirm as more information becomes available.
 Change in water volume negative since stored volume is available to be transferred out to distribution.

5. Cooling tower evaporation loss estimated at 1.5% of monthly water demand.

Maximum Seasonal Storage (ac-ft) 13.9

mg 4.5

Water Balance - Shiloh Resort and Casino Feasibility Study - Reduced Intensity (Alternative B)

Scenario: Alternative B - Option 2

August 2022 By: Jory Benitez/Angela Singer, HydroScience

<u>WASTEWATER</u> Daily Average Wastewater Infl I/I (PWW	uent Flow	<u>FLOW</u> 157,800 170,424	0.		<u>STORA</u> Basin Volume Basin Area		MG acres		OTHER O-YR Multiplier vap Coefficient		unitless unitless		gation (Casino) Dual Plumbing		acres MG	Viney	D WATER D vards (Casino) ater Discharge	20.7	N AND DISP acres MG	Landso	RNATIVES ² cpe Irrig (TBD) nal Turf Grass		acres acres				
					100-Y	EAR ANN	UAL PRE	CIPITAT	ION RET	URN PER	IOD							AVE	RAGE ANI	NUAL PR	ECIPITA	ION RE	TURN PER	RIOD			
I	No. Days	31	30	31	31	28	31	30	31	30	31	31	30	Water	31	30	31	31	28	31	30	31	30	31	31	30	Water
	Units	October	November	December	January	February	March	April	Мау	June	July	August	September		October	November	December	January	February	March	April	Мау	June	July	August	Septembe	
CLIMATE INPUTS																											
Precipitation	in	4.32	6.85	14.63	11.59	12.16	8.50	4.08	2.00	0.51	0.02	0.02	0.31	65.00	2.10	3.33	7.11	5.63	5.91	4.13	1.98	0.97	0.25	0.01	0.01	0.15	31.58
Pan Evaporation	in	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00
Effective Water Surface Evaporation	in	4.29	1.40	0.93	0.86	1.21	2.13	4.37	6.68	8.25	9.92	9.05	6.50	55.57	4.29	1.86	1.25	1.15	1.61	2.84	4.37	6.68	8.25	9.92	9.05	6.50	57.75
WASTEWATER GENERATION																											
Facility Wastewater Influent (ADWF)	MG	4.9	4.7	4.9	4.9	4.4	4.9	4.7	4.9	4.7	4.9	4.9	4.7	57.6	4.9	4.7	4.9	4.9	4.4	4.9	4.7	4.9	4.7	4.9	4.9	4.7	57.6
I/I Contributions	MG	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0	0	0	0.1	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0	0	0	0.1
TOTAL Wastewater Influent	ac-ft	15.0	14.6	15.0	15.0	13.6	15.0	14.6	15.0	14.5	15.0	15.0	14.5	177.0	15.0	14.6	15.0	15.0	13.6	15.0	14.6	15.0	14.5	15.0	15.0	14.5	177.0
WWTP CONTRIBUTIONS																											
Site Run-off	ac-ft	0.2	0.4	0.8	0.6	0.6	0.5	0.2	0.1	0.0	0.0	0.0	0.0	3.5	0.1	0.2	0.4	0.3	0.3	0.2	0.1	0.1	0.0	0.0	0.0	0.0	1.7
Open Storage Basin	acre	0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.5	0.5		0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.5	0.5	
Total Water Surface Area	acre	0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.5	0.5		0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.5	0.5	
Cooling Tower Evaporation/Drift Loss ⁵	ac-ft	-0.03	-0.03	-0.03	-0.03	-0.02	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.4	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.4
Total Evaporation	ac-ft	-0.3	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2	-0.4	-0.4	-0.5	-0.4	-0.3	-2.9	-0.3	-0.1	-0.1	-0.1	-0.1	-0.2	-0.2	-0.4	-0.4	-0.5	-0.4	-0.3	-3.0
Total Precipitation Total Percolation	ac-ft ac-ft	0.3 0.0	0.5 0.0	0.9 0.0	0.7 0.0	0.7 0.0	0.5 0.0	0.2 0.0	0.1 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	4.0 0.0	0.1 0.0	0.2 0.0	0.5 0.0	0.4 0.0	0.4 0.0	0.2 0.0	0.1 0.0	0.1 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	1.9 0.0
	ac-it	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RECYCLED WATER DISTRIBUTION			4.0			4.0							4.0	55.0	4.7	4.0			4.0		4.0		4.0			1.0	
Dual Plumbing	ac-ft	-4.7	-4.6	-4.7	-4.7	-4.3	-4.7	-4.6	-4.7	-4.6	-4.7	-4.7	-4.6	-55.8	-4.7	-4.6	-4.7	-4.7	-4.3	-4.7	-4.6	-4.7	-4.6	-4.7	-4.7	-4.6	-55.8
Cooling Tower	ac-ft	-2.3	-1.8	-1.8	-1.8	-1.7	-1.8	-2.2	-2.3	-2.2	-2.3	-2.3	-2.2	-24.7	-2.3	-2.2	-2.3	-2.3	-2.1	-2.3	-2.2	-2.3	-2.2	-2.3	-2.3	-2.2	-26.9
Landscape Irrigation (TBD)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-1.5	-1.2	-1.0	-2.5	-3.7	-10.0	-0.2	0.0	0.0	0.0	0.0	0.0	-2.1	-0.6	-1.0	-1.0	-2.5	-3.9	-11.2
Landscape Irrigation (Casino)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-2.4	-4.1	-4.4	-3.9	-2.8	-17.6	-0.2	0.0	0.0	0.0	0.0	0.0	-1.6	-3.1	-4.3	-4.4	-3.9	-2.9	-20.2
Vineyard Irrigation (Casino)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.9	-2.1	-2.0	-1.2	-0.3	-6.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.9	-2.1	-2.0	-1.2	-0.3	-6.6
Additional Turf Grass	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Surface Water Discharge (Creek)	ac-ft	-1.5	-10.2	-10.2	-10.2	-10.2	-10.2	-10.2	-3.1	0.0	0.0	0.0	0.0	-65.9	-1.5	-8.7	-8.7	-8.7	-8.7	-8.7	-8.7	-3.1	0.0	0.0	0.0	0.0	-56.7
Curtado Water Disonalgo (Crock)	uon	1.0			10.2		10.2	10.2	0.1	0.0	0.0	0.0	0.0	00.0	1.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	
RAW WATER MAKE-UP																											
Blend Raw Water ¹	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MONTHLY STORAGE BALANCE														I	1												+
Beginning Storage Volume	ac-ft	0.0	6.7	5.4	5.3	4.8	3.5	2.5	0.0	0.0	0.0	0.0	0.0		0.7	6.7	6.0	6.1	6.0	5.0	4.6	0.0	0.0	0.0	0.0	0.0	
Change in Water Volume ⁴	ac-n ac-ft	6.7	-1.3	-0.1	-0.5	-1.3	-1.0	-2.5	0.0	0.0	0.0	0.0	0.6		6.1	-0.7	0.0	-0.1	-0.9	-0.4	-4.6	0.0	0.0	0.0	0.0	0.0	
Final Storage Volume	ac-ft	6.7	5.4	5.3	4.8	3.5	2.5	0.0	0.0	0.0	0.0	0.0	0.0		6.7	6.0	6.1	6.0	-0.9	4.6	0.0	0.0	0.0	0.0	0.0	0.3	

Maximum Seasonal Storage (ac-ft) 6.7

mg 2.2

Note: 1. Blend Raw Water is the deficit in ww flow generated to meet recycled water demands, to resolve then less water would be discharged for irrigation or surface water.

Dising real value real is the constraint of generative interrecycled match control of the constraint of the

4. Change in water volume negative since stored volume is available to be transferred out to distribution.

5. Cooling tower evaporation loss estimated at 1.5% of monthly water demand.

Maximum Seasonal Storage (ac-ft) 6.7

mg **2.2**

Water Balance - Shiloh Resort and Casino Feasibility Study - Non-Gaming Facility (Alternative C)

Scenario: Alternative C - Option 1

August 2022 By: Jory Benitez/Angela Singer, HydroScience

INPUT-Adjust as necessary

Daily Average Wastewater	ER INFLUENT nfluent Flow /WF-PDWF)	37,90	0 gpd 2 gpd		<u>STORA</u> Basin Volume Basin Area				OTHER 0-YR Multiplier vap Coefficient		unitless unitless		gation (Casino) Dual Plumbing		acres MG	Viney	D WATER D vards (Casino) ater Discharge	43.2	N AND DISPO acres MG	Lands	ERNATIVES ² cpe Irrig (TBD) nal Turf Grass	0.0	acres acres				
					100-Y	EAR ANN	UAL PRE	CIPITAT	ION RET	URN PER	IOD							AVE	RAGE ANN	UAL PR	ECIPITA	TION RE	TURN PE	RIOD			
	No. Days	31	30	31	31	28	31	30	31	30	31	31	30	Water	31	30	31	31	28	31	30	31	30	31	31	30	Water
	Units	October	November	December	January	February	March	April	Мау	June	July	August	September	Year	October	November	December	January	February	March	April	May	June	July	August	Septembe	
CLIMATE INPUTS																											
Precipitation	in	4.32	6.85	14.63	11.59	12.16	8.50	4.08	2.00	0.51	0.02	0.02	0.31	65.00	2.10	3.33	7.11	5.63	5.91	4.13	1.98	0.97	0.25	0.01	0.01	0.15	31.58
Pan Evaporation	in	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00	5.72	2.48	1.66	1.53	2.15	3.79	5.82	8.90	11.00	13.22	12.06	8.67	77.00
Effective Water Surface Evaporation	in	4.29	1.40	0.93	0.86	1.21	2.13	4.37	6.68	8.25	9.92	9.05	6.50	55.57	4.29	1.86	1.25	1.15	1.61	2.84	4.37	6.68	8.25	9.92	9.05	6.50	57.75
WASTEWATER GENERATION																											
Facility Wastewater Influent (ADWF)		1.2	1.1	1.2	1.2	1.1	1.2	1.1	1.2	1.1	1.2	1.2	1.1	13.8	1.2	1.1	1.2	1.2	1.1	1.2	1.1	1.2	1.1	1.2	1.2	1.1	13.8
Winery Wastewater Influent	MG	0.065	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.1	0.065	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.1
I/I Contributions TOTAL Wastewater Influent	MG ac-ft	0 3.8	0.00 3.5	0.00 3.6	0.00 3.6	0.00 3.3	0.00 3.6	0.00 3.5	0.00 3.6	0 3.5	0 3.6	0 3.6	0 3.5	0.0 42.7	0 3.8	0.00 3.5	0.00 3.6	0.00 3.6	0.00 3.3	0.00 3.6	0.00 3.5	0.00 3.6	0 3.5	0 3.6	0 3.6	0 3.5	0.0 42.7
	80-11	5.0	0.0	5.0	5.0	0.0	5.0	0.0	5.0	0.0	5.0	5.0	0.0	42.1	5.0	5.5	5.0	5.0	0.0	5.0	0.0	5.0	5.5	5.0	5.0	5.5	42.7
WWTP CONTRIBUTIONS																											
Site Run-off	ac-ft	0.2	0.4	0.8	0.6	0.6	0.5	0.2	0.1	0.0	0.0	0.0	0.0	3.5	0.1	0.2	0.4	0.3	0.3	0.2	0.1	0.1	0.0	0.0	0.0	0.0	1.7
Open Storage Basin Total Water Surface Area	acre acre	1.1 1.1	1.2 1.2	1.2 1.2	1.3 1.3	1.4 1.4	1.5 1.5	1.5 1.5	1.5 1.5	1.4 1.4	1.3 1.3	1.2 1.2	1.1 1.1		1.1 1.1	1.2 1.2	1.2 1.2	1.3 1.3	1.4 1.4	1.5 1.5	1.5 1.5	1.5 1.5	1.4 1.4	1.3 1.3	1.2 1.2	1.1 1.1	
Cooling Tower Evaporation/Drift Los		-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.1	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.2
Total Evaporation	ac-ft	-0.4	-0.1	-0.1	-0.1	-0.1	-0.3	-0.6	-0.8	-0.9	-1.1	-0.9	-0.6	-6.0	-0.4	-0.2	-0.1	-0.1	-0.2	-0.3	-0.6	-0.8	-0.9	-1.1	-0.9	-0.6	-6.2
Total Precipitation	ac-ft	0.4	0.7	1.5	1.3	1.4	1.0	0.5	0.2	0.1	0.0	0.0	0.0	7.2	0.2	0.3	0.7	0.6	0.7	0.5	0.3	0.1	0.0	0.0	0.0	0.0	3.5
Total Percolation	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RECYCLED WATER DISTRIBUTION																											
Dual Plumbing	ac-ft	-1.8	-1.8	-1.8	-1.8	-1.6	-1.8	-1.8	-1.8	-1.8	-1.8	-1.8	-1.8	-21.4	-1.8	-1.8	-1.8	-1.8	-1.6	-1.8	-1.8	-1.8	-1.8	-1.8	-1.8	-1.8	-21.4
Cooling Tower	ac-ft	-0.9	-0.7	-0.7	-0.7	-0.6	-0.7	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-9.5	-0.9	-0.9	-0.9	-0.9	-0.8	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-10.3
Landscape Irrigation (TBD)	ac-ft	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0
Landscape Irrigation (Casino)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	-0.2	-0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Vineyard Irrigation (Casino)	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.9	-4.4	-4.2	-2.5	-0.7	-13.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.9	-4.4	-4.2	-2.5	-0.7	-13.7
Additional Turf Grass	ac-ft	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0
Surface Water Discharge (Creek)	ac-ft	-1.3	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	0.0	0.0	0.0	0.0	0.0	-2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	40 11									0.0	0.0	0.0	0.0	2.0									0.0	0.0	0.0	0.0	
RAW WATER MAKE-UP																											
Blend Raw Water ¹	ac-ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	2.5	0.4	4.0
MONTHLY STORAGE BALANCE																											
Beginning Storage Volume	ac-ft	0.0	0.0	1.8	4.9	7.6	10.3	12.5	13.2	11.8	7.4	3.0	0.5		0.0	1.0	2.2	4.1	5.8	7.4	8.7	9.3	7.7	3.3	0.0	0.0	
Change in Water Volume ⁴	ac-ft	0.0	1.8	3.1	2.7	2.7	2.1	0.8	-1.5	-4.4	-4.4	-2.5	-0.5		1.0	1.2	1.9	1.7	1.6	1.3	0.7	-1.7	-4.4	-3.3	0.0	0.0	
Final Storage Volume	ac-ft	0.0	1.8	4.9	7.6	10.3	12.5	13.2	11.8	7.4	3.0	0.5	0.0		1.0	2.2	4.1	5.8	7.4	8.7	9.3	7.7	3.3	0.0	0.0	0.0	

Maximum Seasonal Storage (ac-ft) 13.2

mg 4.3

Note: 1. Blend Raw Water is the deficit in ww flow generated to meet recycled water demands, to resolve then less water would be discharged for irrigation or surface water.

2. Total available area for vineyard field is 45.3 acres approximately.

3. Assumed all equipment open basin/tankage would include covers and won't contribute to ww flows, confirm as more information becomes available.

Change in water volume negative since stored volume is available to be transferred out to distribution.
 Cooling tower evaporation loss estimated at 1.5% of monthly water demand.

Maximum Seasonal Storage (ac-ft) 9.3

mg **3.0**

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B Acorn Environmental Water and Wastewater Feasibility Study Windsor Groundwater Well Installation and Testing Project Summary Report

Town of Windsor Groundwater Well Installation and Testing Report

Windsor Groundwater Well Installation and Testing Project Summary Report

In Association with:

E-Pur

September 2010

Table of Contents

1.1 Introduction 1-1 1.2 Drilling and Well Testing Objectives. 1-2 1.3 Regional Hydrogeology. 1-3 1.3.1 Description of Near-Surface Geology Near Windsor 1-4 1.3.2 Unconsolidated Aquifer Characteristics 1-4 1.3.3 Groundwater Availability 1-5 1.4 Organization of Document 1-5 Chapter 2 Well Drilling and Construction 2-1 2.1 Bluebird Well Site 2-3 2.1.2 Drilling 2-3 2.1.3 Well Construction 2-8 2.2.4 Esposti Park Well Site 2-8 2.2.2 Drilling 2-9 2.2.3 Well Construction 2-15 Chapter 3 Well Development 3-1 3.1 Bluebird Well Development 3-1 3.2 Esposti Park Well Ovelopment 3-1 3.1 Bluebird Well Development 3-1 3.2 Esposti Park Well Ovelopment 3-1 3.4 Bluebird Well Development 3-1 3.1 Bluebird Well Development	Chapter 1	Introduction and Background	1-1
1.3 Regional Hydrogeology. 1-3 1.3.1 Description of Near-Surface Geology Near Windsor 1-4 1.3.2 Unconsolidated Aquifer Characteristics 1-4 1.3.3 Groundwater Availability 1-5 1.4 Organization of Document 1-5 Chapter 2 Well Drilling and Construction 2-1 2.1 Conductor Casing and Sanitary Seal 2-3 2.1.1 Conductor Casing and Sanitary Seal 2-3 2.1.3 Well Construction 2-8 2.2.4 Esposti Park Well Site 2-8 2.2.5 Drilling 2-9 2.2.4 Conductor Casing and Sanitary Seal 2-9 2.2.2 Drilling 2-9 2.2.3 Well Construction 2-15 Chapter 3 Well Development 3-1 3.1 Bluebird Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.4 Constant-Rate Discharge Testing 4-2 Con	1.1		
1.3 Regional Hydrogeology. 1-3 1.3.1 Description of Near-Surface Geology Near Windsor 1-4 1.3.2 Unconsolidated Aquifer Characteristics 1-4 1.3.3 Groundwater Availability 1-5 1.4 Organization of Document 1-5 Chapter 2 Well Drilling and Construction 2-1 2.1 Conductor Casing and Sanitary Seal 2-3 2.1.1 Conductor Casing and Sanitary Seal 2-3 2.1.3 Well Construction 2-8 2.2.4 Esposti Park Well Site 2-8 2.2.5 Drilling 2-9 2.2.4 Conductor Casing and Sanitary Seal 2-9 2.2.2 Drilling 2-9 2.2.3 Well Construction 2-15 Chapter 3 Well Development 3-1 3.1 Bluebird Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.4 Constant-Rate Discharge Testing 4-2 Con	1.2	Drilling and Well Testing Objectives	1-2
1.3.2 Unconsolidated Aquifer Characteristics 1-4 1.3.3 Groundwater Availability 1-5 1.4 Organization of Document 1-5 Chapter 2 Well Drilling and Construction 2-1 2.1 Bluebird Well Site 2-3 2.1.1 Conductor Casing and Sanitary Seal 2-3 2.1.2 Drilling 2-3 2.1.3 Well Construction 2-8 2.2 Esposti Park Well Site 2-8 2.2.1 Conductor Casing and Sanitary Seal 2-9 2.2.2 Drilling 2-9 2.2.3 Well Construction 2-19 2.2.4 Conductor Casing and Sanitary Seal 2-9 2.2.3 Well Development 3-1 3.1 Bluebird Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.2 Esposti Park Well Development 4-1 4.1 Background Water Level 4-1 4.2 Constant-Rate Discharge Testing 4-2 4.3 Dynamic Profile Test	1.3	Regional Hydrogeology	1-3
1.3.2 Unconsolidated Aquifer Characteristics 1-4 1.3.3 Groundwater Availability 1-5 1.4 Organization of Document 1-5 Chapter 2 Well Drilling and Construction 2-1 2.1 Bluebird Well Site 2-3 2.1.1 Conductor Casing and Sanitary Seal 2-3 2.1.2 Drilling 2-3 2.1.3 Well Construction 2-8 2.2 Esposti Park Well Site 2-8 2.2.1 Conductor Casing and Sanitary Seal 2-9 2.2.2 Drilling 2-9 2.2.3 Well Construction 2-19 2.2.4 Conductor Casing and Sanitary Seal 2-9 2.2.3 Well Development 3-1 3.1 Bluebird Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.2 Esposti Park Well Development 4-1 4.1 Background Water Level 4-1 4.2 Constant-Rate Discharge Testing 4-2 4.3 Dynamic Profile Test	1.3.1	Description of Near-Surface Geology Near Windsor	1-4
1.4 Organization of Document 1-5 Chapter 2 Well Drilling and Construction. 2-1 2.1 Bluebird Well Site 2-3 2.1.1 Conductor Casing and Sanitary Seal 2-3 2.1.2 Drilling 2-3 2.1.3 Well Construction 2-8 2.2 Esposti Park Well Site 2-8 2.2.1 Conductor Casing and Sanitary Seal 2-9 2.2.2 Drilling 2-9 2.2.3 Well Construction 2-15 Chapter 3 Well Development 3-1 3.1 Bluebird Well Development 3-1 3.1 Bluebird Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.2 Esposti Park Well Development 3-1 3.2 Esposti Park Well Development 4-1 4.1 Background Water Level 4-1 4.2 Constant-Rate Discharge Testing 4-2 4.3 Dynamic Profile Testing 4-5 Chapter 5 Groundwater Quality Data 5-6 5.2 Esposti Park Water Quality Data	1.3.2		
Chapter 2Well Drilling and Construction2-12.1Bluebird Well Site2-32.1.1Conductor Casing and Sanitary Seal2-32.1.2Drilling2-32.1.3Well Construction2-82.2Esposti Park Well Site2-82.2.1Conductor Casing and Sanitary Seal2-92.2.2Drilling2-92.2.3Well Construction2-15Chapter 3Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-14.1Background Water Level4-14.2Constant-Rate Discharge Testing4-24.3Dynamic Profile Testing4-5Chapter 5Groundwater Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1Plumbness and Alignment Well6-16.2Geolocation Survey6-16.2Esposti Park Replacement Well6-26.2.2Esposti Park Replacement Well6-2	1.3.3	Groundwater Availability	1-5
2.1Bluebird Well Site2-32.1.1Conductor Casing and Sanitary Seal2-32.1.2Drilling2-32.1.3Well Construction2-82.2Esposti Park Well Site2-82.2.1Conductor Casing and Sanitary Seal2-92.2.2Drilling2-92.2.3Well Construction2-15Chapter 3Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-14.1Background Water Level4-14.2Constant-Rate Discharge Testing4-24.3Dynamic Profile Testing4-5Chapter 5Groundwater Quality Data5-25.2Esposti Park Water Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	1.4	Organization of Document	1-5
2.1.1Conductor Casing and Sanitary Seal2-32.1.2Drilling2-32.1.3Well Construction2-82.2Esposti Park Well Site2-82.1Conductor Casing and Sanitary Seal2-92.2.1Conductor Casing and Sanitary Seal2-92.2.2Drilling2-92.2.3Well Construction2-15Chapter 3Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-13.2Esposti Park Well Development3-14.1Background Water Level4-14.1Background Water Level4-14.2Constant-Rate Discharge Testing4-5Chapter 5Groundwater Quality5-15.1Bluebird Water Quality Data5-25.2Esposti Park Water Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	Chapter 2	Well Drilling and Construction	2-1
2.1.2Drilling2-32.1.3Well Construction2-82.2Esposti Park Well Site2-82.1Conductor Casing and Sanitary Seal2-92.2.2Drilling2-92.2.3Well Construction2-15Chapter 3Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-14.1Background Water Level4-14.2Constant-Rate Discharge Testing4-24.3Dynamic Profile Testing4-5Chapter 5Groundwater Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	2.1		
2.1.3Well Construction2-82.2Esposti Park Well Site2-82.2.1Conductor Casing and Sanitary Seal2-92.2.2Drilling2-92.2.3Well Construction2-15Chapter 3Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-1Chapter 4Aquifer Testing4-14.1Background Water Level4-14.2Constant-Rate Discharge Testing4-24.3Dynamic Profile Testing4-5Chapter 5Groundwater Quality5-15.1Bluebird Water Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	2.1.1	Conductor Casing and Sanitary Seal	2-3
2.2Esposti Park Well Site2-82.2.1Conductor Casing and Sanitary Seal2-92.2.2Drilling2-92.2.3Well Construction2-15Chapter 3Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-14.1Background Water Level4-14.1Background Water Level4-14.2Constant-Rate Discharge Testing4-24.3Dynamic Profile Testing4-5Chapter 5Groundwater Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.2Esposti Park Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	2.1.2	Drilling	2-3
2.2.1Conductor Casing and Sanitary Seal2-92.2.2Drilling2-92.2.3Well Construction2-15Chapter 3Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-1Chapter 4Aquifer Testing4-14.1Background Water Level4-14.2Constant-Rate Discharge Testing4-24.3Dynamic Profile Testing4-5Chapter 5Groundwater Quality5-15.1Bluebird Water Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	2.1.3	Well Construction	2-8
2.2.2Drilling2-92.2.3Well Construction2-15Chapter 3Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-1Chapter 4Aquifer Testing4-14.1Background Water Level4-14.2Constant-Rate Discharge Testing4-24.3Dynamic Profile Testing4-5Chapter 5Groundwater Quality5-15.1Bluebird Water Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	2.2	Esposti Park Well Site	2-8
2.2.3Well Construction2-15Chapter 3Well Development3-13.1Bluebird Well Development3-13.2Esposti Park Well Development3-1Chapter 4Aquifer Testing4-14.1Background Water Level4-14.2Constant-Rate Discharge Testing4-24.3Dynamic Profile Testing4-5Chapter 5Groundwater Quality5-15.1Bluebird Water Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.2Geolocation Survey6-16.2Bluebird Replacement Well6-26.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	2.2.1	Conductor Casing and Sanitary Seal	2-9
Chapter 3Well Development3-13.1Bluebird Well Development.3-13.2Esposti Park Well Development.3-1Chapter 4Aquifer Testing.4-14.1Background Water Level.4-14.2Constant-Rate Discharge Testing.4-24.3Dynamic Profile Testing.4-5Chapter 5Groundwater Quality.5-15.1Bluebird Water Quality Data.5-25.2Esposti Park Water Quality Data.5-6Chapter 6Well Surveys.6-16.1Plumbness and Alignment.6-16.1.1Bluebird Replacement Well.6-16.2Geolocation Survey.6-16.2.1Bluebird Replacement Well.6-26.2.2Esposti Park Replacement Well.6-2	2.2.2	Drilling	2-9
3.1Bluebird Well Development.3-13.2Esposti Park Well Development.3-1Chapter 4Aquifer Testing.4-14.1Background Water Level.4-14.2Constant-Rate Discharge Testing.4-24.3Dynamic Profile Testing.4-5Chapter 5Groundwater Quality.5-15.1Bluebird Water Quality Data.5-25.2Esposti Park Water Quality Data.5-6Chapter 6Well Surveys.6-16.1Plumbness and Alignment.6-16.1.1Bluebird Replacement Well.6-16.2Geolocation Survey.6-16.2.1Bluebird Replacement Well.6-26.2.2Esposti Park Replacement Well.6-2	2.2.3	Well Construction	-15
3.2Esposti Park Well Development.3-1Chapter 4Aquifer Testing.4-14.1Background Water Level.4-14.2Constant-Rate Discharge Testing.4-24.3Dynamic Profile Testing.4-5Chapter 5Groundwater Quality.5-15.1Bluebird Water Quality Data.5-25.2Esposti Park Water Quality Data.5-6Chapter 6Well Surveys.6-16.1Plumbness and Alignment6-16.1.2Esposti Park Replacement Well6-16.2Geolocation Survey.6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	Chapter 3	Well Development	3-1
Chapter 4Aquifer Testing.4-14.1Background Water Level.4-14.2Constant-Rate Discharge Testing4-24.3Dynamic Profile Testing .4-5Chapter 5Groundwater Quality.5-15.1Bluebird Water Quality Data.5-25.2Esposti Park Water Quality Data.5-6Chapter 6Well Surveys.6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well.6-16.2Geolocation Survey.6-16.2.1Bluebird Replacement Well.6-26.2.2Esposti Park Replacement Well.6-2	3.1	Bluebird Well Development	3-1
4.1Background Water Level4-14.2Constant-Rate Discharge Testing4-24.3Dynamic Profile Testing4-5Chapter 5Groundwater Quality5-15.1Bluebird Water Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.2Geolocation Survey6-16.2Esposti Park Replacement Well6-26.2.2Esposti Park Replacement Well6-2	3.2	Esposti Park Well Development	3-1
4.2Constant-Rate Discharge Testing4-24.3Dynamic Profile Testing4-5Chapter 5Groundwater Quality5-15.1Bluebird Water Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.1.2Esposti Park Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	Chapter 4		
4.3Dynamic Profile Testing4-5Chapter 5Groundwater Quality5-15.1Bluebird Water Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.1.2Esposti Park Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	4.1	Background Water Level	4-1
Chapter 5Groundwater Quality5-15.1Bluebird Water Quality Data5-25.2Esposti Park Water Quality Data5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.1.2Esposti Park Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	4.2	Constant-Rate Discharge Testing	4-2
5.1Bluebird Water Quality Data.5-25.2Esposti Park Water Quality Data.5-6Chapter 6Well Surveys.6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well.6-16.1.2Esposti Park Replacement Well.6-16.2Geolocation Survey.6-16.2.1Bluebird Replacement Well.6-26.2.2Esposti Park Replacement Well.6-2	4.3	Dynamic Profile Testing	4-5
5.2Esposti Park Water Quality Data.5-6Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.1.2Esposti Park Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	Chapter 5	Groundwater Quality	5-1
Chapter 6Well Surveys6-16.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.1.2Esposti Park Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	5.1	Bluebird Water Quality Data	5-2
6.1Plumbness and Alignment6-16.1.1Bluebird Replacement Well6-16.1.2Esposti Park Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	5.2	Esposti Park Water Quality Data	5-6
6.1.1Bluebird Replacement Well6-16.1.2Esposti Park Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	Chapter 6	Well Surveys	6-1
6.1.2Esposti Park Replacement Well6-16.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	6.1	Plumbness and Alignment	6-1
6.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	6.1.1	Bluebird Replacement Well	6-1
6.2Geolocation Survey6-16.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	6.1.2	Esposti Park Replacement Well	6-1
6.2.1Bluebird Replacement Well6-26.2.2Esposti Park Replacement Well6-2	6.2		
6.2.2 Esposti Park Replacement Well	6.2.1		
	6.2.2	Esposti Park Replacement Well	6-2
	References		

List of Tables

Table 2-1: Bluebird Lithologic Summary	2-5
Table 2-2: Esposti Park Lithologic Summary	
Table 2-3: Esposti Park Screened Intervals and Lengths	
Table 5-1: Borehole Water Quality Sample Collection Protocol	5-1
Table 5-2: Bluebird Borehole Water Quality	5-3
Table 5-3: Bluebird Development Water Quality for Permit	5-5
Table 5-4: Esposti Park Borehole Water Quality	5-6
Table 5-5: Esposti Park Depth-Specific Water Quality Results	
Table 5-6: Esposti Park Composite Water Quality Results	5-9

List of Figures

Figure 1-1: Windsor Location Map	1-1
Figure 1-2: Groundwater Basin and Subbasins in the Vicinity of Windsor	1-3
Figure 2-1: Borehole Locations in Windsor	2-2
Figure 2-2: Bluebird Borehole and Well Location	2-3
Figure 2-3: Bluebird Boring Log and Well Construction Diagram	2-6
Figure 2-4: Esposti Park Borehole and Well Location	2-9
Figure 2-5: Esposti Park Boring Log and Well Construction Diagram	2-12
Figure 4-1: Monitoring Wells for Esposti Park Aquifer Pumping Tests	4-1
Figure 4-2: Background Groundwater Level Data – Esposti Park Monitoring Wells	4-2
Figure 4-3: Groundwater Level Data – Esposti Park Pumping and Monitoring Wells	4-3
Figure 4-4: Groundwater Level Data – Esposti Park Replacement Well	4-4
Figure 4-5: Esposti Park Replacement Well – Incremental Flow Analysis	4-6

Appendices

- Appendix A Summary of Field Program Oversight
- Appendix B Detailed Boring Logs and Geophysical Survey Results
- Appendix C Geophysical Survey Results
- Appendix D Grain Size Analysis
- Appendix E Aquifer Pump Test Field Data
- Appendix F Analytical Laboratory Reports
- Appendix G BESST, Inc. Dynamic Profiling Report
- Appendix H Winzler and Kelly Survey Report

List of Abbreviations

AWWA	American Water Works Association
bgs	below the ground surface
DWR	California Department of Water Resources
gpd	gallons per day
gpd/ft	gallons per day per foot
gpm	gallons per minute
GPS	Global Positioning System
mg/L	milligrams per liter
MCL	Maximum Contaminant Level
NCRWQCB	North Coast Regional Water Quality Control Board
SCWA	Sonoma County Water Agency
TOC	Total Organic Carbon
µg/L	micrograms per liter
USGS	United States Geological Survey

Chapter 1 Introduction and Background

1.1 Introduction

The Town of Windsor, California drill two exploratory boreholes and install a well in each borehole to evaluate the groundwater supply potential from the underlying unconsolidated aquifer(s) and, if possible, to provide an immediate supplemental municipal water supply for use in periods of drought or emergency. The location of Windsor, California in Sonoma County is shown on Figure 1-1, below.

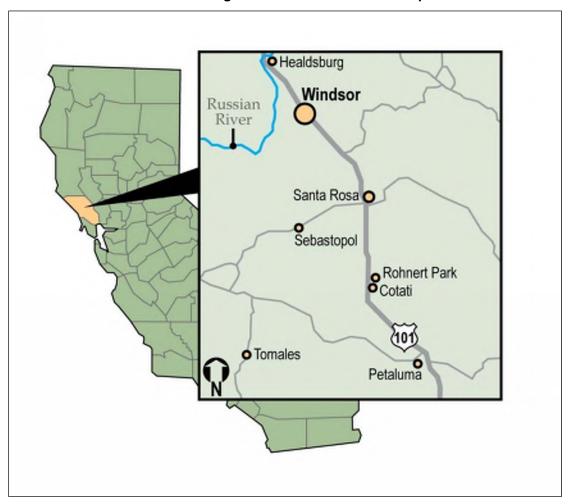


Figure 1-1: Windsor Location Map

In 2007, a water supply analysis was conducted as part of the Town's Water Master Plan update. This analysis concluded that the Town of Windsor currently has enough supply capacity to meet current demands (assuming full availability of allocated supplies); however, demands are expected to exceed current supplies as early as 2008, assuming projected SCWA Russian River water allocations, continuation of Bluebird well being off-line due to water quality issues, and regulatory and permitting issues surrounding the Russian River water supplies. While the shortfall may be met through a combination of conservation and increased recycled water use, the development of off-river water supplies is considered imperative to helping the Town meet intermittent shortfalls and to potentially provide long-term supplies as part of a larger conjunctive use program. Additionally, the analysis concluded that there were two high-priority needs for the Town of Windsor that needed to be addressed as part of their water supply planning. The first identified need was to develop, as soon as possible, some

off-river groundwater supply capacity to augment the current system in the event of supply curtailments such as that which occurred in 2007. The second need identified was to develop hydrogeologic data on suitable locations and depths for the future development of wellfields and groundwater basin recharge for longer-term water supply development.

In light of these results, a program was developed within the context of Windsor's Water Master Plan to provide information regarding off-river well locations for hydrogeologic data and water production capabilities. Using available hydrogeologic data, exploratory borehole and well drilling locations were selected based upon several criteria for long-term wellfield siting. Specifically, the intended production well clusters are located in areas:

- known to have productive geologic strata,
- proximate to the existing water distribution system,
- at or adjacent existing groundwater wells with seniority of usage,
- currently owned by the Town (to minimize program costs), and
- near surface water bodies or storm water conveyances, if possible, to ease start up issues.

From these criteria, several viable locations were identified for exploratory drilling and well construction, two of which currently contain Town-owned wells. These two sites are Esposti Park and the Bluebird-Well area; the locations of these wells are depicted on **Error! Reference source not found.**

The intent of the well drilling program is to evaluate the thickness and productivity of the deeper sedimentary units in the Windsor area at these existing well locations (along with the better-known shallow sedimentary units), and to provide the Town with two wells that it can use immediately to augment existing water supplies in times of shortages relating to drought and/or emergency. In addition, the information obtained on sedimentary units and their associated water quality will be used to aid in the siting and design of long-term production well(s) at these and other locations.

1.2 Drilling and Well Testing Objectives

As discussed above, the objective of the exploratory boring and well drilling program was to gather the necessary data to develop robust designs for off-river wells, to craft a long-term conjunctive use program for the Town of Windsor, and to provide the Town with two 'working' wells that could provide immediate relief to shortages resulting from periods of drought and/or emergency. In order to achieve this objective, the field program needed to maximize the hydrogeologic data collected for understanding the portion of the groundwater basin underlying the Town of Windsor and for development of a regional conceptual model of water-bearing aquifers. Therefore, data to be collected during borehole drilling included:

- Accurate and depth-correlated sediment data;
- Sediment samples for grain size analysis in certain intervals;
- Formation water-quality samples in the prospective production intervals for metals and ions; and,
- Geophysical data on the subsurface strata for lithostratigraphic correlation regionally.

The hydrogeological investigations documented here were to confirm the suitability of the Bluebird and Esposti Park locations for long-term production wells and to provide sufficient data for the preparation of production well designs for Windsor's short-term and long-term water supply goals. For the purposes of the drilling program, the short-term goal was to site individual supply wells capable of efficiently producing 200 gallons per minute or more of high-quality groundwater. The longer-term goals, as identified in the Water Master Plan, are to maximize the use of the groundwater basin as a long-term

sustainable resource and to minimize water quality concerns such as those currently encountered in the Bluebird Well for arsenic and other metals.

1.3 Regional Hydrogeology

According to the California Department of Water Resource (DWR) *Bulletin 118, California's Groundwater* (2003), the Town of Windsor overlies the Santa Rosa Plain, a groundwater sub-basin of some 80,000 acres within the Santa Rosa Valley Groundwater Basin. Past work by the United States Geological Survey (USGS), however, indicates that the Town, in fact, overlies a smaller sub-basin or unit termed the Windsor-Fulton unit (Cardwell, 1958) or Windsor Storage Unit (DWR, 1975). This unit (identified herein as the Windsor-Fulton unit) is approximately 11,100 acres in size (Cardwell, 1958). The Santa Rosa Plain sub-basin and Windsor-Fulton unit are shown on Figure 1-2.

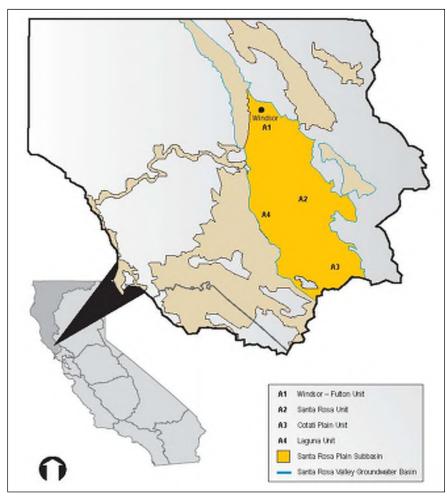


Figure 1-2: Groundwater Basin and Subbasins in the Vicinity of Windsor

Groundwater quality and availability in the Santa Rosa Plain has been the subject of several earlier investigations and is the subject of a current study by the USGS. Two principal studies, *Geology and ground water in the Santa Rosa and Petaluma Valley areas, Sonoma County* by G. T. Cardwell (1958), and Bulletin 118-4, *Evaluation of ground water resources: Sonoma County, Volume 2: Santa Rosa Plain* by the California Department of Water Resources (DWR, 1982), inform much of the current discussion herein.

1.3.1 Description of Near-Surface Geology Near Windsor

The Windsor-Fulton unit is a deep bedrock trough around a geologic syncline (a concave upward folding of consolidated and semi-consolidated rock) named the Windsor Syncline. The basin is filled with Tertiary- and Quaternary-aged uncemented and partially cemented sediment of the Glen Ellen Formation, Wilson Grove Formation, and likely the Petaluma Formation. These formations make up a single groundwater aquifer. The Windsor-Fulton unit is flanked on the east by Tertiary-aged Sonoma Volcanics and on the west by Jurassic-aged Franciscan assemblage bedrock. Recent studies by the USGS have identified that the groundwater unit is flanked on the south by a subsurface feature termed the Trenton Ridge, a geologic 'high spot' that runs from the Town of Trenton to the City of Santa Rosa and 'separates' the Windsor-Fulton unit from the remainder of the sub-basin. This "ridge" feature is defined by a gravity anomaly and is believed to be associated with thrust faulting resulting from northern compression of the area. It may form a southern boundary hydraulically to the Windsor Fulton unit within the unconsolidated deposits overlying the bedrock faulting due to offsetting of sediment beds.

The USGS historically identified three classes of geologic formations (Cardwell, 1958) beneath the Santa Rosa Plain sub-basin and Windsor-Fulton unit based upon their general water bearing properties:

- 1. Consolidated rocks of Jurassic and Cretaceous age which yield essentially no water (e.g. the Franciscan Formation, a group of metamorphosed sedimentary rocks west of Windsor)
- 2. Sedimentary and volcanic rocks of Tertiary age which are mainly secondary aquifers (e.g. the Sonoma Volcanics)
- 3. More recent deposits of late Tertiary age (approximately 2 million years ago) to Quaternary age (0.8 to 1.8 Million years ago)

The Class 3 formations are considered the most important for use of groundwater as a supply option beneath the Town of Windsor. The three principal Class 3 formations of interest underlying the Town are the Quaternary Glen Ellen Formation and both the late Tertiary Petaluma Formation and the similar-aged Wilson Grove (formerly Merced) Formation.

1.3.2 Unconsolidated Aquifer Characteristics

Groundwater flow in the Windsor-Fulton groundwater unit is west-southwest from the foothills of the Mayacama Mountains toward the Russian River where it would discharge. Groundwater flow in the sedimentary aquifer beneath Windsor is believed to be bounded on the east by the Healdsburg Fault zone which is a strike-slip fault that is active and offsets sedimentary beds sufficiently to impede groundwater flow. Groundwater to the south of the Windsor-Fulton groundwater unit may be bounded by the Trenton Ridge, as it marks a significant contrast in the thickness of certain sedimentary units such as the Glen Ellen Formation.

The thickness of the unconsolidated sedimentary aquifer within the Windsor-Fulton unit is not fully known. It was preliminarily described as over 1,000 feet deep in the center of the Windsor syncline (Cardwell, 1958). The western side of the groundwater unit is fault controlled; the sedimentary aquifer is thick, greater than 600 feet, and rapidly thins to less than 200 feet by the Russian River where a thin veneer of highly permeable alluvial and terrace deposits sit beneath and adjacent to the river. The eastern flank of the sedimentary aquifer is described as shallowing to perhaps 500 feet, but remaining relatively thick due to a small amount of downward displacement apparent along the Healdsburg fault zone to the east (Cardwell, 1958). Recent studies by the USGS suggest that the deeper sedimentary interval beneath the Windsor-Fulton groundwater unit, north of the Trenton Ridge, may consist of Pliocene age or older Petaluma Formation; however, this has not been confirmed by direct evidence (i.e. boring logs) in the center of the basin. Furthermore, the water bearing properties of the Petaluma Formation are quite variable to the south and it is not known whether this section of Petaluma Formation, if present, would yield appreciable quantities of groundwater to individual wells.

1.3.3 Groundwater Availability

The Santa Rosa Plain sub-basin contains a large quantity of groundwater in storage; DWR's 1982 estimates are as high as four million acre-feet in the entire Santa Rosa basin. The upper 200 feet beneath the Windsor-Fulton unit is estimated to contain 165,000 acre-feet of groundwater in storage according to USGS estimates (Cardwell, 1958). More groundwater is likely present in storage within the deeper sediments, but this has not been fully quantified; a good working estimate of the total groundwater in storage beneath the Windsor area would be around 400,000 acre-feet.

Recharge of the groundwater basin annually due to infiltration of precipitation is very limited. The entire Santa Rosa Plain Sub-basin has been estimated to receive 29,300 acre-feet of recharge annually (DWR, 1982). The Windsor-Fulton unit can reasonably be estimated to receive 10% of that recharge based upon its size and areal extent. This means that 2,930 acre-feet of water are naturally recharged to the Windsor-Fulton unit annually. This low annual recharge rate restricts how much water can be withdrawn over the longer-term without substantial decreases in the volume of groundwater in storage. Decreasing the volume of groundwater in storage adds an additional energy cost to pump the groundwater due to increased depth to water, not to mention the dewatering of wells screened in shallower aquifer intervals.

Groundwater extraction wells in the Windsor-Fulton unit produce highly varying yields depending on the lateral location of the well and the depth and length of the screened interval. The majority of groundwater wells in the area are completed at shallow depths (less than 200 feet) in the recent alluvium and the Glen Ellen Formation. Additionally, to the southwest of the center of town and west of Windsor Creek, groundwater wells appear to encounter portions of the Wilson Grove Formation (formerly named the Merced Formation) interfingered with the Glen Ellen Formation. The quantity of groundwater produced per foot of drawdown in the Glen Ellen Formation ranges from approximately 0.5 gpm/foot to more than 20 gpm/foot. The quantity of groundwater produced per foot of drawdown in the Wilson Grove Formation is generally higher than that of the Glen Ellen, ranging from 2 to 30 gpm/foot (Cardwell, 1958). The quantity of groundwater to be produced per foot of drawdown in the Petaluma Formation or deeper sediments in the Windsor-Fulton unit is unknown. In general, viable water supply wells are those that can produce more than 200 gpm, which will necessitate encountering coarse sediment packets with specific capacity at the middle- to higher-end of these known ranges in order to minimize drawdown and to increase the reliability of supply over the longer term for Windsor.

Groundwater is utilized in the Santa Rosa Plain for water supply of all types from agriculture and industry to individual domestic supply wells. The 1982 DWR study found the groundwater aquifer system to be in supply-demand equilibrium with groundwater withdrawals then totaling 29,700 acre-feet. There may be limited additional groundwater available within the Windsor-Fulton unit, absent the artificial recharge of the groundwater basin from surface water sources such as the Russian River or recycled water. The USGS and SCWA plan to evaluate active groundwater recharging with surface water as one of the conjunctive-use management options for water supply in other parts of the groundwater basin.

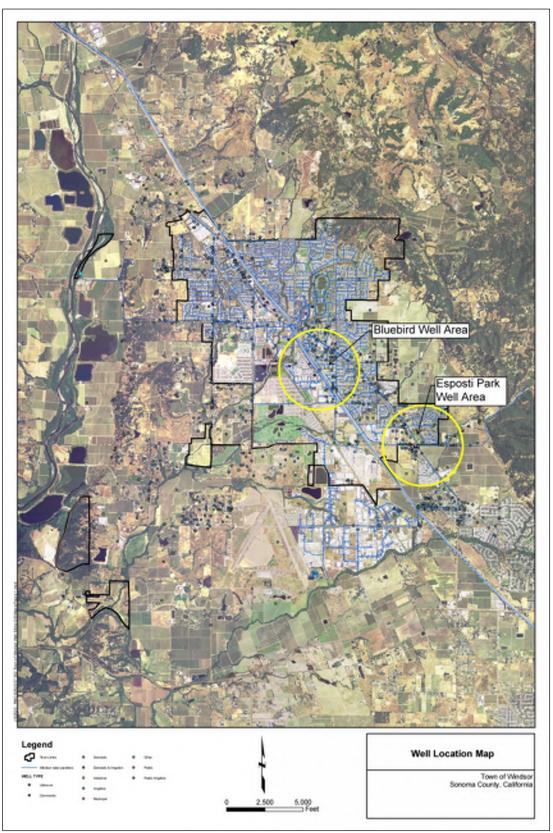
1.4 Organization of Document

This report describes the exploratory drilling program and data collection activities conducted at the Town of Windsor's Bluebird and Esposti Park well sites, as well as well installation and pump testing details. Specifically, this document is organized into the following chapters:

- Well Drilling and Construction in Chapter 2;
- Well Development in Chapter 3;
- Aquifer Testing in Chapter 4;
- Groundwater Quality results in Chapter 5;
- Well Surveys in Chapter 6; and,
- References at the report end.

Chapter 2 Well Drilling and Construction

Exploratory boreholes were advanced at the two identified exploration and testing locations for this project - Esposti Park and the existing Bluebird Well area (Figure 2-1) - to evaluate the water production viability of the unconsolidated sedimentary aquifer in the Windsor area. This chapter provides a summary of the exploratory drilling and well construction program that was conducted at each site. Specifically, documented herein are:


- the drilling of two exploratory borings with lithologic logging;
- collection of preliminary water-quality samples during drilling; and
- well installation.

Borehole geophysical surveys that were conducted are summarized in Chapter 6 of this report, while Chapter 3 documents the well development, Chapter 4 documents the aquifer pump testing, and Chapter 5 document water quality testing conducted at each well site.

Borehole drilling and well design and installation were conducted under the oversight of John M. Lambie, California Professional Geologist (PG) Number 4607 (Expires 5/31/2011).

Lithologic samples were collected approximately every 10 feet of borehole advancement using three following methodologies:

- 1. Primary samples of sediment and water were placed in mason jars for the purposes of providing a total matrix sample. The samples were collected from a bucket placed beneath the cyclone separator that separates the drilling air from the water and solids driven to the surface inside the drill string. The mason jar lids were labeled according to borehole and depth interval in the field.
- 2. Secondary soil/sediment samples were collected using a combination of fine-meshed stainless steel screens suspended under the cyclone separator by a long metal pole for safety. These samples excluded the finest-grain-size clays in the materials coming out of the bottom of the cyclone separator. The samples were preserved in small canvas bags and labeled according to borehole and depth interval.
- 3. Tertiary samples were created from the secondary samples by centrifuging the samples to remove water and more fine-grained material. These tertiary samples were then dried under a heat lamp and observed under a low-power optical microscope to examine the grain textures and colors. The samples were preserved in small sample packets and labeled according to borehole depth and interval.

2.1 Bluebird Well Site

Field work began at the Bluebird well site on January 25, 2010, however drilling was delayed until February 7, 2010 due to heavy rains and wet site conditions. Drilling at the Bluebird site occurred between February 7, 2010 and April 8, 2010. The following details the drilling and well installation program that occurred at this well site. The replacement Bluebird well is located as shown on Figure 2-2

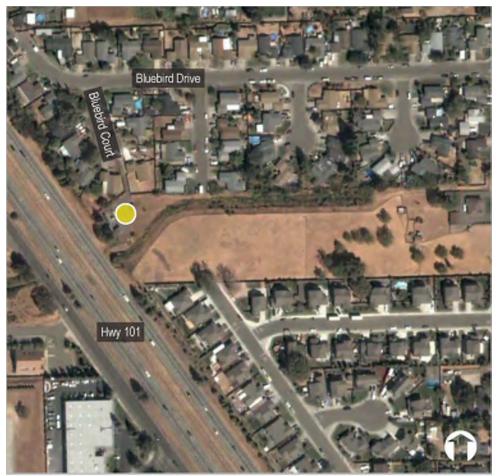


Figure 2-2: Bluebird Borehole and Well Location

2.1.1 Conductor Casing and Sanitary Seal

A ¹/₄-inch wall, 20-inch diameter conductor casing and surface sanitary seal were installed to a depth of 20 feet using a reverse-circulation air rotary drill rig. The sanitary seal consists of a 5% bentonite-cement grout mixture that was pumped into the annular space between the borehole wall and conductor casing using a tremie pipe. The cement mixture consists of approximately one part cement with about six gallons of potable water per sack of Portland cement.

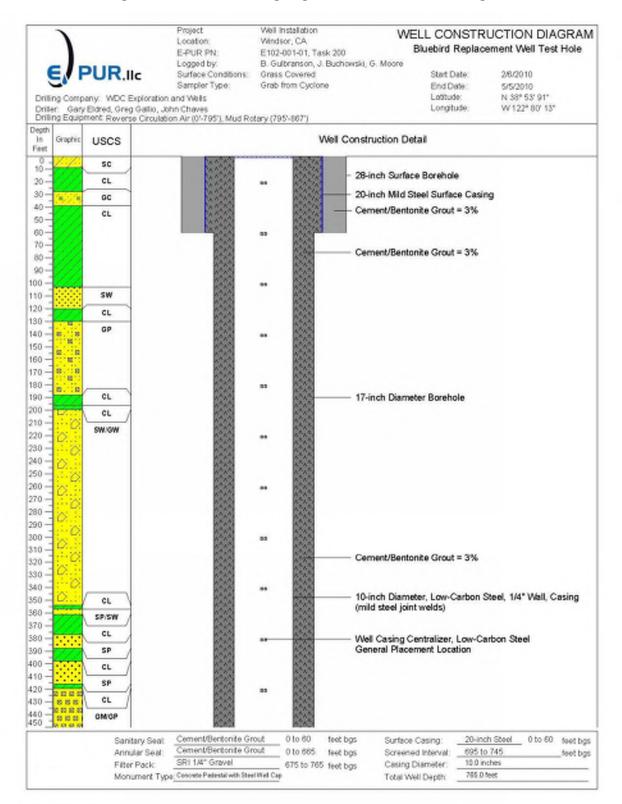
2.1.2 Drilling

Borehole drilling at the Bluebird well site was conducted in multiple stages using a combination of reverse-air-circulation dual-tube and mud rotary drilling methods. First, a 6-inch diameter pilot hole was drilled between February 8, 2010 and February 21, 2010 to a total depth of 795 feet below the ground surface (bgs). Drilling at this site with reverse-air-circulation drilling was slow and difficult, and while a promising zone appeared to be present at the ~800-foot depth, a decision was made not to continue

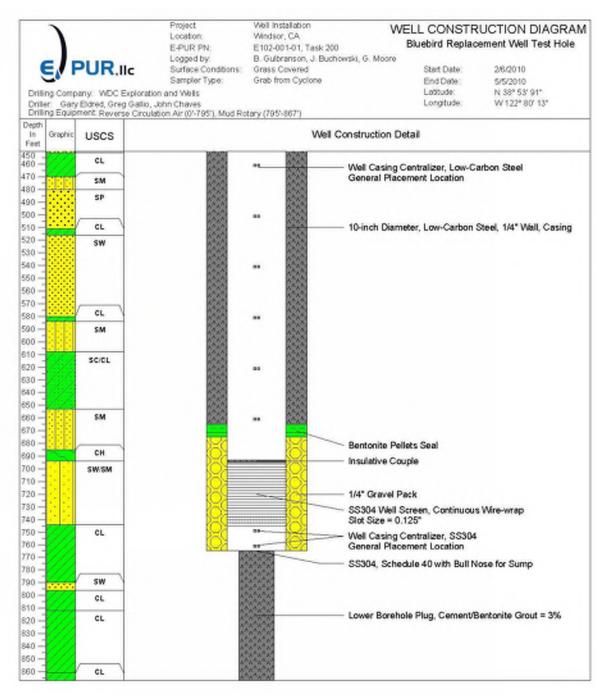
drilling using this methodology. A mud-rotary drill rig was brought to the site later during the field project, and the existing 6-inch borehole reamed to a 10-3/4-inch diameter beginning on April 3, 2010. Reaming of the existing 800-foot borehole was completed on April 8, 2010 and the borehole advanced to a total depth of 867 feet by April 8th. Drilling was deemed complete on April 8, 2010 when volcanic tuff was identified in the borehole. The Bluebird borehole was then subsequently reamed again to a nominal diameter of 16-inches using the mud-rotary drilling method between April 16 and April 21, 2010. Reaming to final diameter was completed for a total depth of 760 feet bgs. No amendments were added to the drilling fluid during pilot borehole drilling for drilling fluid property control.

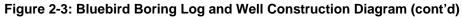
Drill cutting samples were logged during pilot drilling by a California-licensed hydrogeologist. Samples were collected onsite at the point where the drill cuttings dropped out of the cyclone and into a small catch basin before exiting the shaker. The generalized lithology encountered during drilling is summarized in Table 2-1. A detailed lithologic log combined with geophysical survey results is provided in Appendix B.

Geophysical logging of the pilot borehole was conducted after reaching total depth of 867 feet bgs. Schlumberger LTD performed the logging which consisted of a suite of geophysical surveys, including:


- Gamma
- Open Hole Sonic Logging
- Single Arm Caliper
- Spontaneous Potential
- Induction Resistivity with Borehole Fluid Resistivity
- Magnetic Resonance Logging for:
 - o Porosity;
 - Bound water;
 - Free water; and
 - Relative permeability
- Micro-Resistivity

Copies of the geophysical survey reports are included in Appendix C. The logs were run at vertical scales of 1-inch to 50 feet and 1-inch to 20 feet. As part of their surveys, Schlumberger performed a caliper log of the reamed borehole. The caliper log was used to estimate the volumes of gravel pack and grout necessary to fill the annular space during well construction.


Three drill cutting samples of the pilot borehole were analyzed for grain size distribution to design the well screen filter (gravel) pack and well screen slot size. Samples were collected from the following depth intervals and analyzed by Environmental Technical Services in Petaluma, California: 550 to 580 feet bgs, 710 to 740 feet bgs, and 790 to 800 feet bgs. These samples were obtained from water-yielding formations over the anticipated interval to be screened. Grain size analysis reports are included in Appendix D.


In general, the sand and gravel units encountered during drilling are correlated with the Glen Ellen Formation. This unit consists of heterogeneous mixtures of tuffaceous clay, mud, boulder to pebbly gravel, and sand and silt deposits with interbedded conglomerates (Sweetkind et. al., 2010). The Glen Ellen Formation was deposited in a variety of nonmarine environments, including coalescing alluvial fans, fan deltas, streams and lakes, and can be differentiated from the underlying Wilson-Grove Formation by the lack of fossils as well as the sediment types and colors, and from the underlying Petaluma Formation by the materials types as the Petaluma Formation is dominated by deposits of moderately to weakly consolidated silty to clayey mudstone along with local beds and lenses of poorly sorted sandstone (Sweetkind et. al., 2010).

Top Depth (feet)	Bottom Depth (feet)	Lithology
0	10	Clayey sand with trace gravel
10	28	Clayey sand to sandy clay with trace gravel
28	40	Gravel and sand with little clay
40	103	Brown sandy clay
103	120	Gravel and sand varying from gravel to sand
120	130	Brown stiff clay
130	188	Gravel and sand, variably colored
188	199.5	Gray to brown sandy clay
199.5	354	Variably colored medium sand with gravel to gravel with sand.
354	377	Light to dark gray sandy clay
377	388	Poorly sorted sand, variably colored
388	398	Dark gray sandy clay
398	416	Poorly sorted sand, fine to coarse
416	419	Dark gray sandy clay
419	450	Gravel with sand, grading to sand with trace gravel
450	470	Medium to light gray clay
470	511	Sand with trace gravel
511	516	Gray clay
516	580	Sand and gravel, variably colored. Increasing sand with depth
580	584	Gray clay
584	608	Sand with gray clay and gravel
608	650	Clayey sand to sandy clay
650	685	Fine sand with clay stringers
685	695	Clay with sand stringers
695	745	Sand with gravel
745	790	Medium gray clay
790	797	Thin stringy sand and gravel
797	867	Clay

Figure 2-3: Bluebird Boring Log and Well Construction Diagram

2.1.3 Well Construction

The as-built well construction is shown on Figure 2-3. Well casing and screen materials were installed in the borehole on April 27 and 28, 2010. Gravel pack was installed on April 28, 2010 and the bentonite seal was installed on April 29, 2010. Well grouting occurred on April 29 and 30, 2010.

The well was completed using a 10-inch diameter screen and casing. The well casing from the ground surface to a depth of 695 feet consists of 10-inch diameter, ¼-inch wall, low-carbon steel casing. A special insulative coupling was placed between the upper low carbon steel casing and the lower stainless steel casing/screen materials. Casing and screen joints were welded during installation with a minimum of two passes per circumference. Centralizers were installed at approximately 40-foot intervals (except over screened sections) to center the casing and screen in the borehole. The centralizers were made of the same material (i.e. low carbon or stainless) as the casing to which the centralizers were attached.

The well screen and casing were designed to withstand the collapse pressures expected to be encountered within the borehole during installation, development and use. The detailed screen design was performed by E-Pur based on the screen depth and slot size specifications detailed in the project specifications. The ¹/₄-inch wall thickness used in the construction of the Bluebird replacement well is consistent with the thickness recommended by State of California *Standards for Water Well Construction* (DWR Bulletins 74-81 and 74-90) for 10-inch casing to be set to depths to 1,000 feet.

The well screen was designed to screen the permeable sand and gravel zones identified during borehole advancement. Intervals to be screened were selected based soil types, field observations and depth-specific water quality samples collected during boring advancement. A total screen length of 50 feet was installed over a single interval from 695 to 745 feet bgs. The screen consists of stainless steel continuous wire-wrap construction with a 0.125 inch slot size.

The screen filter pack consists of ¼-inch SRI Supreme gravel material. The gravel pack was place in the annual space between the borehole and well casing using a tremie pipe and potable water. A 10 foot bentonite seal was placed on top of the gravel pack. This was followed by a hot patch (short lift of 5% bentonite/cement grout) which was allowed to set for 24 hours before the remaining annual space was placed with the same material to prevent potential collapse of the well casing. All annular seal grouting was placed using a tremie pipe. The placement of the annual seal was witnessed by a Sonoma County Health Department inspector.

The wellhead was fabricated after completion of the well development. Wellhead finishing consisted of a concrete pad around the well casing and a locking cap on top. The well construction details are show in Figure 2-3.

2.2 Esposti Park Well Site

Field work began at the Esposti Park well site on February 23, 2010 with drilling concluding on March 22, 2010. The following details the drilling and well installation program that occurred at this well site. The replacement Esposti Park well is located as shown on Figure 2-4.

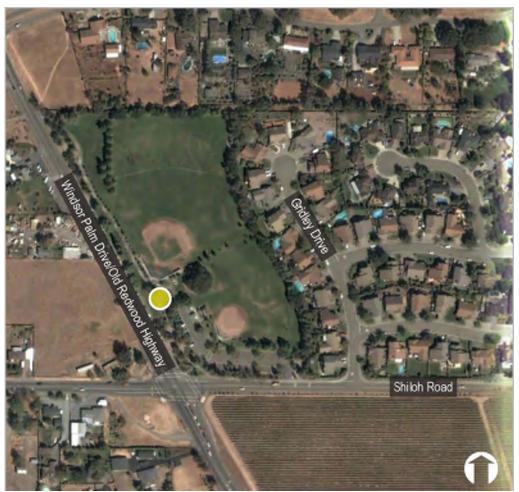


Figure 2-4: Esposti Park Borehole and Well Location

2.2.1 Conductor Casing and Sanitary Seal

A ¹/₄-inch wall, 20-inch diameter mild steel conductor casing and surface sanitary seal were installed to a depth of 30 feet using a reverse-circulation air rotary drill rig. The sanitary seal consists of a 5% bentonite-cement grout mixture that was pumped into the annular space between the borehole wall and conductor casing using a tremie pipe. The cement mixture consists of approximately one part cement with about six gallons of potable water per sack of Portland cement.

2.2.2 Drilling

Borehole drilling at the Esposti Park well site was conducted in two stages using the reverse-aircirculation dual-tube drilling method. First, a 6-inch diameter pilot hole was drilled to a total depth of 1,040 feet bgs. Second, the borehole was reamed using the mud-rotary drilling method to a nominal diameter of 16-inches for a total depth of 675 feet bgs. The pilot borehole was drilled from February 23, 2010 to March 2, 2010. The borehole was reamed from March 11, 2010 to March 22, 2010. No amendments were added to the drilling fluid during pilot borehole drilling for drilling fluid property control.

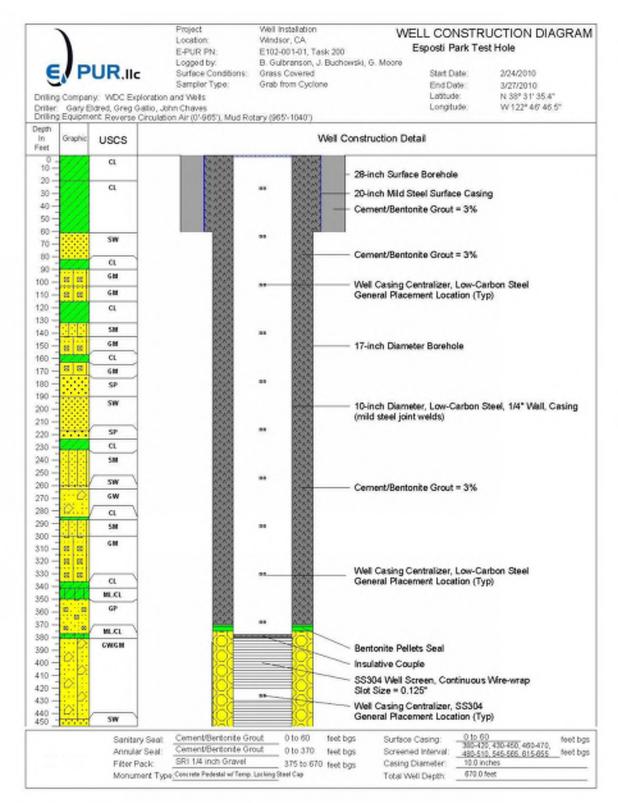
Drill cutting samples were logged during pilot drilling by a California-licensed hydrogeologist. Samples were collected onsite at the point where the drill cuttings dropped out of the cyclone and into a small catch basin before exiting the shaker. The generalized lithology encountered during drilling is

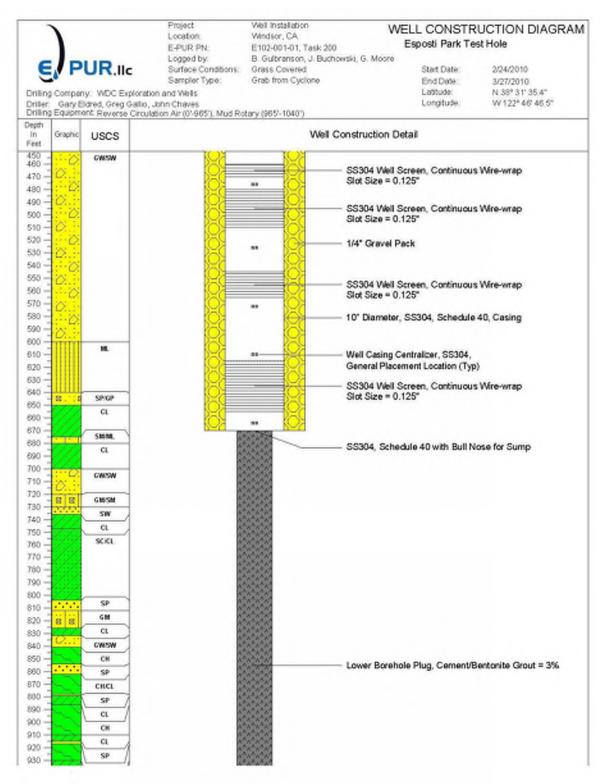
summarized in Table 2-2. A detailed lithologic log combined with geophysical survey results is provided in Appendix B.

Geophysical logging of the pilot borehole was conducted after reaching total depth of 867 feet bgs. Schlumberger LTD performed the logging which consisted of a suite of geophysical surveys, including:

- Gamma
- Open Hole Sonic Logging
- Single Arm Caliper
- Spontaneous Potential
- Induction Resistivity with Borehole Fluid Resistivity
- Magnetic Resonance Logging for:
 - o Porosity;
 - o Bound water;
 - o Free water; and
 - Relative permeability
- Micro-Resistivity

Copies of the geophysical survey reports are included in Appendix C. The logs were run at vertical scales of 1-inch to 50 feet and 1-inch to 20 feet. As part of their surveys, Schlumberger performed a caliper log of the reamed borehole. The caliper log was used to estimate the volumes of gravel pack and grout necessary to fill the annular space during well construction.


Five drill cutting samples of the pilot borehole were analyzed for grain size distribution to design the well screen filter (gravel) pack and well screen slot size. Samples were collected from the following depth intervals and analyzed by Environmental Technical Services in Petaluma, California: 390 to 400 feet bgs, 400 to 420 feet bgs, 420 to 440 feet bgs, 550 to 580 feet bgs, and 580 to 600 feet bgs. The samples were obtained from water-yielding formations over the anticipated interval to be screened. Appendix D contains copies of the geotechnical laboratory report.


In general, the sand and gravel units encountered during drilling correlate with the Glen Ellen Formation. This unit consists of heterogeneous mixtures of tuffaceous clay, mud, boulder to pebbly gravel, and sand and silt deposits with interbedded conglomerates (Sweetkind et. al., 2010). The Glen Ellen Formation was deposited in a variety of nonmarine environments, including coalescing alluvial fans, fan deltas, streams and lakes, and can be differentiated from the underlying Wilson-Grove Formation by the lack of fossils as well as the sediment types and colors, and from the underlying Petaluma Formation by the materials types as the Petaluma Formation is dominated by deposits of moderately to weakly consolidated silty to clayey mudstone along with local beds and lenses of poorly sorted sandstone (Sweetkind et. al., 2010).

Top Depth (feet)	Bottom Depth (feet)	Lithology
0	60	Light brown sandy clay
60	82	Variably colored well-sorted sand
82	90	Light gray sandy clay
90	115	Poorly sorted medium gravel, variably-colored; grading to green gray with depth
115	132	Dark gray-green silty clay
132	152	Gray-green sand with rare cobble; poorly sorted. Increasing coarseness with depth
152	163	Light brown sandy clay
163	223	Gray-green sand with rare cobble; poorly sorted. Increasing coarseness with depth to fine-to-medium sand
223	232	Light gray silty clay
232	336	Poorly sorted sand with rate pebbles. Increasing coarseness. Changing to gravel with sand and then to medium sand with pebbles
336	350	Light gray sandy clay. Light brown volcanic ash identified starting at 341 feet bgs
350	377	Variably colored gravel and sand. Grades from fine to medium. Some volcanic ash.
377	381	Ash predominant with sand and gravel
381	650	Variably-colored gravel and sand. Some ash interspersed at intervening layers. Interspersed clay with sand and gravel between 510 and 520 feet bgs.
650	700	Interbedded clay and ash with some sand. Trending to tan clay with depth
700	736	Gravel and sand
736	804	Dark gray micaceous clay with layers of sand ranging from fine to medium.
804	826	Gray-green fine to medium sand. Abundant ash starting at 810 feet bgs.
826	832	Light gray sandy clay
832	841	Sand and gravel
841	854	Dark gray fat clay
854	862	Poorly sorted sand with gravel, variably colored
862	970	Dark gray fat clay
970	1030	Silty sands to poorly sorted sand
1030	1040	Clay

Table 2-2	: Esposti Park Litholo	gic Summary
-----------	------------------------	-------------

Figure 2-5: Esposti Park Boring Log and Well Construction Diagram (cont'd)

Figure 2-5: Esposti Park Boring Log and Well Construction Diagram (cont'd)

_)	UR.IIc	Project Location: E-PUR PN: Logged by: Surface Conditions:	Well Installation Windsor, CA E102-001-01, Task 200 B. Gulbranson, J. Buchowski, 0 Grass Covered	Esposti Park Te	UCTION DIAGRAM st Hole 2/24/2010
Drilling Compan Driller: Gary E	iy: WDC Explora Idred, Greg Gallio	Sampler Type: tion and Wells	Grab from Cyclone	End Date: Lattude: Longitude:	3/27/2010 N 38° 31° 35.4° W 122° 46′ 46.5°
Depth In Graphic Feet	USCS	132017AE (01303), HOURO		uction Detail	
940 950	CH CL				
960 - 970 - 960 -	- CH - CH - SH				
990	SMSP				
010 - 8 8 020 - 8 8 030 - 8 8 040 - 8 8	SC/6C				

2.2.3 Well Construction

The as-built well construction is shown on Figure 2-5. Well casing and screen materials were installed in the borehole on March 24 and March 25, 2010. Gravel pack was installed on March 25, 2010 and the bentonite seal was installed on March 26, 2010. Well grouting occurred on March 26 and 27, 2010.

The well was completed using a 10-inch diameter screen and casing. The well casing from the ground surface to a depth of 380 feet consists of 10-inch diameter, ¼-inch wall, low-carbon steel casing. A special insulative coupling was placed between the upper low carbon steel casing and the lower stainless steel casing/screen materials. Casing and screen joints were welded during installation with a minimum of two passes per circumference. Centralizers were installed at approximately 40-foot intervals (except over screened sections) to center the casing and screen in the borehole. The centralizers were made of the same material (i.e. low carbon or stainless) as the casing to which the centralizers were attached.

The well screen and casing were designed to withstand the collapse pressures expected to be encountered within the borehole during installation, development and use. The detailed screen design was performed by E-Pur based on the screen depth and slot size specifications detailed in the project specifications. The ¹/₄-inch wall thickness used in the construction of the Esposti Park replacement well is consistent with the thickness recommended by State of California *Standards for Water Well Construction* (DWR Bulletins 74-81 and 74-90) for 10-inch casing to be set to depths to 1,000 feet.

The well screen was designed to screen permeable sands and gravels with good water quality as identified by field observations, soil cuttings and depth-specific water quality samples collected during borehole advancement. A total screen length of 160 feet was installed over six intervals (Table 2-3). The screen consists of stainless steel continuous wire-wrap construction with a 0.125 inch slot size. Stainless steel blank casing ranging in length from 10 to 50 feet in length separates the screened intervals and was placed opposite lower permeability strata within the more permeable strata.

Screened Interval Depths (feet below ground surface)	Screen Length (feet)
380 to 420	40
430 to 450	20
460 to 470	10
480 to 510	30
545 to 565	20
615 to 655	40
Total Length	160

Table 2-3: Esposti Park Screened Intervals and Lengths

The screen filter pack consists of ¹/₄-inch SRI Supreme gravel material. The gravel pack was place in the annual space between the borehole and well casing using a tremie pipe and potable water.

A 10.5 foot bentonite seal was placed on top of the gravel pack. This was followed by a hot patch (short lift of 5% bentonite/cement grout) which was allowed to set for 24 hours before the remaining annual space was placed with the same material to prevent potential collapse of the well casing. All annular seal grouting was placed using a tremie pipe. The placement of the annual seal was witnessed by a Sonoma County Health Department inspector.

The wellhead was fabricated after completion of the well development. Wellhead finishing consisted of a concrete pad around the well casing and a locking cap on top. The well construction details are show in Figure 2-5.

Chapter 3 Well Development

Both the Bluebird and Esposti Park wells were developed in two phases by WDC. The first phase consisted of surge block and airlift development using the same drill rig used to drill and construct the well. The second phase consisted of pump and surge development using a temporary test pump. RMC and E-Pur hydrologists and hydrogeologists periodically monitored the progress of the development.

3.1 Bluebird Well Development

Dispersant (NW-220 by US Filter) was added to the Bluebird well on May 3, 2010, two days following well sealing. The dispersant was allowed to sit in the well overnight, and bailing and surging began on the Bluebird well on May 4, 2010. Airlift equipment was installed in the well on May 5, 2010 with surge block and airlift development beginning thereafter. Development of the Bluebird well via airlifting was completed on May 10, 2010.

The heavy drilling fluids in the bottom of the well were initially removed by bailing and airlifting for several hours from the bottom of the well. Development was then performed using a surge block consisting of a double swab separated by a 10- to 20-foot section of perforated drill pipe. Development began at the top of the screened interval by vigorously swabbing a 40-foot section of screen and then airlifting from the top 10-foot section of that 40-foot swabbed section. This was repeated several times. Then the same 40-foot section of screen was again swabbed and airlifting water performed from the next-lower 10-foot section of the 40-foot swabbed section. This procedure was repeated until each 10-foot section of the 40-foot section was covered. A 40-foot section of the drill pipe was then added and the same procedure repeated for the next 40-foot lower section of screen. Several airlift/swab passes were performed across the screen until approximately 160 hours of development were completed.

The airlift development equipment was removed from the Bluebird well on May 11, 2010 and a pump installed in the well. Pumping of the Bluebird well occurred between May 12, 2010 and May 14, 2010. During this period, the discharge rate of the well dropped considerably, indicating that the well screen and/or filter pack was clogged and that additional development would be required before aquifer testing could reasonably proceed. However, due to wet weather, discharges to the Town's sanitary system were not allowed (holding ponds at the wastewater treatment plant were at capacity), and the ability to discharge to an adjacent stormwater drainage disallowed under the North Coast Regional Water Quality Control Board's 2009 *General Permit for Low Threat Discharges to Surface Waters in the North Coast Region* (this permit does not allow for surface discharges after May 15th). Therefore, no additional development was conducted on the Bluebird well prior to site demobilization.

3.2 Esposti Park Well Development

As with the Bluebird well, dispersant (NW-220 by US Filter) was added to the Esposti Park well on March 28, 2010 following well sealing. The dispersant was allowed to sit in the well overnight, and bailing and surging began on the Esposti Park well on March 30, 2010. Airlift equipment was installed in the well on March 31, 2010; surge block and airlift development began on April 1, 2010 and is completed on April 15, 2010.

The surge and airlift development method used on the Bluebird well was also used on the Esposti Park well. As with the Bluebird well, multiple airlift/swab passes were required before the well was considered to be sufficiently developed via airlifting. In total, approximately 160 hours of surge/airlift development were completed on the Esposti Park well.

Airlift development was then followed by pump development occurring between April 27, 2010 and April 28, 2010. During this period, the well was pumped at approximately 450 to 500 gpm for approximately 10 hours, and then allowed to recover in anticipation of aquifer testing. The Esposti Park well was not

pumped at its maximum rate due to discharge limitations on the Town's sanitary sewer system and the onsite filtration/storage capacity.

Chapter 4 Aquifer Testing

As scoped in the project specifications, aquifer testing of both the Bluebird and Esposti Park wells was to be conducted, consisting of an 8-hour step-rate discharge test and a 24-hour constant-rate discharge test. Dynamic profiling of both wells was also to occur during the constant rate testing, providing spinner flowmeter logging data. Additionally, depth-specific water quality sampling was to be performed as part of the dynamic profile testing to be conducted.

Constant-rate pump testing was performed as planned on the Esposti Park well. However, as described in Chapter 3, the Bluebird well pumping rate dropped considerably during pump development to such a rate that aquifer testing could not reasonably proceed without additional well development occurring first. And as is described in Chapter 3, circumstances at the time of the field project made additional development on the Bluebird well impossible at that time; as such, aquifer testing was not performed on the Bluebird replacement well.

4.1 Background Water Level

Background and pumping groundwater levels were monitored during the Esposti Park aquifer testing with water levels measured in the pumping well (the Esposti Park replacement well), the original Esposti Park well, and at the water supply well serving Mobile Home Estates (located at 5761 Old Redwood Highway, Santa Rosa, California). Figure 4-1 shows the location of the two monitoring wells relative to the pumping well, the Esposti Park replacement well. Hydrographs for all wells during the test period are provided in Appendix E.

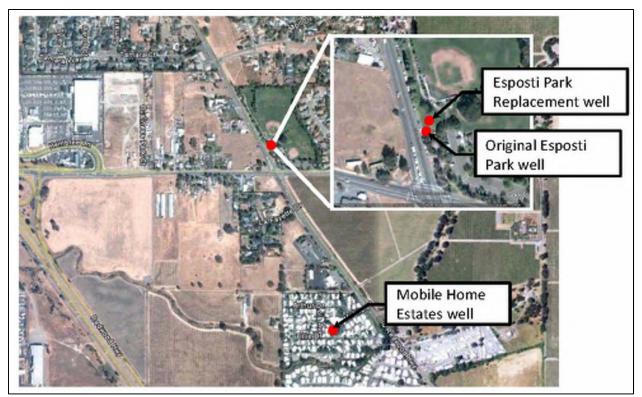
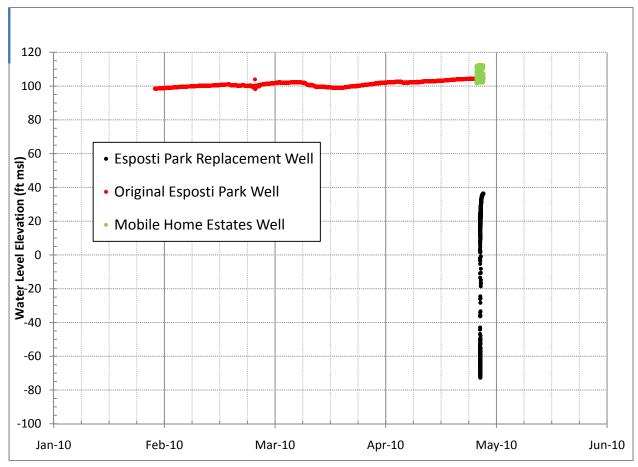
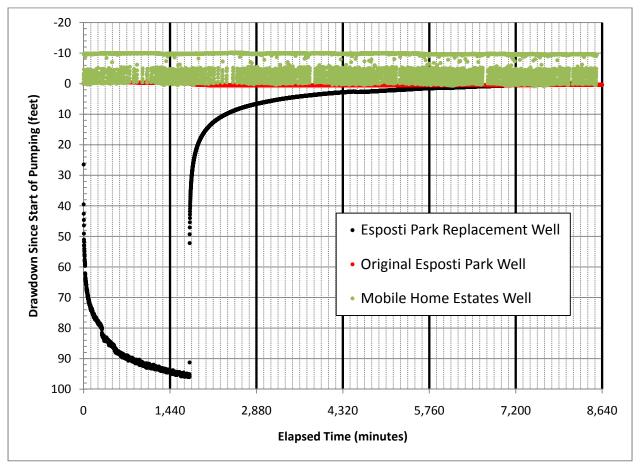



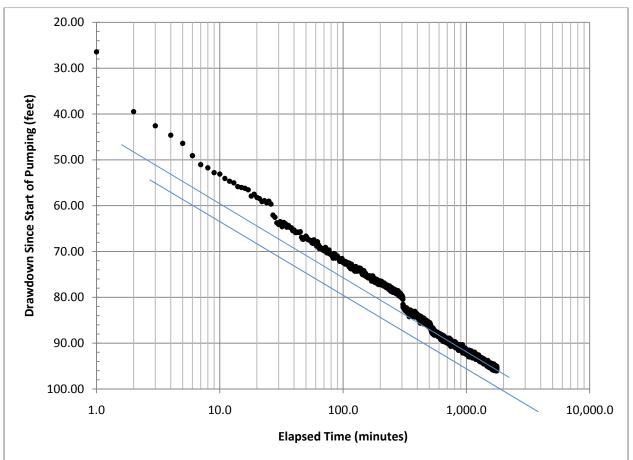
Figure 4-1: Monitoring Wells for Esposti Park Aquifer Pumping Tests

An Instrumentation Northwest Smart Sensor PT2X pressure transducer was installed in the original Esposti Park well at the beginning of the project in January. The transducer was set at 98.89 feet bgs with approximately 60 feet of water above the transducer. Groundwater elevations were read continuously throughout the well installation, development and testing program. Additional pressure transducers (both Insitu Troll 700 transducers) were installed in the replacement Esposti Park well and in the water supply well serving Mobile Home Estates in anticipation of the aquifer testing to be performed in the replacement well. The Mobil Home Estates transducer was installed on April 26, 2010 approximately 21 feet bgs, while the Replacement Esposti Park transducer was installed on April 27, 2010 at approximately 132 feet bgs. Background groundwater level data collected prior to the constant-rate discharge testing in the Esposti Park replacement well are shown in Figure 4-2.


Changes in groundwater levels in the Esposti Park replacement well, as shown in the figure above, are the results of test pumping in the that well prior to commencement of the constant-rate pump testing. As can be seen in the figure above, the original Esposti Park well and the Mobile Home Estates well do not appear to be affected by pumping in the replacement Esposti Park well.

4.2 Constant-Rate Discharge Testing

Constant-rate discharge testing was performed on the Esposti Park well from April 28 to April 29, 2010 to evaluate the transmissivity and storativity of the screened aquifer(s). Pumping on the well began the morning of April 28th with a pumping rate around 400 gpm. The well was pumped overnight at a constant


rate to allow water levels to reach steady-state condition. Dynamic profiling was then conducted on April 29th simultaneously with the constant rate pumping test. The dynamic profile testing consisted of spinner log testing and depth-specific water quality testing. The constant-rate pumping test and dynamic profiling was completed the afternoon of April 29th, but groundwater elevation monitoring was continued for several days to ensure capture of well recovery.

Groundwater drawdown data was plotted simultaneously with observation well data. These data are presented in Figure 4-3. As can be seen from these data, neither the original Esposti Park well nor the Mobile Home Estates well appear to be impacted by pumping in the Esposti Park replacement well. This indicates that the replacement well is screened over aquifer zones that are hydraulically separate from the two observation wells and/or that a pumping rate of 400 gpm in the replacement well is too small to impact the observation wells. As the data recorded in the two observation wells do not show any impacts that can be attributed to pumping in the Esposti Park replacement well, these data were not used in calculating the transmissivity and storativity of the zones screened by the Esposti Park replacement well. And as no relevant observation well data were available, a storativity value was not calculated for the Esposti Park replacement well.

Groundwater level data recorded in the Esposti Park replacement well during the constant-rate aquifer test were plotted on a separate graph and analyzed to calculate a transmissivity value. These data are presented in Figure 4-4. Drawdown during pumping appears to be sensitive to slight variations in pumping rate. Although no correction as made for these variations in pumping, to trend lines presented by the data were analyzed.

Transmissivity is calculated using the Cooper-Jacob method (Cooper and Jacob, 1946) for pumping drawdown data:

$$T = \frac{264Q}{\Delta s}$$

Т

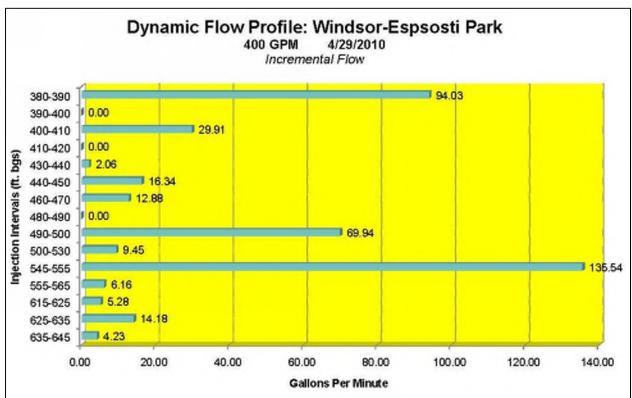
Where:

= Transmissivity (gallons/day/feet [gpd/ft])

Q = Pumping rate (gallons per minute [gpm])

 Δs = Water level drawdown (feet) per log cycle of time, t (min) since pumping started (from Figure 4-4)

The best-fit straight lines, shown in Figure 4-4, have the same slope and result in a transmissivity of 6,600 gpd/ft calculated using a pumping rate of 400 gpm and a drawdown of 16 feet per log cycle. Further, based on the data presented in Figure 4-4, Esposti Park replacement well specific capacity appears to be between approximately 4 and 6 gpm/ft, depending upon the length of the data set used in the calculation.


4.3 Dynamic Profile Testing

Dynamic profile testing was performed on the Esposti Park replacement well by BESST, Inc. concurrently with the constant-rate pumping testing. Dynamic Flow Profile and Water Quality Analysis testing is generally a two-part procedure in which flow rates across the screened portions of the well are first determined, and then water quality samples are collected at the same general locations. Specifically, in the first part of the test, fluorescence dye (NSF standard 60/ fluorescent red, FWT 50 Liquid concentrate) was injected at 10-foot intervals over the screened portion of the Esposti Park replacement well, and the time required for the dye to reach indicator meters at the surface was measured to estimate the approximate dynamic flow contribution by depth and screened interval. Then, a specially-designed sampling apparatus was used to collect depth-specific water samples from the same depths as measured previously during the flow testing. The water samples were sent to Brelje and Race Analytical Laboratory in Santa Rosa, California for analysis for general minerals, metals, nitrogen compounds, Total Organic Carbon, Total Dissolved Solids, and pH. Two composite water samples were also collected at the pumphead during testing in order to provide composited data for comparison; these samples were analyzed by Brelje and Race Analytical Laboratory for Source Chemical Monitoring Requirements for potable water quality as set forth by the California Department of Public Health. These analyses included:

- Inorganics
- Asbestos
- Nitrate/Nitrite
- Secondary Standards
- Radioactivity
- Volatile Organic Chemicals
- Synthetic Organic Chemicals

The results of depth-specific water quality analyses with respects to screened intervals are discussed in Chapter 5 of this report

As described in BESST's report (included as Appendix G), the majority of flow entering the Esposti Park replacement well from the surrounding aquifer is coming from three primary intervals: between 380 and 390 feet bgs (~23.5%), between 490 and 500 feet bgs (~17.5%) and between 545 and 555 feet bgs (~33.9%). These results are show below in Figure 4-5. As shown on the well's geologic log (Appendix B), these zones correspond with gravel with sand and/or sandy gravel layers.

Chapter 4 Aquifer Testing

Chapter 5 Groundwater Quality

Groundwater samples were collected at both the Esposti Park and Bluebird well sites during borehole advancement. In general, two types of water quality samples were collected from each borehole: those for metals analyses to evaluate potential potability issues and those for isotope analysis for evaluate potential water-quality potability issues and to provide baseline on groundwater age and genesis. These samples were termed borehole water quality samples and conjunctive use water quality samples, respectively. For the purposes of this report, only borehole water quality samples are discussed.

Borehole water quality samples were collected following a written sampling protocol that provided a means for the consistent application of sampling procedures. The sampling protocol, entitled "Groundwater Filtration Protocol", was developed by the Merced County Division of Environmental Health for water quality sample collection, and included definition of sampling groups, site naming convention and abbreviations, labeling convention, sample collection order, instructions for field parameter collection, instructions for sampling and borehole purging procedures prior to sample collection, and chain of custody instructions. In general, samples were collected per Table 5-1.

Analytes	Collection Procedure Summary	Container
Calcium, magnesium, sodium, potassium, iron, manganese, arsenic, chromium, mercury	 Using the Groundwater Filtration Protocol developed by the Merced County Division of Environmental Health, place one gallon of sample in temporary holding container in an iced cooler and let rest for 12 hours. 	1 x ½ gallon, plastic bottle
	2. Filter supernatant from cooled holding container through a 0.45 micron filter and place in an unpreserved container. (Sample preservation was performed in the laboratory.)	
	 Store each filtered sample in an iced cooler at approximately 4 degrees Celsius out of direct sunlight. 	
	 Record each sample on the Chain of Custody. 	
pH, total alkalinity, bicarbonate, boron, total	 Carefully pour the sample into the ½ quart bottle. 	1 x ½ quart, plastic bottle
dissolved solids, hardness	Store each sample in an iced cooler at approximately 4 degrees Celsius.	
	 Record each sample on the Chain of Custody. 	
Chloride, fluoride, sulfate, nitrate	 Carefully pour the sample into the ½ quart bottle. 	1 x ½ pint, plastic bottle
	 Store each sample in an iced cooler at approximately 4 degrees Celsius. 	
	 Record each sample on the Chain of Custody. 	

Table 5-1: Borehole Water Quality Sample Collection Protocol

Analytes	Collection Procedure Summary	Container
Total organic carbon	 Carefully pour the sample water into two, pre-preserved (with phosphoric acid) 40 milliliter VOA vials. 	2 x 40 milliliter VOA
	2. Store each sample in an iced cooler at approximately 4 degrees Celsius.	
	 Record each sample on the Chain of Custody. 	

Each sample collected was recorded on the Chain of Custody (COC) form in the field. The COC form allows custody tracking of each sample, from the time of collection, through transport, and to the final release of custody to the laboratory. The COC form documents the date and time of the sample collection, the name of the person(s) collecting the sample, matrix type, total number of containers submitted, and the analyses requested. The COC form was signed and dated each time the custody of the samples changed.

Additional depth-specific and composite groundwater samples were also collected at the Esposti Park well during constant-rate aquifer testing. Additional groundwater samples were collected from the Bluebird well site during well development in anticipate of obtaining coverage under the North Coast Regional Water Quality Control Board's (NCRWQCB's) *General Permit for Low Threat Discharges* (2009).

Depth-specific water quality samples were collected using a method developed by the United States Geological Survey (USGS) and currently licensed to BESST, Inc. A decontaminated "clean" hose on a motorized reel is pressurized with nitrogen. The leading end of the hose has a foot valve which is in the closed position under positive hose pressure. The hose is lowered down the well to the desired sample depth, where the nitrogen pressure is released. Water within the well column enters the hose because the hydrostatic pressure exerted by the water column is greater than the pressure in the hose, which is no under atmospheric pressure. The water level rises in the hose until it equilibrates with the well water column. After repressurizing the hose with nitrogen and forcing the foot valve to close, the hose is reeled up to the ground surface. The water sample is transferred from the pressurized hose into the appropriate sample containers by manipulating the end valve. The hose is decontaminated by running distilled/deionized water through it prior to re-insertion in the well.

These data collect activities are discussed below, with summary tables showing analytical results and associated drinking water standards (Maximum Contaminant Levels or MCLs). Copies of laboratory reports are included in Appendix F.

5.1 Bluebird Water Quality Data

In general, borehole water quality samples were collected every 100 feet during borehole advancement. At the Bluebird well site, borehole water quality samples were collected at 180, 220, 320, 340, 440 and 700 feet bgs. Although sampling was attempted at other intervals, field conditions did not yield sufficient water for sampling. A sample of tanked water used during drilling advancement was also collected; this field blank was submitted as being collected from 710 feet bgs to the analytical laboratory. Water quality samples were submitted to Brelje and Race Analytical Laboratory of Santa Rosa, California for analysis for metals and general minerals, nitrates and total organic carbon (TOC). Table 5-2 summarizes the analytical results for the borehole water quality samples.

			Depth (feet below ground surface)						
								-	Field
Analyte	Units	MCL	180	220	320	340	440	700	Blank ^a
Field Measurements									
рН	Unitless		7.08	7.83	7.38	7.33	7.89	8.11	
Conductivity	mS/m		25.4	26.2	31.1	31.1	37.1	30.7	
Turbidity	NTU		202		597	136	942		
Dissolved Oxygen	g/L		6.15	7.84	1.81	6.54	8.11	7.46	
Temperature	°C		12.55	16.63	18.41	20.38	23.95	22.67	
Oxygen Reduction Potential	mV		64	34	-254	-41	82	47	
Laboratory Analyses									
Hardness as CaCO ₃	mg/L		97	100	93	87	73	130	170
Calcium	mg/L		14	15	16	15	14	23	30
Magnesium	mg/L		15	16	13	12	9.2	17	22
Sodium	mg/L		22	23	30	39	54	19	13
Potassium	mg/L		3	4.3	9.1	12	20	6.1	11
Total Alkalinity as CaCO ³	mg/L		82	120	140	150	180	180	160
Bicarbonate	mg/L		100	150	170	190	220	220	190
Sulfate	mg/L	250/500/600 ^b	5.3	2.5	7.2	3.7	6.9	14	16
Chloride	mg/L	250/500/600 ^b	39	21	20	20	21	14	11
Nitrate as N	mg/L	10	8.5	<2.0	8.6	<2.0	<2.0	9.5	10
Fluoride	mg/L	2	0.51	0.36	0.38	0.35	0.31	0.27	0.25
рН	unitless		6.6	7.2	7.6	7.6	7.8	8	7
Total Dissolved Solids	mg/L	500/1,000/ 1,500 ^b	220	240	220	250	300	280	200
Boron	mg/L		<0.1	0.18	0.33	0.16	0.32	0.29	0.17
Arsenic	μg/L	10	<2.0	<2.0	<2.0	9	16	<2.0	<2.0
Total Chromium	μg/L	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Iron	μg/L	300 ^c	3200	<100	<100	<100	360	<100	<100
Manganese	μg/L	50 ^c	1800	850	760	460	480	440	<20
Mercury	μg/L	2; 0.05 ^d	0.024	0.038	0.058	0.014	<0.012	0.018	0.013
Total Organic Carbon	mg/L		1.1	0.56	1.5	0.31	0.54	1.4	0.36

Table 5-2: Bluebird B	orehole Water Quality
-----------------------	-----------------------

Notes:

Reported as sample from 710 feet bgs in analytical report. Secondary MCL – Recommended/Upper/Short Term a.

b.

c. Secondary MCL

Water Quality Objective for mercury under the California Toxics Rule d.

In anticipation of conducting long-term aquifer pumping for hydraulic testing, additional water quality samples were collected from the Bluebird replacement well during development as required by the NCRWQCB for receipt of a discharge permit under the Board's *General Permit for Low Threat Discharges* (2009). This permit was required to allow the extracted water during hydraulic testing to be discharged to the adjacent stormwater drainage instead of the local sanitary sewer system, as the existing sanitary sewer in Bluebird Court does not have the capacity required to safely accept the anticipated discharges. Per the NCRWQCB, water samples were analyzed for metals (as listed in the Low Threat Discharge Permit), cyanide, nitrate as N, and hardness. As well development was underway during the sampling, the water samples were analyzed both as total concentrations and dissolved concentrations, in order to determine what, if any, portion of the detectable concentration may be the result of sediment-borne constituents. These water samples were collected on May 7, 2010 and were analyzed by McCampbell Analytical Laboratory in Pittsburg, California.

The results of the May 7, 2010 sampling round unexpectedly yielded elevated concentrations of arsenic (both in total and dissolved form). As these data were completely counter to borehole water quality samples collected from this well at the same zone, additional water quality samples were collected from the Bluebird replacement well on May 12, 2010 and analyzed for both total and dissolved arsenic. Additional analyses were also conducted during the May 12 sampling even to confirm the anticipated concentrations of mercury in the replacement well discharges. The results of the May 7 and May 12, 2010 sampling events are summarized in Table 5-3.

As can be seen by comparing the Bluebird well site borehole water quality data with those collected from the constructed replacement well during development, arsenic concentrations have increased considerably. Assuming that all data are valid, the elevated arsenic concentrations are most likely the result of a sudden change in the oxidation conditions of groundwater near the well due to the introduction of oxygen during well development. Such a condition can be alleviated by completing the development of the well to remove fine-grained turbidity and doing additional well development using more aggressive development methods such as pumping to ensure the introduction of formation water into the well. As groundwater returns towards its natural oxidation condition, arsenic concentrations should decrease substantially.

		Field Blank- Dissolved	Field Blank- Total	BB-1- Dissolved	BB-1- Total	BB-2- Dissolved	BB-2- Total	BB-1- Dissolved	BB-1-Total	BB-2- Dissolved	BB-2-Total
Date	Units	5/7/2010	5/7/2010	5/7/2010	5/7/2010	5/7/2010	5/7/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010
Antimony	μg/L	<0.5	<0.5	0.26	0.32	0.27	0.33				
Arsenic	μg/L	<0.5	<0.5	410	440	420	450	360	400	340	420
Barium	μg/L	<5	<5	61	82	46	83				
Beryllium	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				
Cadmium	μg/L	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25				
Copper	mg/L	<0.5	<0.5	<0.5	6.7	<0.5	3.2				
Lead	μg/L	<0.5	<0.5	0.1	1.9	<0.5	1.5				
Mercury	μg/L	<0.025	<0.025	0.031	0.066	0.027	0.05	0.073	0.16	0.06	0.19
Nickel	μg/L	<0.5	<0.5	0.29	7.5	0.25	5.2				
Selenium	μg/L	<0.5	<0.5	0.13	0.23	0.14	0.22				
Thallium	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				
Zinc	μg/L	<5	<5	11	35	5.8	38				
Hardness as CaCO3	mg/L	<1	<1	32	46	27	41				
Total Cyanide	μg/L		<1		<1		<1				
Nitrate as N	mg/L		<1		<1		<1				
Nitrate as NO3	mg/L		<1		<1		<1				
Hexachrome	μg/L		<1		<1		<1				

Table 5-3: Bluebird Development Water Quality for Permit

Notes:

a. Reported as sample from 710 feet bgs in analytical report.

b. Secondary MCL – Recommended/Upper/Short Term

c. Secondary MCL

d. Water Quality Objective for mercury under the California Toxics Rule

5.2 Esposti Park Water Quality Data

As with the Bluebird well site, borehole water quality samples were collected every 100 feet during borehole advancement at the Esposti Park well site. Specifically, borehole water quality samples were collected at 200, 285, 400, 600, and 736 feet bgs. Although sampling was attempted at other intervals, field conditions did not yield sufficient water for sampling. Water quality samples were submitted to Brelje and Race Analytical Laboratory for analysis for metals and general minerals, nitrates and total organic carbon (TOC). Table 5-4 summarizes the analytical results for the borehole water quality samples.

			Depth (feet below ground surface)					
Analyte	Units	MCL	200	285	400	600	736	
Field Measurements								
рН	Unitless		6.67	8.36	8.64	8.9	6.42	
Conductivity	mS/m		45.8	35.4	45.6	42.4	56.7	
Turbidity	NTU		354				589	
Dissolved Oxygen	g/L		5.64	7.12	8.22	7.49	7.32	
Temperature	°C		18.94	21.84	19.96	20.54	14.47	
Oxygen Reduction Potential	mV		4	154	229	90	177	
Laboratory Analysis								
Hardness as CaCO ₃	mg/L		150	99	140	120	110	
Calcium	mg/L		23	15	24	23	22	
Magnesium	mg/L		23	15	20	16	14	
Sodium	mg/L		42	40	51	54	87	
Potassium	mg/L		8	6.9	14	19	27	
Total Alkalinity as CaCO ³	mg/L		210	160	230	230	290	
Bicarbonate	mg/L		260	190	280	280	350	
Sulfate	mg/L	250/500/600 ^a	12	8.4	17	12	18	
Chloride	mg/L	250/500/600 ^ª	20	25	25	14	21	
Nitrate as N	mg/L	10	<2.0	<2.0	<2.0	8.5	8.5	
Fluoride	mg/L	2	0.4	0.39	0.36	0.33	0.3	
рН	unitless		7.2	7.5	7.9	7.9	8	
Total Dissolved Solids	mg/L	500/1,000/1,500 ^a	300	260	360	310	430	
Boron	mg/L		0.14	0.13	0.28	0.31	0.45	
Arsenic	μg/L	10	<2.0	<2.0	2.1	7.3	39	
Total Chromium	μg/L	50	<1.0	<1.0	<1.0	<1.0	2.1	
Iron	μg/L	300 ^b	<100	<100	<100	<100	1200	
Manganese	μg/L	50 ^b	1600	910	860	580	440	
Mercury	μg/L	2	0.17	<0.012	0.014	0.014	0.017	
Total Organic Carbon	mg/L		3.9	0.74	0.33	0.4	0.66	

Footnotes:

a. Secondary MCL - Recommended/Upper/Short Term

b. Secondary MCL

As part of the dynamic profile testing that was conducted on the Esposti Park replacement well (and described in Section 4.3 of this report), depth-specific water quality samples were collected over each screened interval of the well. These samples were labeled DP-1 to DP-6, starting from the uppermost screened interval in the replacement well. Depth-specific water quality samples were submitted to Brelje and Race Analytical Laboratory for analysis; the results of the analyses are summarized in Table 5-5, below.

			Depth (feet below ground surface)						
Analyte	Units	MCL	DP-1	DP-2	DP-3	DP-4	DP-5	DP-6	Dup
Aluminum	μg/L		<50	<50	<50	<50	<50	<50	<50
Ammonia as N	mg/L		0.3	<0.20	0.3	<0.20	<0.20	<0.20	<0.20
Antimony	μg/L		<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0
Arsenic	μg/L	10	45	94	83	84	97	100	85
Barium	μg/L		200	160	170	170	170	200	170
Beryllium	μg/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bicarbonate	mg/L		290	280	280	280	290	340	280
Boron	mg/L		0.31	0.36	0.35	0.35	0.34	0.4	0.35
Bromide	mg/L		0.086	0.07	0.068	0.074	0.067	0.085	0.07
Cadmium	μg/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Calcium	mg/L		23	19	19	20	19	20	20
Carbonate	mg/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloride	mg/L	250/500/600 [°]	18	11	11	11	11	16	11
Total Chromium	μg/L	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cobalt	μg/L		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Copper	μg/L		<50	<50	<50	<50	<50	<50	<50
Fluoride	mg/L	2	0.39	0.43	0.38	0.36	0.35	0.36	0.61
Hydroxide	mg/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Iron	μg/L	300 ^b	<100	<100	<100	<100	<100	<100	<100
Lead	μg/L		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Magnesium	mg/L		16	11	11	11	11	11	11
Manganese	μg/L	50 ^b	800	630	630	650	630	680	660
Mercury	μg/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Molybdenum	μg/L		6.7	8.8	9	8.9	9.3	13	9.4
Nickel	μg/L		<10	<10	<10	<10	<10	<10	<10
Nitrate	mg/L	10	<2.0	<2.0	<2.0	<2.0	8.3	<2.0	<2.0
Nitrite as N	mg/L		<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
рН			8.0	7.8	7.9	8.0	7.9	7.5	7.7
Potassium	mg/L		17	19	19	20	20	24	21
Selenium	μg/L		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Silica	mg/L		87	91	92	93	91	96	93
Silver	μg/L		<10	<10	<10	<10	<10	<10	<10
Sodium	mg/L		50	52	52	54	54	80	54

Table 5-5: Esposti Park Depth-Specific Water Quality Results

			Depth (feet below ground surface)						
Analyte	Units	MCL	DP-1	DP-2	DP-3	DP-4	DP-5	DP-6	Dup
Strontium	μg/L		150	120	120	120	120	130	120
Sulfate	mg/L	250/500/600 ^a	13	9.9	10	9.8	11	18	9.8
Thallium	μg/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tin	μg/L		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Total Kjeldahl Nitrogen as N	mg/L		1.1	1.5	1.5	1.1	1.1	1.1	1.1
Total Alkalinity (as CaCO ₃)	mg/L		240	230	230	230	240	280	230
Total Dissolved Solids	mg/L	500/1,000/1,500 ^ª	360	340	340	340	340	420	340
Total Hardness (as CaCO3)	mg/L		120	93	93	95	93	95	95
Total Organic Carbon	mg/L		4.8	7.5	5.5	9.3	4.4	4.7	4.5
Zinc	μg/L		<50	<50	<50	<50	<50	<50	<50

Footnotes:

a. Secondary MCL - Recommended/Upper/Short Term

b. Secondary MCL

c. DP-1 is from the screened interval between 380 and 420 feet bgs. DP-2 is from the screened interval between 420 and 450 feet bgs. DP-3 is from the screened interval between 460 and 470 feet bgs. DP-4 is from the screened interval between 480 and 510 feet bgs. DP-5 is from the screened interval between 545 and 565 feet bgs. DP-6 is from the screened interval between 614 and 655 feet bgs.

These analytical results are also presented in graphical form in BESST's report, included in Appendix G of this report.

In addition to the depth-specific water quality samples, two composite samples were collected from the Esposti Park replacement well. These samples were analyzed for the suite of parameter required by the California Department of Public Health for certifying municipal supply wells. These samples were also submitted to Brelje and Race Analytical Laboratory for analysis. Table 5-6 summarizes the results of these analyses.

Analyte Un	iits	MCL	Composite-1	Composite-2	Field Blank
Aluminum	μg/L		<50	<50	
Antimony	μg/L		<6.0	<6.0	
Arsenic	μg/L	10	56	61	<2.0
Barium	μg/L		200	200	<100
Beryllium	μg/L		<1.0	<1.0	
Bicarbonate	mg/L		280	280	
Cadmium	μg/L		<1.0	<1.0	
Calcium	mg/L		22	20	
Carbonate	mg/L		<1.0	<1.0	
Chloride	mg/L	250/500/600 ^a	17	16	
Total Chromium	μg/L	50	<1.0	<1.0	
Copper	μg/L		<50	<50	
Fluoride	mg/L	2	0.37	0.39	
Hydroxide	mg/L		<1.0	<1.0	
Iron	μg/L	300 ^b	<100	<100	
Lead	μg/L		<5.0	<5.0	
Magnesium	mg/L		15	14	
Manganese	μg/L	50 ^b	750	790	<20
Mercury	μg/L		<1.0	<1.0	
Nickel	μg/L		<10	<10	
Nitrate	mg/L	10	<2.0	<2.0	
рН			7.6	7.6	
Selenium	μg/L		<5.0	<5.0	
Silver	μg/L		<10	<10	
Sodium	mg/L		54	48	
Sulfate	mg/L	250/500/600 ^a	12	12	
Thallium	μg/L		<1.0	<1.0	
Specific Conductance	µmhos/cm		510	500	
Total Alkalinity (as CaCO ₃)	mg/L		230	230	
Total Dissolved Solids	mg/L	500/1,000/1,500 ^a	340	340	
Total Hardness (as CaCO3)	mg/L		120	110	
Zinc	μg/L		<50	<50	
Color	units		5	5	
Odor	TON		<1.0	<1.0	
Turbidity	NTU		0.21	0.47	
MBAS	mg/L		<0.05	<0.05	
Perchlorate	μg/L		<4.0	<4.0	
Asbestos	MFL		0	0	
Gross Alpha	pCi/L		1.49	0.349	

Table 5-6: Esposti Park Composite Water Quality Results

Analyte Uni	its	MCL	Composite-1	Composite-2	Field Blank
Nitrogen-Phosphorous	μg/L		ND	ND	
Pesticides (EPA Method 507)					
Chlorinated Acids (Herbicides)	μg/L			ND	
(EPA Method 515.3)					
Organohalide Pesticides (EPA Method 505)	μg/L			ND	
N-methyl-carbamoyloximes & carbanates (EPA Method 531.1)	μg/L		ND	ND	
Endothall (EPA Method 548.1)	μg/L		ND	ND	
Diquat (EPA Method 549.2)	μg/L		ND	ND	
EDB (EPA Method 504.1)	μg/L			ND	
Regulated Organic Chemicals	μg/L		ND	ND	

Footnotes:

a. Secondary MCL - Recommended/Upper/Short Term

b. Secondary MCL

As was observed in the Bluebird well, groundwater samples from the Esposti Park well as collected following well installation and development contained significantly larger concentrations of total arsenic than those collected during borehole advancement. And as with the Bluebird well, assuming that all data are valid, the elevated arsenic concentrations are most likely the result of a sudden change in the oxidation conditions of groundwater near the well due to the introduction of oxygen during well development. Such a condition can be alleviated by completing the development of the well to remove fine-grained turbidity and doing additional well development using more aggressive development methods such as pumping to ensure the introduction of formation water into the well. As groundwater returns towards its natural oxidation condition, arsenic concentrations should decrease substantially.

Other changes in water quality between those collected during borehole advancement and those collected during aquifer testing include the follows:

- The chloride concentrations dropped. Borehole chloride concentrations were typically around 20 mg/L whereas the chloride concentrations from aquifer testing samples ranged around 11 mg/L.
- The mercury concentrations dropped. Borehole mercury concentrations ranged from non-detect to around 0.017 µg/L whereas mercury concentrations in aquifer testing samples were all nondetect.
- Total organic carbon (TOC) concentrations increased somewhat from borehole concentrations ranging around less than one mg/L, whereas TOC concentrations in water samples collected during aquifer testing ranged from 4.4 to 9.3 mg/L.

Chapter 6 Well Surveys

Borehole deviation surveys were conducted during the reaming of both the Bluebird and Esposti Park boreholes prior to replacement well construction. Deviation surveying was completed by E-Pur and is documented in Section 6.1. In addition, caliper surveys were completed in both replacement wells as part of a series of geophysical surveys conducted in each replacement well. The geophysical surveys were completed by Schlumberger, Ltd and are documented in Section 6.2.

Following well construction, both replacement wells were geo-located using Global Positioning Surveys (GPS) to determine the wells' longitude and latitude, as well as the top of the casing elevation. These surveys were performed by Winzler and Kelly and the survey results are documented in Section 6.3.

6.1 Plumbness and Alignment

Borehole plumbness and alignment were checked periodically during borehole reaming and prior to well installation to ensure construction of a relative plumb well. Open boreholes were tested using during reaming using the SureShot "Survey-While-Drilling" system. These tools provided the inclination data necessary to ensure that the completed borehole did not exceed two-thirds of the borehole diameter per 100 foot of length, as specified in AWWA A100-06 and in the project work plan. These specifications translate roughly to a deviation of 10.5 inches in 100 feet. Collecting these data during borehole reaming allowed the WDC to control the drill stem such that the completed borehole met required specifications.

6.1.1 Bluebird Replacement Well

As previously noted, the Bluebird borehole was reamed twice during the field construction period: first from a diameter of 6 inches to a diameter of 10-3/4 inches (completed between April 3, 2010 and April 7, 2010) and then from a diameter of 10-3/4 inches to a completed nominal diameter of 16 inches between April 12, 2010 and April 21, 2010. During the first reaming pass, the borehole was checked frequently to ensure that it was within alignment specifications. During the first alignment surveys, conducted on April 3, 2010, the Bluebird borehole had a plumbness of 0.5° from vertical at a depth of 307 feet, and a plumbness reading of 0.8° from vertical at a depth of 427 feet bgs. At 727 feet bgs, the borehole deviation was 0.5° from vertical.

6.1.2 Esposti Park Replacement Well

The Esposti Park borehole was reamed from 6 inches in diameter to a nominal diameter of 16 inches between March 11, 2010 and March 22, 2010. Initial plumbness measurements of the borehole indicated that it was 2.5° from vertical. At 589 feet bgs, the borehole was found to be 3.25° from vertical. In order to improve the borehole alignment, the drill bit was tripped out and a third collar added to the drill stem to steady the drill and improve alignment. Successive measurements of the borehole plumbness indicated that the borehole was between 1.4° and 2.5° from vertical. As reaming continued, the borehole alignment improved with the borehole deviation varying from 1.9° to 2.1° from vertical by the time total depth was completed.

6.2 Geolocation Survey

A field survey was conducted at the Bluebird and Esposti Park replacement well sites using Global Positioning System (GPS) equipment on June 28, 2010 to establish the location of the two new wells. The field survey established a benchmark at each pump pedestal of the replacement wells.

The basis for the survey of the positions is a map entitled "Control Survey 1996 A.R.M. Monitoring Program for the Russian River", filed on August 28, 1996 in Book 554 of Maps, pages 28-32, of the Sonoma County Records. Point E coordinate values and elevation were held for the survey. Listed

benchmark elevations are in NAVD '88. Coordinate values shown below are California State Plane Coordinate Zone 2 (NAD '83).

6.2.1 Bluebird Replacement Well

The benchmark location for the Bluebird replacement well is the chiseled corner at the northerly corner of the wellhead slab. The coordinate for this well are as follows:

N 1959115.4041E 6332436.6130Elevation = 118.34Lat = 38° 32' 20.306185" NLong = 122° 48' 05.144352" W

6.2.2 Esposti Park Replacement Well

The benchmark location for the Esposti Park replacement well is the chiseled corner at the northerly corner of the wellhead slab. The coordinate for this well are as follows:

N 1954509.6739E 6338689.6507Elevation = 140.93Lat = $38^{\circ} 31' 35.316839"$ NLong = $122^{\circ} 46' 45.948870"$ W

References

American Water Works Association, 2006, AWWA Standard ANSI/AWWA A100-06, "Water Wells", American National Standards Institute, August 1, 2006

California Department of Water Resources (DWR). 2003. Bulletin 118, Update 2003, California's Groundwater. 246 p.

California Department of Water Resources (DWR). 1991. Bulletin 74-90 (Supplement to Bulletin 74-81), California Well Standards: State of California.

California Department of Water Resources (DWR). 1982. Bulletin 118-4, Evaluation of ground water resources: Sonoma County, Volume 2: Santa Rosa Plain. 107 p.

California Department of Water Resources (DWR). 1981. Bulletin 74-81, Water Well Standards: State of California. 92 p.

California Department of Water Resources (DWR). 1975. Bulletin 118-4, Evaluation of ground water resources: Sonoma County, Volume 1: Geologic and Hydrologic Data. 177 p.

California Regional Water Quality Control Board – North Coast Region. 2009. Order No. R1-2009-0045, General Permit for Low Threat Discharges to Surface Waters in the North Coast Region.

Cardwell, G.T. 1958. *Geology and ground water in the Santa Rosa and Petaluma Valley areas, Sonoma County*. U.S. Geological Survey Water-Supply Paper 1427, 273 p.

Cooper, H. H. and C. E. Jacob. 1946. A generalized graphical method for evaluating formation constants and summarizing well field history. <u>Transactions</u>, American Geophysical Union, Volume 27, pp. 526-534.

Sweetkind, Donald S., Emily M. Taylor, Craig A. McCabe, Victoria E. Langenheim, and Robert J. McLaughlin. 2010. *Three-dimensional geologic modeling of the Santa Rosa Plan, California*. U.S. Geological Survey. Geosphere, 2010.

Appendix A - Summary of Field Program Oversight

Appendix B - Detailed Boring Logs and Geophysical Survey Results

Appendix C - Geophysical Survey Results

Appendix D - Grain Size Analysis

Appendix E - Aquifer Pump Test Field Data

Appendix F - Analytical Laboratory Reports

Appendix G - BESST, Inc. Dynamic Profiling Report

Appendix H - Winzler and Kelly Survey Report

APPENDIX C Acorn Environmental Water and Wastewater Feasibility Study Esposti Supply Well Redevelopment, Pumping Test and Treatment Feasibility Study

Town of Windsor and Windsor Water District

Esposti Supply Well

Redevelopment, Pumping Test and Treatment Feasibility Study

October 3, 2017

Town of Windsor and Windsor Water District Esposti Supply Well Redevelopment, Pumping Test, and Treatment Feasibility Study

Project No. 11110001/10

Prepared for: Town of Windsor and Windsor Water District 8400 Windsor Road, Bldg. 100 Windsor, CA 95492

Prepared by:

Kent O'Brien PG, CEG Project Manager/Senior Hydrogeologist Hazen and Sawyer

ran

Ryan Crawford, PG Project Hydrogeologist GHD, Inc.

GHD | 2235 Mercury Way Suite 150 Santa Rosa CA 95407 11110001 | 10 | October 3, 2017

PROFESSIONAL CERTIFICATION

This report was prepared under the professional supervision of Kent O'Brien. The findings, recommendations, specifications, and *I* or professional opinions presented in this report were prepared in accordance with generally accepted professional geologic practice, and within the scope of the project.

10

Kent O'Brien, PG, CEG CEG No. 2132 Senior Hydrogeologist Hazen and Sawyer (under contract to GHD, Inc.)

Executive Summary

The Town of Windsor and Windsor Water District (Town) installed the Esposti Supply Well in 2010. This investment was part of an effort by the Town to broaden the portfolio of water supply options in response to requirements from the Sonoma County Water Agency to obtain alternative supplies that are not reliant on withdrawals from the Russian River. The goal of the well installation project of 2010 included replacing both the Bluebird Well and the Esposti Irrigation Well with two new wells that would produce water of higher quality and production volume reliability.

In 2010, the Town installed pilot borings at both Esposti Park and the Bluebird Well site. Initial analytical testing of water samples collected from depth-specific aquifer zones from both of these pilot borings indicated acceptable water quality in select zones. Based on these data and the interpretation of acceptable water quality, the Town proceeded with new wells at both the Esposti Park (Esposti Supply Well) and Bluebird Well site.

The Esposti Supply Well is 10-inches in diameter with a depth of 670 feet below the ground surface (bgs). Shortly after installation in 2010, the well was developed and tested for production capacity and water quality. Results of this testing indicated that concentrations of both manganese and arsenic were much higher than expected and exceeded drinking water standards. Subsequently, the well sat idle because of a decrease in water demand due to a downturn in the economy and conservation efforts in addition to the elevated manganese and arsenic concentrations in the well.

The goals of the 2016 work were to redevelop the Esposti Supply Well, perform a pumping test, test water quality, and evaluate treatment options. The 2016 redevelopment work increased the production capacity by 27% and removed residual drilling mud remaining in the boring after construction of the well. The pumping test confirmed the water quality, established an understanding of the geochemistry, evaluated pumping yields, tested the sewer capacity, and provided a basis for performing a treatment pilot test. However, the findings of this work indicate that bringing the Esposti Supply Well into production as a potable supply well could be costly and require significant space for treatment equipment.

Esposti Supply Well Pumping Limits

The Esposti Supply Well's recommended pumping rate is 400 gallons per minute (gpm). Pumping at a rate of 800 gpm is possible, but is not sustainable for more than a day due to hydrogeologic limitations to aquifer permeability. The groundwater production from the Esposti Supply Well is from confined aquifer units located below 380 bgs. Pumping from the confined aquifer did not result in a significant effect on the overlying shallow groundwater. The production aquifer is a moderate to low permeable clay/silt/sand system. The aquifer is not a single unit but rather a series of sand layers interbedded with silts/clay layers. An aquifer transmissivity of 4,141 gallons per day per foot (gpd/ft) is most representative for long-term pumping. A storage coefficient was not calculated during this work. Hydraulic conductivity (permeability, K) at 47 gpd/ft² is most representative of the aquifer. The aquifer production characteristics are consistent with descriptions of the Glen Ellen Formation provided in Department of Water Resources (DWR) reports and are consistent with the previous aquifer testing reported shortly after well installation in 2010.

Water Quality

The Esposti Supply Well produces water that meets all of the requirements for drinking water with the exception of arsenic and manganese. The 2016 concentration of arsenic was 0.057 milligrams per liter (mg/L) [57 micrograms per liter (μ g/L)] and manganese was 0.860 mg/L (860 μ g/L). These concentrations are significantly above the drinking water standards of 0.010 mg/L and 0.050 mg/L, respectively. The 2016 testing also confirms that these elevated concentrations of arsenic and manganese are repeatable and consistent in the context of the Esposti Supply Well, screened across multiple aquifer zones. The concentration results for arsenic and manganese identified in 2016 are similar to concentrations in samples collected from the Esposti Supply Well in 2010 after installation and development. Our conclusion regarding the discrepancy in water quality results between the pilot boring and final Esposti Supply Well is that the groundwater samples collected from the pilot boring were not representative of actual groundwater quality due to sample collection techniques employed during drilling the pilot boring.

Testing of the layered aquifer zones identified a pattern where arsenic concentrations increase with increasing depth and that manganese concentrations decrease with increasing depth, although all concentrations exceed drinking water standards. Samples collected from the Esposti Irrigation Well, screened 100 to 300 ft bgs, indicated a concentration of arsenic at 0.013 mg/L (13 μ g/L) and manganese at 1.5 mg/L (1,500 μ g/L). During isolation testing of the 1st screen section of the Esposti Supply Well (384 to 420 ft bgs), arsenic was found at a concentration of 0.035 mg/L (35 μ g/L) and manganese at a concentration of 0.910 mg/L (910 μ g/L).

The temperature of the extracted groundwater also increases with continued pumping and this increasing temperature corresponds to an increasing concentration of arsenic. This trend and other trending parameters indicated that as pumping continues an increasing proportion of the extracted groundwater derives from deeper zones in the aquifer system.

Esposti Supply Well Treatment

The most feasible option for water treatment is a two-step process; the first step removes manganese through catalytic oxidation (greensand filtration) and the second step removes arsenic through media adsorption. An alternative treatment approach using iron coprecipitation with greensand filtration in a one-step process; however, requires a large backwash tank and management of waste iron flocculent. Both the backwash tank and management of iron flocculent waste present significant site challenges that reduce one-step process viability in comparison to the two-step process described above. Therefore, the one-step process approach is not recommended.

The minimum treatment compound size for the two-step process is 40 feet by 45 feet with a 12-foot maximum treatment vessel height. While the two-step process requires occasional backwashing at the maximum capacity rate and direct discharge to the Shiloh Road sewer branch, will avoid a backwash tank and on-site waste management. Locating the treatment system in the northwest corner of Esposti Park would provide the least impact on the park, but requires the longest underground piping connections. The northwest location was used in the cost analysis because it is the furthest from the well and has the longest piping runs. The estimated capital cost, including installation, for this system is \$2,123,000 with an annual cost of \$367,000 assuming a flow rate of 400 gpm and an annual production of 324 acre-ft/year (operating 24/7 for 6 months/year, dry season only).

Implementation Considerations

The sewer collection system can accept up to 800 gpm of short-term flow during dry weather. The maximum fill level of the sewer line immediately downgradient from the discharge location was 60% of pipe full. Treatment requires maximizing the discharge volume to the sewer and a permanent solution to preventing surcharge of sewer is required.

The Esposti Supply Well operation with treatment was described in both the Water Master Plan and the associated programmatic Environmental Impact Report (EIR). However, an initial study (IS) is recommended to identify which impact areas may need to be re-evaluated and the appropriate level of environmental documentation to be prepared. At a minimum, it is anticipated that aesthetics (visual), noise, and traffic impacts may be different for a treatment system constructed and operated as described herein (versus as described in the programmatic EIR). Assuming that no additional significant and unavoidable impacts are identified as part of the IS, a mitigated negative declaration (MND) will be sufficient for meeting the requirements of the California Environmental Quality Act (CEQA).

The potential for managed aquifer recharge utilizing the Esposti Supply Well is limited by the low hydraulic conductivity of the aquifer, poor native water quality, and the well design. Of these considerations, the first two are the most restrictive and expensive to overcome.

Table of contents

1.	Introduction1					
	1.1	Background	1			
	1.2	Purpose of this Report	2			
	1.3	Summary of Findings	2			
	1.4	Report Structure	4			
2.	Desc	ription of Project Area Hydrogeology	6			
	2.1	Hydrogeology of the Project Site	6			
3.	Desc	ription of Project Site Infrastructure and Project Permits	8			
	3.1	Esposti Supply Well Construction	8			
	3.2	Esposti Park Infrastructure	9			
	3.3	Permits Obtained for Pumping Test	10			
	3.4	Project CEQA Analysis	11			
4.	Espo	sti Supply Well Redevelopment Activities	12			
	4.1	Field Activities	12			
	4.2	Results of Pre-redevelopment Downhole Video and Static Spinner Log	13			
	4.3	Results of Short-Term Pumping During Well Redevelopment	14			
5.	Pump	ping Tests	18			
	5.1	Pumping Test Field Activities	18			
	5.2	28-Hour Pumping Test Setup	18			
	5.3	28-Hour Pumping Test Operation	22			
	5.4	28-Hour Pumping Test Analytical Results and Analysis	23			
	5.5	28-Hour Pumping Test Drawdown Results and Analysis	27			
	5.6	28-Hour Pumping Test – Analysis of Pumping Rate Limits	30			
	5.7	Results of Active Spinner Log	32			
	5.8	8-Hour Zone Pumping Test Field Setup	33			
	5.9	8-Hour First Screen Zone Pumping Test Operation	33			
	5.10	8-Hour First Screen Zone Pumping Test Analytical Results and Analysis	34			
	5.11	8-Hour First Screen Zone Pumping Test Drawdown Results and Analysis	37			
	5.12	8-Hour First Screen Zone Pumping Test Rate Analysis	37			
	5.13	Esposti Irrigation Well Sampling	40			
	5.14	Esposti Park Area – Summary of Aquifer Pumping Rate and Water Quality Expectations	42			
	5.15	Esposti Park Area Managed Aquifer Recharge Potential	42			

6.	Espos	sti Supply Well Treatment Feasibility	.44
	6.1	Esposti Supply Well Treatment Feasibility Overview	.44
	6.2	Treatment System Operating Parameter Concept	.44
	6.3	Potential Treatment Option Concepts	.46
	6.4	Comparison of Viable Treatment Options	.48
	6.5	Treatment System Siting Options	.51
	6.6	Treatment Cost	.51
	6.7	CEQA Analysis	.55
7.	Scope	e and Limitations	.58

Table index

Table 1 Comparison of Calculated Sewer Flow with Observation	10
Table 2 Analytical Results From Sampling During Well Development	14
Table 3 Well Construction Summary	20
Table 4 Water Level Measurement Equipment in Each Well 28-Hour Pumping Test	21
Table 5 Elevation and Distance of Monitoring Points 28-Hour Pumping Test	22
Table 6 Analytical Results From 28-Hour Pumping Test	24
Table 7 Analytical Results From Final Sample 28-Hour Pumping Test May 17, 2016 at 10:00 AM	25
Table 8 Average of Last Five Field Parameter Measurements Near End of the 28-Hour Pumping Test	27
Table 9 Calculations of Specific Capacity Esposti Supply Well	29
Table 10 Summary of Aquifer Properties	30
Table 11 Summary of Pumping Rate Limiting Factors Espoisti Supply Well	32
Table 12 8-Hour Zone Pumping Test Results of Samples During Test (September 21, 2016)	35
Table 13 Analytical Results From Final Sample 8-Hour Zone Pumping Test (September 21,2016 at 3:00 pm)	36
Table 14 Average of Last Five Measurements Near the End of the 8-Hour Pumping Test For Each Field Parameter	37
Table 15 Summary of Pumping Rate Limiting Factors 1 st Screen Zone Esposti Supply Well	39
Table 16 Analytical Results from Sample of Esposti Irrigation Well September 6, 2016 at 10:45 AM	41
Table 17 Esposti Supply Well Characteristics and Design Parameters	45

Table 18 Esposti Supply Well Summary of Potential Treatment Options	47
Table 19 Comparison Between Viable Treatment Options	50
Table 20 Esposti Supply Well Treatment Capital Cost	52
Table 21 Esposti Supply Well Operation Cost	55

Figure index

Figure 1 Site Location Figure 2 Aerial Location Map Figure 3 Esposti Supply Well With Camera Tool Figure 4 28-Hour Pumping Test All Wells Figure 5 28-Hour Pumping Test Semi-Log Plot Figure 6 Active Spinner Log 400 gpm Pumping Rate Figure 7 8-Hour First Screen Zone Test Above and Below Packer Groundwater Drawdown Figure 8 8-Hour First Screen Zone Test Arsenic Concentrations Figure 9 8-Hour First Screen Zone Test Temperature Above and Below Packer Groundwater Drawdown Figure 10 Compound Options Figure 11 System Location, Northwest Option Figure 13 System Location, Well Option

Appendices

- Appendix A Figures from Governmental Agencies Related to Esposti Well Hydrogeology
- Appendix B Well Installation Well Logs: Esposti Supply Well, Esposti Irrigation Well and Bluebird Well
- Appendix C Sewer Capacity Memo and Flow Test Observation Records
- Appendix D Temporary Sewer Discharge Application and Permit
- Appendix E Street Encroachment Permit
- Appendix F Video and Spinner Log Reports

- Appendix G May 5, 2016 Downhole Video Report
- Appendix H Site Visit Reports
- Appendix I Equipment Technical Information and Photographic Documentation
- Appendix J Analytical Reports
- Appendix K Comprehensive Analytical Table A

1. Introduction

On behalf of the Town of Windsor (Town), GHD Inc. (GHD) in conjunction with Hazen and Sawyer (Hazen) and RMC Inc. (RMC) have prepared this *Esposti Supply Well Redevelopment, Pumping Test, and Treatment Feasibility Study* (Report). The Esposti Supply Well project site (Site) is located in Esposti Park, southeast of the Town Center, at the intersection of Shiloh Road and Old Redwood Highway. Figure 1 identifies the location of the Town of Windsor and Esposti Park. The Esposti Supply Well is separate from the Esposti Irrigation Well located 30 feet to the south.

The Esposti Irrigation Well is used to supply irrigation water to the park. Figure 2 provides an aerial photo illustrating the location of the Site in Esposti Park.

The Town installed the Esposti Supply Well in 2010. This investment was part of an effort by the Town to broaden the portfolio of water supply options in response to requirements from the Sonoma County Water Agency to obtain alternative supplies that are not reliant on withdrawals from the Russian River.

The Town's water supply options had also been constrained by the removal of the Town's Bluebird Well (Figure 1) from production due to elevated arsenic concentrations. While the Bluebird Well was operational, the concentration of arsenic in the water varied between 20 and 40 micrograms per liter (μ g/L). In 2006, the State of California reduced the drinking water standard for arsenic from 50 μ g/L to 10 μ g/L. In response to this change, the Town removed the Bluebird Well from service and the 400 gallons per minute (gpm) of production capacity was no longer available to the Town. The Town also recognized that the existing Esposti Irrigation Well located in Esposti Park did not have the production capacity for reliance as an emergency or peak demand well. The goal of the well installation project of 2010 included replacing both the Bluebird Well and the Esposti Irrigation Well with two new wells that would produce water of higher quality and production volume reliability.

1.1 Background

In 2010, the Town installed pilot borings at both Esposti Park and the Bluebird Well site. Initial analytical testing of water samples collected from depth-specific aquifer zones from both of these pilot borings indicated acceptable water quality in select zones during the drilling phase. New wells were designed for both locations to target extraction from aquifers that had test results indicating acceptable water quality. Based on these data and the interpretation of acceptable water quality, the Town proceeded with new wells at both the Bluebird Well site and Esposti Park (Esposti Supply Well).

The Esposti Supply Well is 10-inches in diameter, constructed with 382 feet of low-carbon steel blank upper casing, and six well screen sections separated by various lengths of stainless steel blank casing. The Esposti Supply Well has a reported depth of 670 feet below the ground surface (bgs). Shortly after installation in 2010, the well was developed using a combination of airlifting and pump development. The maximum flow rate extracted from the well during this development was 500 gallons per minute (gpm). A constant-rate (24 hours in duration at 400 gpm) pumping test was then conducted on the well. Development and pump-test water was discharged into the Town's sanitary sewer system. During both the well development and pumping tests, the Esposti Supply

Well appeared to be productive, but the development and testing activities were cut short due to high spring rainfall and limited storage capacity at the Town's wastewater treatment facility. After construction, the Esposti Supply Well's groundwater contained higher than expected concentrations of arsenic and manganese. Subsequently, the well sat idle because of a decrease in water demand due to a downturn in the economy and conservation efforts in addition to the elevated arsenic concentration in the well.

In an effort to have a reliable off-river backup water source, the Town issued a Request for Proposals for the Esposti Water Supply Reliability Well Redevelopment and Treatment Feasibility Project (RFP, November 2015). The RFP included redeveloping and pump testing the Esposti Supply Well in order to improve performance and better understand the water quality and hydraulic properties of the well. In addition, the RFP included preparing a Feasibility Study to evaluate treatment and operational options for water production and completing a pilot test for the most feasible of proposed treatment methods to prepare for a future basis of design report and compliance with Division of Drinking Water Ioan funding requirements.

1.2 Purpose of this Report

This Report describes the redevelopment and pumping test of the Esposti Supply Well in addition to evaluating the cost of bringing the well into production. The redevelopment work increased the production capacity and removed residual drilling mud remaining in the boring after construction of the well. This residual drilling mud could hinder permeability and affect water sample results. The pumping test confirmed the water quality, established an understanding of the geochemistry, evaluated pumping yields, tested the sewer capacity for later engineering studies, and provided a basis for performing a treatment pilot test. However, the findings of this work indicate that bringing the Esposti Supply Well into production as a potable supply well could be costly and require significant space for treatment equipment. A treatment pilot test was not completed as part of this work until other feasible options could be evaluated. If it is determined that equipping the Esposti Supply Well for treatment is preferred over other options, then a pilot test will be pursued. This Study provides a screening level of potential treatment and operational options for the Town's consideration. These options provide the Town with a point of comparison to other water supply options such as recycled water or drilling a well in an alternative location.

1.3 Summary of Findings

Below is a summary of findings from the well redevelopment, pump testing activities, and key findings for developing production at the Esposti Supply Well Site. Each of these findings are addressed in detail in various sections of this Report.

1.3.1 Key findings of the well redevelopment and pumping test:

- Pumping the Esposti Supply Well at a flow rate of 800 gpm for 28 hours produced a drawdown of 195 feet (tested May 16-17, 2016).
- The measured specific capacity after 1, 4, 8, and 24 hours of pumping at 800 gpm were 5.5, 4.9, 4.7, and 4.3 gallons per minute per foot (gpm/ft) of drawdown, respectively.

- Transmissivity ranged from 4,141 gallons per day per foot (gpd/ft) to 7,822 gpd/ft. The lower of these values is most representative of the long-term pumping transmissivity. Storage coefficient was not calculated during this work.
- Hydraulic conductivity (permeability, K) ranged from 47 gpd/ft² to 89 gpd/ft². The lower of these two values is most representative of the aquifer.
- The Esposti Supply Well's recommended pumping rate is 400 gpm. Pumping at a rate of 800 gpm is possible but is not sustainable for more than a day due to hydrogeologic limitations to aquifer permeability.
- Pumping from the confined aquifer did not result in a significant effect on the overlying shallow groundwater system as measured at the Esposti Irrigation Well and the Mobile Home Estates Well. The production aquifer is a moderate to low permeable clay/silt/sand system, which stratified with interbedded clay layers (hydrogeologically confined). The aquifer is not a single unit but rather a series of sand layers interbedded with silts/clay layers.
- The aquifer production characteristics are consistent with descriptions of the Glen Ellen Formation provided in the California Department of Water Resources (DWR) reports and are described in Section 2.
- The sewer collection system can accept a significant volume of flow during dry weather. A flow of 800 gpm was discharged to the sewer for a period of 28 hours. The maximum fill level of the sewer line immediately downgradient from the discharge location was 60% of pipe full. During this test, a sewer plug was installed to prevent flow down the Old Redwood Highway branch of the sewer and all of the flow was sent down the Shiloh Road branch.
- The Esposti Supply Well produces water that meets all of the requirements for drinking water with the exception of arsenic and manganese. At the end of pumping the Esposti Supply Well at 800 gpm for 28 hours (28-hour pumping test), the concentration of arsenic was 0.057 milligrams per liter (mg/L) [57 micrograms per liter (µg/L)] and manganese was 0.860 mg/L (860 µg/L).
- On September 21, 2016, a zone-specific pumping test was performed (8-hour zone pumping test). This test consisted of pumping from only the uppermost (1st) well screen section (384 to 424 feet below top of casing). This test was performed using an inflatable packer between the 1st and 2nd well screen zones. The specific capacity of this uppermost (1st) well screen section (inclusive of flow bypassing the packer through the well filter pack) was calculated at 2.7, 2.5, and 2.4 gpm/ft measured after 1, 4, and 8 hours, respectively.
- An arsenic concentration of 0.035 mg/L (35 μg/L) and a manganese concentration of 0.910 mg/L (910 μg/L) were in groundwater samples collected at the end of the 8-hour zone pumping test.
- The maximum recommended pumping rate for the uppermost (1st) well screen interval is 250 gpm (inclusive of flow bypassing the packer). If flow bypassing the packer is removed

from the well capacity, the estimated maximum pumping rate is 175 gpm from the uppermost (1st) well screen. The sustainability of these pumping rates was not evaluated due to the short duration of the pumping test (8-Hour Zone Pumping Test).

 Samples collected from the Esposti Irrigation Well, screened 100 to 220 feet and 240 to 300 feet bgs, indicate a concentration of arsenic at 0.013 mg/L (13 μg/L) and manganese at 1.5 mg/L (1,500 μg/L).

1.3.2 Key findings for developing production at the Esposti Supply Well:

- As a potable water supply well, the most feasible flow rate for the Esposti Supply Well is 400 gpm. The 400 gpm flow rate is a function of well construction and aquifer limitations. Short-term (less than one day) pumping rates as high as 800 gpm are achievable but not sustainable due to aquifer limitations.
- The most feasible option for water treatment is a two-step process; the first step removes
 manganese through catalytic oxidation (greensand filtration) and the second step
 removes arsenic through media adsorption. An alternative treatment using iron
 coprecipitation is potentially feasible, but requires a large backwash tank and
 management of waste iron flocculent. Both the backwash tank and management of iron
 flocculent waste present significant site impact challenges.
- The minimum treatment compound size is 40 feet by 45 feet with a 12-foot maximum treatment vessel height for the most feasible option. The estimated capital cost, including installation, for this system is \$2,123,000 with an annual cost of \$367,000 assuming a flow rate of 400 gpm and an annual production of 324 acre-ft/year (operating 24/7 for 6 months/year).
- An alternative use of the Esposti Supply Well is as a replacement for the existing Esposti Irrigation Well or irrigation of nearby Town owned landscaping or fields.

1.4 Report Structure

This Report has seven sections, as described below:

Section 1 – Introduction: This section provides a summary of the background, purpose of this report, and a summary of findings.

Section 2 – Description of Project Area Hydrogeology: This section describes the regional and local hydrogeology.

Section 3 – Description of Project Site Infrastructure and Project Permits: This section describes the existing well site, power, and sewer capacity available. This section also describes the permits obtained as part of this project.

Section 4 – Esposti Supply Well Redevelopment Activites: This section describes the well redevelopment to remove clay and fine-grained material from the well. Also included here are the findings from the short-term testing of the pumping equipment prior to the aquifer pumping tests.

Section 5 – Pumping Tests: This section describes the setup for the Esposti Supply Well May 2016, 28-hour pumping test at 800 gpm and the September 2016, 8-hour zone pumping test at 300 gpm:

This section presents the results of the analysis of the water samples collected and hydraulic characteristics of the well.

Section 6 – Esposti Supply Well Treatment Feasibility: This section describes the screening level costs and site configuration requirements to bring the Esposti Supply Well into production as a potable supply well.

Section 7 – Scope and Limitations: This section references the scope of this investigation and outlines the expected uses and limitations of this Report.

Description of Project Area Hydrogeology

2.1 Hydrogeology of the Project Site

According to the DWR Bulletin 118, California's Groundwater (2003, updated in 2014), the groundwater basin underlying the Town is the Santa Rosa Plain, a sub-basin (DWR number 1-55.01) of the Santa Rosa Valley Basin (DWR, 2003). The Santa Rosa Plain drains toward the Russian River and is part of the North Coast Hydrologic Region. The Santa Rosa Plain Sub-basin is the largest basin in the County and underlies the most populated areas of the County. The Windsor hydrogeologic subarea is located in the northern portion of the Santa Rosa Plain and underlies the Town of Windsor (Windsor Subarea).

The Town of Windsor overlies the Windsor-Fulton unit, a sub-basin approximately 11,100 acres in size within the larger Santa Rosa Valley Groundwater Basin (Cardwell, 1958). The three most important geologic units for groundwater supplies within the Windsor-Fulton unit include the three Late Tertiary-Quaternary aged sedimentary deposits: Glen Ellen Formation, Petaluma Formation, and Wilson Grove Formation. Appendix A provides selected figures from publicly available geologic reports referenced in this section.

The basement rocks (Mesozoic age, up to 67 million years old), underlying the Santa Rosa Plain sediments, yield little to no groundwater (Herbst et al., 1982). Conversely, the relatively thick sequence of sediments and younger volcanic flows overlying bedrock do store and yield significant volumes of groundwater. However, the water bearing sediments of the Santa Rosa Plain have variable properties concerning how much water can be pumped from the wells completed in different areas of the watershed.

The Quaternary (the last 2.6 million years) Alluvium in the Windsor Subarea generally consists of eroded materials from the hills that flank the east and west sides of the valley. The majority of the sediments include clay, silt, sand, gravel, cobbles, and boulders. The Quaternary Alluvium ranges from a few feet thick along the edges of the valley and increases to at least 600 feet thick beneath portions of Town, at the valley center where Highway 101 passes through. Groundwater production in the Quaternary Alluvium generally ranges from 1 to 650 gpm due to wide range of clay, silt, and degree of compaction occurring within this formation.

Underlying Quaternary Alluvium is the Glen Ellen Formation, which in the Windsor hydrogeologic subarea ranges from approximately 100 to 150 feet thick. The Glen Ellen Formation generally consists of clay-rich creek and river deposits (silt, sand, and gravel) ranging in age from approximately 110,000 to 5.3 million years old. Although some minor intervals of the Glen Ellen Formation are relatively permeable and can yield high quantities of groundwater, this formation generally has limited production due to its clay-rich and relatively compacted and cemented properties. Therefore, the Glen Ellen Formation constructed wells generally yield in the tens to a few hundred gpm.

The Petaluma Formation (approximately 1.8 to 23 million years old) underlies the majority of the Glen Ellen at thicknesses ranging up to 3,000-feet in the Windsor hydrogeologic subarea. The

Petaluma Formation is principally comprised of weakly to moderately consolidated mudstone with minor lenses of sandstone. Due to the overall fine-grained nature of the Petaluma Formation, wells completed to this portion of the subsurface yield less than the Glen Ellen Formation and the Quaternary Alluvium.

The *Groundwater Well Installation and Testing Report*, prepared by RMC and E-PUR in 2010 (2010 Installation Report) for the Esposti and Blue Bird Supply Wells, determined that the sand and gravel units encountered in the Esposti Supply Well correlate well with the Glen Ellen Formation. The Glen Ellen Formation is a heterogeneous unit mixed with tuffaceous clay, mud, and boulders to pebbly gravel, and sand and silt deposits with interbedded conglomerates (Sweetkind et al., 2010). The 2010 Installation Report determined that the screened aquifer is confined or semi-confined, with a transmissivity of 6,600 gpd/ft, measured at a flow rate of 400 gpm. This is similar to the GHD findings where the screened aquifer (384 to 659 feet bgs, in six separate screen sections) has a confined aquifer transmissivity of 7,822 gpd/ft for short-term pumping and 4,141 gpd/ft for long-term pumping, measured at a flow rate of 800 gpm.

Description of Project Site Infrastructure and Project Permits

This section describes the existing well site, power, and available sewer capacity. This section also describes the permits obtained and the California Environmental Quality Act (CEQA) analysis performed in preparation for the fieldwork.

3.1 Esposti Supply Well Construction

The Esposti Supply Well was installed in 2010 after depth-specific water and soil sample collection from the pilot boring. After evaluation of the pilot boring analytical results the well screen was designed, the pilot boring was over-reamed, and the well installed. The well was constructed using 10-inch diameter casing and screen. The upper portion of the well was constructed using low-carbon steel casing (+3 to 380 feet bgs) while stainless steel screen (SS304 type) and stainless steel blank casing was used to screen six separate screen sections zones reportedly starting at 380 feet bgs and ending at 655 feet bgs. The well was constructed within a 20-inch diameter, mild steel conductor casing to 60 feet bgs. Appendix B provides well construction logs for the Esposti Supply Well, the Esposti Irrigation Well and the Bluebird Well. Videos performed during the current project observed the top of the screen at 384 feet and the bottom of visible screen at 656 feet as measured from the top of the casing. Taking into consideration the distance between ground surface and the top of the casing, the correlation between the reported construction and the observations from the video are good. As discussed later in this report, gravel fill obstructs the lower portion of the last screen section.

In 2010 after well development, groundwater samples collected from the Esposti Supply Well contained significantly higher concentrations of arsenic than depth-specific samples collected during the installation of the pilot boring prior to well construction. The arsenic concentration in the well after development ranged from 0.056 to 0.061 mg/L. This was unexpectedly high given that the depth-specific samples collected during well drilling at 400 and 600 feet bgs were 0.0021 and 0.0073 mg/L respectively. This nearly ten-fold discrepancy in sample results between the depth-specific pilot boring sampling (during drilling) and sampling after well construction is one of the reasons that the current project included aggressive redevelopment and extensive analysis of samples from the Esposti Supply Well.

A concrete pedestal protects the wellhead and a steel locking lid controls access to the inside of the well. There are no trees or overhead power lines that could interfere with maintenance equipment. The location of the Esposti Supply Well is approximate 40 feet east from Old Redwood Highway and 29 feet north from the Esposti Irrigation Well. The location of the well is adjacent to the parking lot, ball fields, and restroom facilities. It is also highly visible from both Old Redwood Highway and two nearby sidewalks. This central location and high visibility are addressed in the evaluation for treatment system location (Section 6).

3.2 Esposti Park Infrastructure

Described in this section are access to electrical power, sewer discharge capacity, and space availability.

3.2.1 Electrical Power

Power availability at the site is limited to 100-amp single phase 240 VAC. This is adequate to power the pump in the Esposti Irrigation Well, but was insufficient to run the 6-inch and 8-inch pumps used for the May and September 2016 pumping tests.

PG&E power is located on overhead poles across Old Redwood Highway. An electrical contractor was contacted by Weeks Drilling & Pump Co. (Weeks) of Sebastopol, California (contractor to GHD) to identify the level of effort required to bring higher load service power to the Esposti Supply Well location. Sufficient electric power to run the 6-inch and 8-inch pumps used for this project could not be brought in on a temporary basis using a typical construction power drop pole without incurring a delay to accommodate PG&E. Bringing higher load power into the Site would require a design evaluation inclusive of investigating the details of available power from the overhead lines. Estimated costs for designing and installing adequate electrical power have been included in the treatment feasibility study.

3.2.2 Sewer Discharge

Park staff identified cleanouts near the restroom and indicated that the size of the sewer lateral pipes were unlikely to accept the high flows from the well testing. GIS files provided by the Town indicate that the lateral running from the restroom to the sewer main in Shiloh Road is 6-inch. RMC identified the nearest high capacity drop inlet point as manhole S130A, located in Shiloh Road off of the southwest corner of Esposti Park (in the westbound Shiloh Road right hand turn lane). The invert at the bottom of manhole S130A in Shiloh Road is approximately eight (8) feet below street grade. Appendix C provides a copy of maps identifying the location of sewer manholes.

RMC collaborated with GHD to assess the sewer capacity and provide recommendations for well discharge testing. RMC provided the recommendation to use manhole S130A for the discharge of well test water. Appendix C provides copy of RMC's (Draft) April 29, 2016 Technical Memorandum. Appendix C also provides copies of field notes from sewer discharge observations taken by Town personnel during test discharges on May 9, 11, and 16, 2016.

Table 1 compares RMC's calculated pipe flow with the field observations. The observed percentage of full pipe was less than calculated. A portion of this discrepancy is attributed to the actual observed base flow that was less than the base flow built into the calculations. In general, the correlation between the calculated and observed pipe flow is good considering the qualitative nature of the observations and the variability in discharge volume from the well during these tests.

A key finding of an RMC sewer flow simulations was that during high flow conditions without the plug, flow partitioning would route some flow down the north-flowing Old Redwood Highway sewer main, potentially leading to exceedances in sewer capacity. The use of the Shiloh Road main sewer line for discharge of pumping test water was based on the simulation and recommendation for a

plug in the north-draining main of sewer manhole S130. This plug prevented discharge from flowing towards the north to the Old Redwood Highway sewer main.

On August 23, 2016, Town staff directly observed subsequent temporary discharges at manhole S130 without a plug installed in the north flowing sewer under Old Redwood Highway at this sewer manhole. At a discharge rate of 400 gpm into manhole S130A nearly 80% of the flow was observed to flow down Shiloh Road, while 20% appeared to flow north through the Old Redwood Highway sewer main. It appears that further increases in discharge volume would continue to partition, sending partial flows in through both sewer mains.

Flow Added	Total Flow	Velocity	Freeboard	d/D	Observed % Of Full Pipe		
gpm	gpm	fps	inch	in/in as %			
Baseline (0 gpm added)	132	32 2.29 9.36 22 small base flow observe 10% to 15% full pipe					
50	182	2.52	8.88	26			-
100	232	2.71	8.46	29.5	-	-	-
200	332	2.99	7.74	35.5	-	-	20
300		Not Ca	alculated	30	30	30	
400		Not Ca	alculated		45	-	-
500				50.5	40	-	35
600	732	3.67	5.34	55.5	50	-	40
700	Not Calculated				55	-	45
800				65	60	50	50
900	Not Calculated				65	-	60
1,000				75	-	-	-

Table 1 Comparison of Calculated Sewer Flow with Observation

Notes:

• Observed % of Full Pipe is relative and approximate due to judgement by field personnel. Data presented is compiled from different days and from different observers. Base flow on all days was low to very low.

• These calculations assume flow is routed down Shiloh Rd by placing a plug in the north-draining sewer main at manhole S130.

The key finding is that the hydraulic simulation had an apparent good correlation with observed sewer flow along Shiloh Road. However, when discharging flow into manhole S130A in excess of 400 gpm, direct observations at manholes S130 and S374 are recommended to assess partitioning of flow. Access to both of these manholes requires traffic control.

3.3 Permits Obtained for Pumping Test

Two permits where obtained during the performance of this work. In addition, RMC evaluated compliance with CEQA at the project level and for the pumping test. These permits are outlined below:

3.3.1 Sewer Discharge Permit

Appendix D provides a copy of the sewer discharge application prepared by GHD and the resulting sewer discharge permit issued by the Town.

3.3.2 Street Encroachment Permit

Appendix E provides a copy of the Town's Encroachment Permit prepared and received by Weeks.

3.4 Project CEQA Analysis

3.4.1 CEQA Analysis for Aquifer Pumping Tests

As part of the preparation for the aquifer pumping tests, RMC evaluated performance of the tests under CEQA. Based on this analysis, the pumping tests were found to be categorically exempt under CEQA. Per the CEQA handbook, a Class 6 Categorical Exemption "... consists of basic data collection, research, experimental management, and resource evaluation activities which do not result in a serious or major disturbance to an environmental resource. These may be strictly for information gathering purposes, or as part of a study leading to an action which a public agency has not yet approved, adopted, or funded." As such, this test was considered exempt.

3.4.2 Project Level CEQA for Esposti Supply Well

In September 2011, Horizon Water and Environment LLC, prepared a Water Master Plan Update Program Environmental Impact Report (EIR). This evaluation included a programmatic EIR for the Water Master Plan and a project level evaluation of the replacement of the Esposti Park Irrigation Well with the Esposti Supply Well operating at a minimum of 270 gpm to a maximum of 1,000 gpm. Section 6.7 provides analyses of specific aspects of CEQA that need to be addressed if the Esposti Supply Well is brought into production.

4. Esposti Supply Well Redevelopment Activities

Redevelopment of the Esposti Supply Well was performed to ensure the removal of all residual drilling mud from the well prior to the pumping tests. This was necessary to ensure that water quality samples collected were representative of aquifer water quality and accurate testing of hydraulic characteristics. The generation of large volumes of water during the redevelopment process also provided an opportunity to test the sewer for maximum capacity by direct field observations during discharges.

The following were performed during this redevelopment:

- Downhole videos,
- Passive spinner log survey,
- Double swab jetting/pumping of the screen sections,
- Bailing of the bottom material in the casing, and
- Short-term, progressively increasing-flow pumping tests.

Two well videos were performed. The first was performed in conjunction with a passive spinner log to document the condition of the well prior to development on April 18, 2016 (Appendix F). The second video was performed on May 4, 2016, after a wire-line sediment bailer became trapped in the well on May 2, 2016 (Appendix G). The results of these videos are discussed in Sections 4.2 and 4.3.1, respectively.

The discussion below summarizes the timeline for activities performed as part of the redevelopment of the Esposti Supply Well. Appendix H provides copies of field reports in date order. Appendix I provides copies of technical information and photos of equipment (i.e. downhole tools, pumps, and packer) used during well development and pumping tests.

4.1 Field Activities

This chronological summary of fieldwork during the well redevelopment activities includes the downhole videos, and short-term, progressively increasing flow tests. This section also discusses the findings and conclusions from these events.

- April 16, 2016, an inflatable sewer plug is inserted into manhole S130, by the Town to ensure no sewer flow from the project activities could go north through the Old Redwood Highway sewer main.
- April 18, 2016, West Coast Well Logging Services (West Coast) performed a high definition video log and static spinner log of the Esposti Supply Well,

- April 19 to 26, 2016, GHD identified manholes along Shiloh Road to assess sewer capacity and select monitoring points in preparation for discharging Esposti Supply Well development water and aquifer water to the sanitary sewer.
- April 20, 2016, GHD collects a grab water sample from the well using a disposable bailer and no purging.
- April 21, 2016, GHD installed transducers in the Bluebird Well, Esposti Irrigation Well, and the Mobile Home Estates Well (Figure 1 and Figure 2) to monitor groundwater elevations for the duration of the project.
- April 21 to 29, 2016, GHD oversaw Weeks single swab and dual swab (isolated airlift) tool cleaning of all six screen sections of the Esposti Supply Well. Water samples were collected on April 26, 28, and 29 as the dual swab with airlift development progressed from the upper screens down to the lower screens.
- May 2, 2016, Weeks used a 10-foot long, 8-inch diameter bailer with a bottom check flap to remove gravel material from the bottom of the well. This bailer became trapped in the sediment/gravel and the wire line attached to the bailer snapped. Unable to retrieve, the bailer remains in the well.
- May 4, 2016, West Coast confirmed by video that the bailer was trapped at the bottom of the well. The decision was made between the Town, Weeks, and GHD to leave the bailer at the bottom of the well.
- May 6, 2016, set transducers in Esposti Supply Well.
- May 9, 2016,
 - Sewer capacity test from 200 to 400 gpm.
 - Esposti Supply Well pumped at a consistent 400 gpm for 4 hours and 35 minutes.
 - Esposti Supply Well surged up to 1,000 gpm for brief periods.
 - Samples collected from Esposti Supply Well discharge at 10:50 (flow at 400 gpm) and at 15:35 (during surging between zero and 1,000 gpm).
- May 10, 2016, sewer capacity test from 400 to 800 gpm.
- May 11, 2016, sewer capacity test at 900 gpm.

4.2 Results of Pre-redevelopment Downhole Video and Static Spinner Log

The April 18, 2016, video of the Esposti Supply Well indicated that the original well construction as reported in 2010 was correct. However, the well construction was reported in 2010 with reference from the ground surface, and the well actually starts approximately 3 feet above the ground surface (with the concrete pad and blank casing). The well is constructed with 20-inch diameter, mild steel conductor casing to 60 feet bgs. Inside the conductor, a 10-inch diameter, low-carbon blank steel casing, was constructed down to the first screened interval starting at 384 feet below top of casing (BTOC). A dielectric insulator coupler was used between the low-carbon steel blank casing above and the stainless steel (SS304 type) screened and blank intervals below. Appendix F presents the video report of findings from West Coast.

The April 18, 2016, static spinner log identified a downward flow of groundwater at approximately 5 gpm moving between the 1st screened section (384-424 ft BTOC) and the 4th screened section (484-500 ft BTOC). Appendix F presents the Static Spinner Log report of findings from West Coast.

4.3 Results of Short-Term Pumping During Well Redevelopment

This section summarizes the redevelopment effort conducted on the well. Ten groundwater samples were collected during the redevelopment process to identify changes in water quality during redevelopment. Redevelopment consisted of surge pumping, air lifting water and suspended sediment, dual swab jetting/pumping the discrete screened intervals, and bailing the bottom sediment.

Table 2 below summarizes the groundwater analytical results from the Esposti Supply Well over time during redevelopment. Analytical reports are included in Appendix J.

Sample ID	Date	Iron Diss. ¹	lron Total	Mn Diss.¹	Mn Total	As Diss. ¹	As Total	Comments
				mg/	′L²			
ESW-4-20-08:23								Sample by bailer of static water in well
ESW-4-26-11:50		<0.10				0.003		Sample during development by swab
ESW-4-28-11:40		<0.10				0.018		Sample during development by swab
ESW-4-29-11:45		<0.10				0.016		Sample during development by swab
ESW-5-9-10:50		<0.10				0.026		Sample during 400 gpm pumping
ESW-5-9-15:35		<0.10				0.016		Sample during surging zero to 1,000 gpm
ESW-5-10-10:09		<0.10			1.0	0.029		Sample at end of short 800 gpm run
ESW-5-11-10:44		<0.10				0.028		Sample at 800 gpm
ESW-5-11-15:38		<0.10				0.038		Sample at 900 gpm
ESW-5-11-16:42		<0.10			1.0	0.041		Sample at end of 90 minutes at 900 gpm

Table 2 Analytical Results From Sampling During Well Development

Notes:

1 = Analyzed as Dissolved (filtered before adding acid preservative).

2 = Milligrams per Liter (parts per million)

<0.10 = Less than laboratory detection limit.

--- = not analyzed

4.3.1 Surge Pumping During Well Development

April 21 to 29, 2016, GHD oversaw Weeks single swab and dual swab (isolated airlift) tool cleaning of all six screened sections of the Esposti Supply Well. Groundwater samples were collected on April 26, 28, and 29, 2016, as the dual swab with airlift redevelopment progressed from the upper screens down to the lower screens. Analysis of these groundwater samples was performed to monitor changes in water quality during redevelopment. The screens were swabbed until clear water was observed returning (airlifted) to the surface. Development water was initially contained in

several 20,000-gallon storage tanks, then filtered and discharged to the sanitary sewer at 50 gpm. Suspended silt and fine sand were observed in the jetting tool discharge, no gravel pack materials were observed in the discharge. Redevelopment of each screen was considered complete when the discharge was observed to be free of silt and sand. The final screen cleaning depth was completed with a soft landing at 656 feet bgs (final depth measurement based on number of 21-foot pipe sections for the jetting tool).

As presented on Table 2 above, the groundwater samples were analyzed for arsenic, iron, and manganese. Concentrations of dissolved iron were not detected. However, concentrations of both dissolved arsenic and manganese were above drinking water standards when redevelopment efforts finished. Dissolved manganese remained near 1.0 mg/L to the end of redevelopment. Concentrations of dissolved arsenic were relatively low (0.0044 mg/L) upon initiation of redevelopment activities and increased a full order of magnitude in concentration at termination of redevelopment (0.041 mg/L). The lowest concentrations of arsenic were collected during development of the uppermost screen section. Later zone testing confirmed that the uppermost screen interval has lower concentrations of arsenic when compared to the deeper portions of the well. The above Table 2 summarizes the groundwater analytical results from the Esposti Supply Well over time during redevelopment. Analytical reports are included in Appendix J.

On May 2, 2016, GHD observed Weeks use a 10-foot long, 8-inch diameter check valve bailer, to remove gravel and sediment material from the bottom of the well. First retrieval was approximately 1.0 feet of soft sediment with ¼-inch filter pack underlying the sediment for a total of approximately 1.5 feet of fill removed. Subsequent retrievals 2 through 4 were nearly 100% ¼-inch filter pack for an approximate total of 4 feet of material removed. When bailer retrieval number five could not be retrieved with the single winch pulley, a second powered pulley was connected to assist in lifting the bailer. The wire to the bailer snapped and the line was retrieved without the bailer.

On May 4, 2016, GHD observed West Coast using a high definition down-hole camera and confirmed the total depth to the top of the material in the well to be 654 feet deep. GHD analyzed the video and did not see any damage to the well casing or a difference from the April 18, 2016, video completed before the bailer was used in the well. Additionally, Weeks' bailer, with approximately 77 feet of cable, was observed at the bottom of Esposti Supply Well. GHD recommended that the bailer be left in place rather than retrieve it and risk potential damage to the well casing. The West Coast video report is provided in Appendix G. The filter pack observed in the bottom of the well casing may be the result of adding ballast to straighten the well during construction and not removed during the initial well development activities or some other intentional event. The filter pack covers a portion of the lower screen, but does not appear to be the result of damage to the well casing or screen. However, the cause of the filter pack in the bottom of the well is unknown.

On May 6, 2016, GHD installed transducers and Weeks installed an 8-inch pump. Then on May 7, 2016, GHD along with the Town, started observing downgradient manhole numbers S374, S375, S375A, and S376 in Shiloh Road. After approximately 33 minutes of discharging to the Town's sewer manhole S130 at rates ramping up to 800 gpm, the pump shut off due to amperage exceedance tripping the circuit breaker. Weeks attempted a second pumping effort with surging flow rates up to 1,000 gpm discharged to the sewer with the same pump failure result. Weeks then subsequently reconfigured the pump wiring with larger current (amperage) capacity wire.

On May 8, 2016, GHD and the Town observed manholes for 90 minutes while pumping to sewer at initial discharge rates of 400 gpm. This rate was then ramped up to a maximum discharge rate of approximately 890-910 gpm for the majority of the observation period. This test confirmed that discharge to the Town's sewer at manhole S130A has a dry season capacity that roughly corresponds to the sewer model values.

Two short-term pumping tests were performed as part of well redevelopment to verify that the well was clear of sediment and verify that the pumping rate selected for the long duration pumping test (24 hours or longer) was as high as it could reasonably be and sustained at a constant rate for at least 24 hours. These short-term pumping tests are discussed below.

4.3.2 400 GPM Pumping For 4.5 Hours

On May 9, 2016, a short-term pumping test was conducted at a flow rate of 400 gpm to verify completion of well development and to provide a comparison with the 400 gpm pumping test performed in 2010. The 400-gpm flow was discharged to the storage tanks and the storage tanks discharged through a bag filter to sewer manhole S130 at a rate of 300 gpm. The bag filter needed cleaning upon initial discharge from the tanks to the filter. After cleaning the filters, the discharge from the tanks, through the filter, to the sewer resumed at 300 gpm (while continuing to pump the well at 400 gpm). Storage tank capacity was reached after 4.5 hours of pumping the Esposti Supply Well and the 400-gpm short-term pump test was terminated. After the 4.5 hours of pumping the Esposti Supply Well, total groundwater drawdown measured from static water level was 66.1 feet for a calculated specific capacity of 6.1 gpm/ft.

Samples of pumped groundwater were collected at the start of the 400-gpm test period. Samples were again collected at the end of the day after the completion of pumping at 400 gpm and additional surge pumping was performed by running the pump in quick bursts from 0 gpm to 1,000 gpm and back to 0 gpm.

Table 2 summarizes the groundwater analytical results from the Esposti Supply Well over time during redevelopment. Analytical reports are included in Appendix J.

4.3.3 900 GPM Pumping for 1.5 Hours

On May 10, 2016, GHD oversaw Weeks conduct a brief troubleshooting effort and test pumping at rates of 400-800 gpm, while GHD collected a groundwater sample. Analytical results of dissolved arsenic, iron, and manganese from May 10 were comparable to results of samples collected the day prior. The field measured indicator parameters of temperature and pH both were generally increasing over time, while electrical conductivity (EC) and total dissolved solids (TDS) were generally stable after the first well casing water was purged. These indicator parameter data suggest that warmer and slightly higher pH water moves up through the well casing from the lower formation through the associated lower well screens over time while pumping.

On May 11, 2016, GHD oversaw Weeks perform pumping for approximately 3.5 hours at pump rates ranging from 400 to 910 gpm in order to determine the maximum pump rate test the Esposti Supply Well could feasibly sustain for the planned 24 hour test. After approximately 90 minutes of pumping at 900 gpm, the pump flow rate began to decrease while total drawdown also continued to

increase (223+ feet); therefore, it was determined that the 24-hour pump test flow rate should be 800 gpm, not 900 gpm or 1,000 gpm.

Groundwater analytical results of dissolved arsenic, iron, and manganese concentrations from May 11, 2016, were compared to prior analytical results and found that the concentration of arsenic and manganese were generally increasing as the pumping and redevelopment progressed. The field indicator parameters were comparable to that of days prior.

Table 2 summarizes the groundwater analytical results from the Esposti Supply Well over time during redevelopment. Analytical reports are included in Appendix J.

5. Pumping Tests

Two pumping tests were performed on the Esposti Supply Well during this investigation. The first was a 28-hour pumping test performed at a flow rate of 800 gpm. The second test isolated the upper most screen zone for pumping at a rate of 300 gpm for a period of eight (8) hours.

5.1 Pumping Test Field Activities

The chronological summary of fieldwork is provided below for ease of reference. Findings and conclusions from the different events are discussed in later sections of this Report.

- May 16-17, 2016, 800 gpm pumping test starts at 6:05 AM on May 16, 2016, and ends at 10:05 AM on May 17, 2016. This test is referred to as the "28-hour pumping test" (Sections 5.2 through 5.6).
- August 23, 2016, active spinner log while pumping at 400 gpm (Section 5.7).
- August 26, 2016, 8 hours of pumping at 400 gpm with top of packer at 436 BTOC (incorrectly placed within second screen zone; therefore, resulting data is not presented in this Report and pumping test was repeated on September 21, 2016).
- September 21, 2016, 8 hours of pumping at 300 gpm with top of packer at 425 feet BTOC (between 1st and 2nd screen zones). This test is referred to as the "8-hour zone pumping test" (Sections 5.8 through 5.12).

The Esposti Supply Well 28-hour pumping test was performed to comply with the requirements of both the State Water Resources Control Board and the Division of Drinking Water Programs for obtaining a permit to operate the Esposti Supply Well as part of a municipal water supply system. The goals of the pumping test were to evaluate the effect of pumping on the confined production aquifer and the overlying unconfined shallow groundwater. This pumping test was performed at a constant pumping rate of 800 gpm for a period of 28 hours (drawdown testing) and the recovery period was monitored for approximately one and a half additional days. During the drawdown test and the recovery period, pressure transducers were used to monitor the water elevation in a total of four wells. These wells consisted of the Esposti Supply Well, Esposti Irrigation Well, Bluebird Well, and the Mobile Home Estates Well. The Church Well was not used because of its current congested well casing (recently relined) and the risk of entangling the water level measuring equipment.

5.2 28-Hour Pumping Test Setup

This section describes setting up the pumping well and observation wells with water level monitoring equipment and compiling of site-specific data needed to perform the analysis of the data collected during the 28-hour pumping test (800 gpm). The 28-hour pumping test extracted from the entire well without the use of zone isolating packers. The purpose of this test was to induce the maximum flow given the well construction constraints and the constraints on the groundwater discharge to the sewer. For the purpose of this test, the limiting factor for selecting 800 gpm as the test flow rate was the expected well drawdown and pump capacity. Based on previous short-term

pumping, a pumping rate of 900 gpm quickly results in drawdowns in excess of 200 feet. The dry weather sewer capacity was not the primary limiting factor, although by coincidence 800 gpm is near the limit of dry weather capacity for the sewer line.

5.2.1 28-Hour Pumping Test - Water Handling Equipment

The pump used to facilitate the 28-hour pumping test was a Grundfos 8-inch 100-hp submersible pump. Appendix I provides a copy of the pump curve. The intake of the pump was set at 360 feet below the top of the casing, which is 24 feet above the top of the upper-most screen and approximately 320 feet below the elevation of static water level.

Two 20,000-gallon temporary tanks where on site and previously used during redevelopment for groundwater containment. Two additional tanks were brought on site to handle the higher flow rates of the pumping tests. Water processing prior to discharge consisted of four (4) 20,000-gallon temporary tanks provided by Rain-for-Rent to remove sediment and provide buffering storage for high flow testing. These tanks were followed by a diesel operated transfer pump and a bag filter assembly to remove remaining fine silt and clay.

A sample port was located at the wellhead after the flow meter and consisted of a ¼-inch diameter brass tube operated by a ball valve. Photographs of the tanks and wellhead assembly are provided in Appendix I.

5.2.2 28-Hour Pumping Test - Observation Wells

The aquifer test was performed by pumping the Esposti Supply Well and monitoring the three wells to which the Town had access. The locations of the wells associated with the aquifer test are shown on Figure 1 (Bluebird, Esposti Supply Well, Esposti Irrigation Well, and Mobile Home Estates). Figure 2 provides and aerial view of the Esposti Park area. The Bluebird Well is completed from 695 to 745 bgs and is representative of the confined aquifer system. The Esposti Irrigation Well and the Mobile Home Estates Well are both completed in aquifer zones shallower than those screened by the Esposti Supply Well. Well logs for the Esposti Supply Well, Bluebird Well (Replacement 2010), and the Esposti Irrigation Well are provided in Appendix B. A drawing comparing the construction of the Esposti Supply Well and the Esposti Irrigation Well is also provided in Appendix B.

Pumping from the Esposti Irrigation Well was temporarily halted during Esposti Supply Well test pumping periods. The Mobile Home Estates Well operated under their normal operating schedule and pumped water as demands required. Neither wells could be shut down for the duration of the project due to the associated water supply demands. The Bluebird Well is not operational and does not have a pump installed in it.

There is a well at the church located south of the Esposti Park on Old Redwood Highway (see Figure 2). This well was inspected prior to the test but could not be used because the well casing was too crowded with power wires serving the submersible pump. The vineyard across Shiloh Road to the south of Esposti Park has a well for irrigation; however, due to lack of access it was not monitored during this project.

5.2.3 28-Hour Pumping Test - Well Construction Summary

Copies of the available DWR 188 well logs (Bluebird Well, Esposti Supply Well, and Esposti Irrigation Well) are provided in Appendix B. No well log is available for the Mobile Home Estates Well; therefore, the construction details including pump setting, total depth, and screen interval are unknown. A summary of the construction of the monitored wells used in this test are provided in Table 3.

Well ID	Measuring Point Elevation (feet above mean sea level)	Well Diameter, Casing Thickness, and Slot Size	Top and Bottom of Perforation Intervals (feet) and Measured Depth (feet)	Sand/Grav el Pack Interval and Grade Sizing (inches or Sieve Size)	Seal Interval (feet)
Esposti Supply Well	140.93 Wellhead Slab Surface to NAVD 88	10-inch Diameter, #304 Stainless Steel Casing, 0.125-inch Slots		371-670	Cement 0-370 Bentonite 370-371
Installed March 27, 2010				¼-inch Gravel Pack	
Esposti Irrigation Well	140.0 Portal near ground Surface Estimated From Google Earth	8-inch Diameter, 200 Gauge Steel Casing, 0.032-inch		55-300	Cement 0-50 Bentonite 50-55
Installed August 23, 1989		Slots		8-16 Sieve	
Bluebird Well	118.34 Wellhead Slab Surface to NAVD	10-inch Diameter, 1/4- inch Low		675-765	0-665
Installed, May 5, 2010	88	Carbon Steel Casing, 0.125- inch Slots		¼-inch Gravel Pack	
Mobile Home Estates Well	135.0 Top of Casing Near Ground Surface	6-inch Diameter, Steel Casing (thickness		Unknown	Unknown
Unknown	Estimated From Google Earth	unknown), Slot Size Unknown		Unknown	

Table 3 Well Construction Summary

Notes:

TD = Reference point for well total depth in this column is ground surface

5.2.4 28-Hour Pumping Test - Flow Rates and Discharge Location

The aquifer test was performed at a constant flow rate of 800 gpm for 28 hours. The flow rate of 800 gpm was selected because this is the maximum sustainable flow rate by the 8-inch pump and higher flow rates resulted in too much drawdown. Based on review of available pumps, the pump used for this test is representative of the largest capacity pump that would fit into the well casing and operate over the range of expected hydraulic heads. During well redevelopment, pumping was conducted at flow rates of 200, 300, 400, 800, 900, and 1,000 gpm. Although these pumping rates were conducted over a period of days, the information was used to verify that 800 gpm was the highest sustainable pumping rate at a reasonable drawdown for the test. Short term testing at 900 and 1,000 gpm resulted in an unsustainable groundwater drawdown observed in the well. These high flow rates resulted in pump shut-off due to too much power draw.

5.2.5 28-Hour Pumping Test - Setup for Observation Wells

Seven pressure transducers were used during the Esposti Supply Well aquifer-pumping test to record the water elevation changes in the wells monitored. Three of these transducers were installed in the Esposti Supply well, a single transducer was installed in each of the three observation wells, and one barometric pressure transducer was on site for the duration of the project to correct water level data from atmospheric pressure changes. Table 4 below identifies the transducers used to monitor water levels in each well.

Well	Function of Well During Test	Transducer Used Serial #	Frequency of Data Record (minutes)
	Pumping Well (Malfunctioned prior to Pump Test)	In-Situ vented Troll 700 431953	
	Pumping Well (Replacement Unit for Malfunctioned unit# 431953)	In-Situ vented Troll 700 337530	1
	Pumping Well (Backup unit)	Solinst non-vented F650 82060899	1
	Observation Well Confined Aquifer	Solinst non-vented F65 20371	1
	Observation Well Confined Aquifer	Solinst non-vented F15 19828	1
	Observation Well Assumed Unconfined Aquifer	Solinst non-vented F30 20188	1
	Barometric correction data to apply to non-vented transducer data sets.	Solinst non-vented 19657	1

Table 4 Water Level Measurement Equipment in Each Well 28-Hour Pumping Test

5.2.6 28-Hour Pumping Test - Measured Elevations and Distance to Pumping Well

During the data analysis, the recorded pressure head by the transducer was converted to water elevation by adding the recorded pressure head to the elevation of the transducer set into the well casing. All wells were monitored manually during the test using an electronic depth-to-water meter to verify that the transducers were correctly measuring groundwater elevations. Pressure head data was also corrected to account for atmospheric affects by subtracting recorded barometric pressure from each of the recorded pressure head measurements; except for the In-Situ transducers, which are "vented" and automatically corrected to account for atmospheric pressure. A summary of the wells used to observe groundwater elevation changes during the test and the distances between each observation well and the Esposti Supply Well is provided in Table 5.

Well	Date of Trans ducer Install	Estimated Elevation of Ground Surface (feet msl) ¹	Elevation of Measuring Reference Point (feet msl) ¹	Depth of Transducer Installation Below Reference Point (feet)	Trans ducer Elevation (feet msl) ¹	Pressure Head Above Transducer Prior to Start of Aquifer Test (feet) ³	Elevation of Ground water Prior to Start of Aquifer Test	Distance to Esposti Supply Well (feet)
Esposti Supply Well			143 (Top of Casing)			287.7		
Esposti Irrigation Well			140 (Port in Casing Side)			37.8		29.5 (Measured)
Bluebird Well			120 (Top of Casing)			10.1		7,767 (Estimated)
Mobile Home Estates Well			135 (Top of Casing Near Ground Level)			22.4		1,715 (Estimated)
Barometer ² (Baro- logger)			141			2.6		32 (Estimated)

Table 5 Elevation and Distance of Monitoring Points 28-Hour Pumping Test

Notes:

- 1 = Survey was not conducted prior to project activities, however, Esposti Supply Well and Bluebird Well concrete footings were surveyed by Winzler & Kelly, July 2010, and that data used to estimate those associated top of casing elevations. All other wellhead elevations are estimates based on Google Earth Professional Software.
- 2 = Barometer was secured adjacent to Esposti Irrigation Well in an open top safety cone.
- 3 = For the transducers in wells, this value presented here is barometrically corrected.

5.3 28-Hour Pumping Test Operation

The pump test on the Esposti Supply Well was conducted for 28 hours to evaluate the effect of pumping the aquifer. The adjacent Esposti Irrigation Well was shut off on the day prior to the start of the pump test. Once the pump test started it ran continuously for 28 hours, and at the end of the

test the groundwater was allowed to recover continuously without turning on the Esposti Irrigation Well. Groundwater elevation data for all wells is graphed on Figure 4. Below is a summary of the start-up and running conditions of the test:

Pre-Test Preparation

- 1. Installed the pump into the Esposti Supply Well, June 15, 2015.
- 2. Installed the transducers in the three observation wells and Esposti Supply Well between the dates of April 21, 2016 and May 12, 2016.
- 3. All transducers were synchronized and recording in the wells by 12:21 PM on May 12, 2016.

Start/End of 28-Hour Pumping Period

- 1. Pumping of the Esposti Supply Well started at 6:05 AM, May 16, 2016 at 800 gpm.
- 2. Sampling and parameter monitoring during the test was kept at a steady 800 gpm by manually operating the flow control valve at least once every hour.
- 3. End of pumping at 10:05 AM May 17, 2016.

Groundwater Recovery Period

- 1. Start of recovery period 10:05 AM May 17, 2016.
- 2. End of recovery period and data record at 8:50 AM May 19, 2016.

5.4 28-Hour Pumping Test Analytical Results and Analysis

Samples were collected on intervals as summarized in this section. All laboratory analysis was performed through Alpha Analytical, a California Certified Laboratory. Field measurement of water quality parameters of temperature, pH, oxidation-reduction potential (ORP), EC, and TDS were made frequently using a Myron Ultrameter[™]. In addition, visual observations were noted on the daily field and data sheets. This information is provided in daily work sheets and data collection forms, which are provided in Appendix H.

5.4.1 28-Hour Pumping Test - Results of Water Sample Analysis During Test

Water samples were collected during the aquifer test to monitor changes in water quality. These samples were analyzed for arsenic, iron, and manganese (Table 6). Field parameters were collected frequently at start-up and during sustained pumping.

Sample ID	Date	Iron Diss.1	Iron Total	Mn Diss.¹	Mn Total	As Diss.¹	As Total	Sample time after
				mg	J/L ²			start
ESW-5-16-06:06						0.0095	0.016	1 min
ESW-5-16-06:07		<0.10	4.10	1.0	1.0	0.0081	0.013	2 min
ESW-5-16-06:12		<0.10	0.98	1.0	1.0	0.018	0.020	7 min
ESW-5-16-13:00			0.10		0.88		0.044	415 min
ESW-5-16-18:00			<0.10		0.87		0.049	715 min
ESW-5-16-24:00			0.11		0.85		0.052	1,075 min
ESW-5-17-04:00			<0.10		0.88		0.053	1,315 min
ESW-5-17-10:00			<0.10		0.86		0.057	1,675 min
MCL in mg/L ²			0.300		0.050		0.010	

Table 6 Analytical Results From 28-Hour Pumping Test

Notes:

1 = Analyzed as Dissolved.

2 = Milligrams per Liter (parts per million)

<0.10 = Less than laboratory detection limit.

--- = not analyzed

5.4.2 28-Hour Pumping Test - Water Sample Analysis at End of Pumping

Groundwater samples were collected immediately prior to shut down. These samples are representative of the groundwater extracted from the aquifer under normal operating conditions and analyzed for Title 22 constituents and other compounds that can affect treatability. Table 7 is a summary of key analytical results. A comparative summary is provided in Table A presented in Appendix K. As shown in Table 7 the water meets all of the analytical standards for drinking water under Title 22 with the important exceptions of arsenic and manganese. Extracted groundwater would require treatment for arsenic and manganese prior to distribution. The analytical reports related to sampling of the Esposti Supply Well are provided in Appendix J.

Constituent	Analytical Method	Entire Well Pumping at 800 gpm for 28 Hours (mg/L ¹)	State MCL Drinking Water Standard Units in mg/L (Unless Otherwise Noted)	
Aluminum	EPA 200.8	<0.050	1.0	
Antimony	EPA 200.8	<0.006	0.006	
Arsenic	EPA 200.8	0.057	0.010	
Barium	EPA 200.8	0.150	1.0	
Beryllium	EPA 200.8	<0.001	0.004	
Cadmium	EPA 200.8	<0.001	0.005	
Calcium	EPA 200.7	22		
Chromium (Total)	EPA 200.8	<0.010	0.05	
Chromium (Hexavalent)	EPA 200	<0.001	0.01	
Copper	EPA 200.8	<0.050	1.0 (SMCL)	
Iron	EPA 200.7	<0.100	0.3 (SMCL)	
Lead	EPA 200.7	<0.005	0.015	
Magnesium	EPA 200.7	16		
Manganese	EPA 200.8	0.860	0.05 (SMCL)	
Mercury	EPA 245.1	<0.001	0.002	
Nickel	EPA 200.8	<0.010	0.1	
Selenium	EPA 200.8	<0.005	0.05	
Silver	EPA 200.8	<0.010	0.1 (SMCL)	
Sodium	EPA 200.7	53		
Thallium	EPA 200.8	<0.001	0.002	
Uranium	EPA 200.8	<1.0 pCi/L	20 pCi/L	
Vanadium	EPA 200.8	<0.003	0.05 (NL)	
Zinc	EPA 200.8	<0.050	5.0 (SMCL)	
Aggressive Index	AWWA	11.68 NU		
Ammonia as NH₃	SM4500/H3N	<0.50		
Bicarbonate	SM2320B	270		
Carbonate	SM2320B	<5.0		
Color	SM2120B	<5.0 CU	15 Units (SMCL)	
Cyanide (Total)	10-204-001X	<0.10	0.2	
Hydroxide	SM2320B	<5.0		
MBAS, calculated as LAS, mw 340	SM5540C	<0.050	0.5 (SMCL)	
Odor	EPA 140.1	<1.0 T.O.N.		
Perchlorate	EPA 314.0	<0.004	0.006	
pH	SM4500-H+B	7.60 pH Units		
Phosphate (Total)	SM4500-PE	1.4		
Specific Conductance (EC)	SM2510B	520 uS/cm	900 uS/cm (SMCL)	

Table 7 Analytical Results From Final Sample 28-Hour Pumping Test May 17, 2016 at 10:00 AM

Constituent	Analytical Method	Entire Well Pumping at 800 gpm for 28 Hours (mg/L ¹)	State MCL Drinking Water Standard Units in mg/L (Unless Otherwise Noted)
	SM4500SD		
	SM4500-SiO2 C		
	SM2540C		500 (SMCL)
	SM2130B		5 NTU (SMCL)
	SM2320B		
	SM2340B		
	EPA 300.0		250 (SMCL)
	EPA 300.0		
	EPA 300.0		10
	EPA 300.0		1.0
	EPA 300.0		250 (SMCL)
	EPA 524.2		
	EPA 507		
	EPA 504.1		
	EPA 504.1		
	EPA 515.1		
	EPA 525.2		
	EPA 547		0.7
N. 4	EPA 549.2		0.02

Notes:

1 = Some analytical results are reported in units of $\mu g/L$ these have been converted to mg/L for ease of comparison with water quality standards

NA = Not analyzed

MCL = Maximum Contaminant Level

SMCL = Secondary Maximum Contaminant Level

NL = Notification Level

5.4.3 28-Hour Pumping Test - Results of Field Parameter Monitoring

Parameters of temperature, pH, ORP, EC, and TDS were monitored frequently during the test. The monitoring was more frequent during pumping startup and parameters were always measured and recorded concurrent with sample collection. The raw data is available along with site visit reports in Appendix H. Review of the data indicates that ORP and temperature changed with the increasing duration of pumping. In particular, temperature increases as pumping progresses. Multiple starts and stops of the pump during this test indicate that the initial water temperature is cooler than water temperature after a few minutes of pumping. This trend is shown on Figure 5 providing a plot of both temperature and drawdown with increasing time. This change in temperature implies that the water from the upper screened zone is cooler than the water originating from deeper screens in the well.

The average of the last five field parameter measurements collected at the end of the 28-hour pumping test was calculated. These average values are presented in Table 8. The values for pH

and TDS are very similar to laboratory results. Laboratory analysis for temperature and conductivity were not requested.

Table 8 Average of Last Five Field Parameter Measurements Near End of the 28-Hour Pumping Test

Well	Temp ¹ (°F)	рН	Cond. (μS)	TDS (ppm)
Esposti Supply Well	77.2/80.3	7.65	533	352

Note:

1

 Temperature measured at wellhead / temperature in well by transducer, respectively

= Degrees Fahrenheit

 μ S/cm = microsiemens per centimeter

mg/L = milligrams per liter

5.5 28-Hour Pumping Test Drawdown Results and Analysis

Using the data collected during the test, the hydraulic aquifer property of transmissivity (T) was calculated. Transmissivity is directly related to the permeability of the aquifer material and will be useful in future studies of aquifer sustainability and recharge.

5.5.1 Calculation of Transmissivity

Transmissivity (T) was calculated using the data from the pumping results from the aquifer test from May 16 to 17, 2016, and analysis using the time-drawdown method. The pump test drawdown and time data for the Esposti Well is graphed in Figure 5 on semi-log scale along the time axis.

As shown in Figure 5, the slope of the line drawn through the data up until a pumping time of 660 minutes (11 hours of pumping) is represented by Line A. At 660 minutes, the line changes slope indicating a sharp decrease in the transmissivity (i.e., more drawdown for the same pumping rate). The line representing this slope is identified as Line B. The calculations determining transmissivity are calculated for both lines because the data suggest that the transmissivity near the well is higher than further away from the well. This change in slope of the drawdown rate during pumping is interpreted here to be a hydrogeologic boundary. Hydrogeologic boundaries are distinct areas within the aquifer when abrupt changes in the overall aquifer properties occur. In this case the hydrogeologic boundary is a decrease in transmissivity. Because of this, long duration pumping will cause more drawdown in the well.

The calculations and analysis were performed using modified non-equilibrium equations derived from Cooper and Jacob (1946) as described by Driscoll (1986).

Transmissivity (T**)** was calculated using time-drawdown data from the Esposti Supply Well plotted on a semi-log scale (Figure 5) using the equation:

$$T = {264Q\over \Delta s}$$
 for T in units of gallons per day per foot (gpd/ft)

Where:

Q = pumping rate in gpm (800 gpm)

 Δs = change in drawdown over distance (one log cycle on semi-log graph = 27 feet)

T = transmissivity in gpd/ft

For Line A, which represents the aquifer prior to 660 minutes (11 hours) of pumping, using the Δs value of 27 feet, the transmissivity (*T*) was calculated at a value of 7,822 gpd/ft.

For Line B, which represents the aquifer after 660 minutes (11 hours) of pumping, using the Δs value of 51 feet, the transmissivity (T) was calculated at a value of 4,141 gpd/ft.

For comparison, the transmissivity that was calculated in the RMS's 2010 Installation Report was 6,600 gpd/ft. The 2010 transmissivity was calculated after pumping for 24 hours at a flow rate of 400 gpm. This flow rate of 400 gpm did not extract enough water to test the transmissivity of the aquifer further away from the Esposti Supply Well. For planning purposes in this report the lower value of transmissivity at 4,141 gpd/ft is used because it is more representative of longer duration pumping that is likely under operational conditions.

5.5.2 Calculation of Hydraulic Conductivity (Permeability, K)

Hydraulic conductivity (also known as permeability or K) is calculated from the transmissivity if the thickness of the aquifer is known or estimated. In this case, the aquifer is highly stratified and clay layers restrict vertical flow. Therefore, flow towards the Esposti Supply Well is dominantly horizontal and through the layers that are screened. As described in Section 5.7 the flow from the well is derived from approximately 88 feet of screen rather than the entire 160 feet of screen available in the well. The calculation of hydraulic conductivity (permeability or K) is provided below:

$$K = \frac{T}{b}$$
 in units of gpd/ft²

Where:

Transmissivity (*T*) = ranges from 4,141 gpd/ft to 7,822 gpd/ft Aquifer Thickness (*b*) = Assumed to be the water transmitting portion of the screen or 88 feet of relatively permeable aquifer material

This results in a hydraulic conductivity that ranges from 47 gpd/ft² to 89 gpd/ft². According to Driscoll, 1986, these values for hydraulic conductivity (permeability or K) are typical of fine sands and silts. These low hydraulic conductivity values do not correlate to the Unified Soil Classification System (USCS) soil descriptions (well-graded gravel and well-graded sand) provided in the RMC's 2010 Installation Report. However, these low hydraulic conductivity values do correlate to the

resistivity log (E-log) provided in RMC's 2010 Installation Report. A copy of the log for the Esposti Supply Well is provided in Appendix B

5.5.3 Calculation of Storage Coefficient

Storage coefficient is calculated from data collected at an observation well that is constructed within the same aquifer unit. The Bluebird Well is completed in the deeper aquifer only. There was no measured effect at the Bluebird Well during the pumping test. Therefore, no Storage coefficient has been calculated.

5.5.4 Calculation of Specific Capacity

Specific capacity as described by Driscoll (1986) is calculated by dividing the flow rate by the measured drawdown:

$$Sc = \frac{Q}{s}$$
 in units of gpm/ft

Where:

Sc = Specific capacity

Q = pumping flow rate in gpm (800 gpm)

s = drawdown, change in elevation of pressure head in the pumping well

Specific capacity is time dependent because the pressure head in the pumping well will continue to decline as long as the well is in operation. Specific capacity is also flow rate dependent because higher flow rates have a larger head loss due to turbulent flow. Because of these factors, Specific capacity requires context of both the flow rate and duration of pumping in order to make a meaningful comparison.

Year of Test	Duration of Pumping (hours)	Flow Rate (gpm)	Drawdown (feet)	Specific Capacity (gpm/ft)	Notes
2010	4.5	400	83	4.8	
2016	4.5	400	66	6.1	
2016	1	800	146	5.5	
2016	4	800	163	4.9	
2016	8	800	169	4.7	
2016	24	800	187	4.3	
2016	28	800	192	4.2	Recommended value for long-term planning regardless of pumping flow rate because of aquifer limitations

Table 9 Calculations of Specific Capacity Esposti Supply Well

From a practical standpoint, the drawdown is measured after a relatively short duration of pumping, such as one hour. This allows for measuring Specific capacity throughout the life of the well to evaluate for the rate of well plugging. Table 10 below provides a summary of the commonly used hydraulic aquifer and well properties.

Table 10 Summary of Aquifer Properties

Transmissivity in gpd/ft	Estimated Storage Coefficient (dimensionless)	Specific Capacity gpm/ft			
4,141	Not Calculated	5.5 at 1 hour			
		4.3 at 24 hours			

5.6 28-Hour Pumping Test – Analysis of Pumping Rate Limits

GHD has evaluated the upper limit of well pumping rate based on the construction of the well and aquifer properties. This section provides an analysis of the maximum efficient pumping rate. If a well is pumped at too high of a flow rate, the excessive turbulence can cause premature well failure and add to the pumping cost. Flow rate limiting factors related to the Esposti Supply Well consist of the effects of high velocity water moving into and through the casing and the effects of lowering (dewatering) the water table in the vicinity of the well. High velocity flow leads to an increase in turbulence, which in turn causes additional pressure head losses as the water converges towards the well. Thus, four evaluations were performed:

- 1. Entrance velocity limitation;
- 2. Up-hole velocity limitation;
- 3. Dewatering limitation; and
- 4. Annular space velocity limitation.

5.6.1 Entrance Velocity Limitation

Well screen entrance velocity is the speed at which water is entering the casing. If the entrance velocity is too high, excessive encrustation may result. Based on recommendations presented by Driscoll (1986), the maximum entrance velocity through the screen is 0.1 feet per second (ft/sec). The calculation below provides the maximum flow rate from the well before the average entrance velocity exceeds the recommended 0.1 ft/sec:

$$Q = VA$$

Where:

V = entrance velocity equal to 0.1 ft/sec (maximum)

A = open area of the entire length of screen (29 ft²) ^{Note}

Q = maximum pumping rate in (ft³/sec) without exceeding entrance velocity (result of calculation is 2.9 ft³/sec)

Note: The well log indicates a 10-inch diameter well with a 160-foot screen interval, well screen slots are 0.125 inches at 34% open area = 29 ft² of open area.

Using the equation above, the maximum pumping rate before exceeding the 0.1 ft/sec entrance velocity limit is 1,301 gpm. However, as discussed below the active spinner log data indicates that approximately 45% of the available screen is not producing significant water. This implies that only 55% of the 1,301 gpm is realistically available. Therefore, this criterion is set at 55% of 1,301 gpm or 715 gpm.

5.6.2 Up-hole Velocity Limitation

Up-hole velocity is the speed of the water in the well casing as it moves into the pump. It is desirable to keep the up-hole velocity below 5 ft/sec because of turbulence in the flow causes pressure head loss. The cross sectional area of the 10-inch diameter casing of the Esposti Supply Well is 0.545 ft². The maximum desirable flow rate is calculated by multiplying the cross sectional area by 5 ft/sec.

$$Q = VA$$

Where:

V = entrance velocity equal to 5 ft/sec (maximum)

A = open area of the entire length of the casing (0.545 ft^2)

Q = maximum pumping rate in (ft³/sec) without exceeding up-hole velocity (result of calculation is 2.7 ft³/sec)

Using the equation above, the maximum pumping rate before exceeding the 5 ft/sec up-hole velocity limit is 1,211 gpm.

5.6.3 Dewatering Limitation

The rate of the Esposti Supply Well should be limited such that the aquifer near the well does not dewater by more than 80% of the saturated thickness. This criterion is more relevant to shallow unconfined aquifers and is not applicable to the Esposti Supply Well. If the aquifer is dewatered more than 80% of the saturated aquifer thickness, there could be in increase in turbulent flow within the aquifer and a reduction in the effective transmissivity. The limit to flow rate based on these criteria can be calculated by using the aquifer properties calculated above together with estimates of the expected duration of continuous operation of the well. The top of the screen is at 383 feet BTOC and static groundwater is at approximately 40 feet bgs. Pumping the water down to the top of the screen would require 343 feet of drawdown, which is far in excess of the capacity of pumps that are available for this size casing. In addition, this would put excessive compression stress on the casing and incur a high risk of casing collapse.

5.6.4 Annular Space Velocity Limitation

The water velocity in the annular space between the motor of a submersible pump and the well casing can be analyzed in a manner similar to the up-hole velocity discussed above. In this case, the maximum desirable velocity of 5 ft/sec is used here because of turbulence in the flow causes pressure head loss. The cross sectional area of the 10-inch diameter casing of the Esposti Supply Well is 0.545 ft². The diameter of the largest pump and motor is 7.5 inches which results in a cross sectional area of 0.310 ft². Subtracting these two areas results in the cross sectional area through

which the groundwater flows around the motor and up into the intake of the pump (0.235 ft²). The maximum desirable flow rate is calculated by multiplying the cross sectional area by 5 ft/sec.

$$Q = VA$$

Where:

V = entrance velocity equal to 5 ft/sec (maximum)

A = open area between the submersible motor and casing (0.235 ft²)

Q = maximum pumping rate in (ft³/sec) without exceeding a velocity of 5 ft/sec in the annular space (result of calculation is 1.175 ft³/sec)

Using the equation above, the maximum pumping rate before exceeding the 5 ft/sec annular space velocity limit is 527 gpm (1.175 ft³/sec). Based on this calculation the diameter of the pump relative to the diameter of the casing may be a limiting factor in the theoretical maximum flow rate.

5.6.5 Summary of Well Flow Rate Limitations and Pumping Rate Recommendation

The pumping rate limits are summarized in the table below:

Table 11 Summary of Pumping Rate Limiting Factors Espoisti Supply Well

Limitation	Flow Rate in gpm
Entrance Velocity	
Up-hole Velocity	1,211
Dewatering Limitation	Not Applicable
Annular Space Velocity Limit – cross section area between the submersible motor and the well casing.	527

Note:

A long-term (>24 hours) flow rate of 400 gpm (75% of 527) is appropriate given the flow rate limiting factors, reductions in well efficiency that will occur with age, and the hydrogeologic boundary that reduces Transmissivity.

An appropriate design flow rate is taken as 75% of the most restrictive of the rate limiting factors. This provides a design safety factor of 25% to account for reduced well efficiency over time or hydrogeologic limitations that become apparent after long duration pumping. Therefore, the flow rate for design purposes for the Esposti Supply Well is 400 gpm (75% of 527 gpm).

5.7 Results of Active Spinner Log

As discussed in Section 4.2, the April 2016 static spinner log (no pumping) identified approximately 5 gpm of downward groundwater flow between 1st screened zone (384-423 ft BTOC) and the 4th screened section (484-510 ft BTOC). This downward flow may be the result of spring recharge increasing groundwater elevations in the shallow aquifer. The natural flow of water between these zones may change direction seasonally due to summer pumping in the shallow aquifer. This natural movement of groundwater indicates that the 1st and 4th screen zones are separate hydrogeological units.

The purpose of the active spinner log was to identify the relative contribution to well production from each of the separate screen zones. On August 23, 2016, GHD oversaw West Coast perform an active spinner log (active pumping) during an almost 4 hour, 400 gpm pumping period. A 6-inch pump extracted groundwater while the spinner tool was lowered into the well. The rate of spin of the spinner tool impeller is proportional to the velocity of water in the well casing. This data is used to calculate the flow contribution of each of the screen zones.

The results of this spinner log are provided in Figure 6. The active spinner log indicates significant flow contribution to the total well yield through the 1st screen interval (36% of total flow), the 4th screen (22% of total flow) interval, and 5th screen (28% of total flow) interval. The 2nd, 3rd, and 6th screened sections were collectively 11% of the total flow from the screens, this means that approximately 45% of the screened aquifer is not transmitting water into the well casing. This appears to be a result of low permeability aquifer material within the 2nd, 3rd, and 6th screened sections rather than a well development problem. Appendix F presents the Static and Active Spinner Log reports of findings from West Coast.

5.8 8-Hour Zone Pumping Test Field Setup

The 8-hour, 300 gpm pumping test extracted groundwater from the 1st screened interval of the well using a zone-isolating packer installed in the underlying blank section of screen at approximately 425 feet BTOC to the top of the packer. The purpose of this test was to induce the maximum sustained flow from this upper well screen section and collect representative water quality samples from this zone of the aquifer.

5.8.1 8-Hour Zone Pumping Test - Water Handling Equipment

The pump used to operate the 8-hour zone pumping test was a Grundfos 6-inch 50-hp submersible pump. Appendix I provides a copy of the pump curve. The intake of the pump was set at 342 feet BTOC, which is 42 feet above the top of the upper-most screen and approximately 300 feet below the elevation of static water level.

GHD did not collect or evaluate observation well data for the 8-hour zone pumping test because distance drawdown calculations were evaluated during the 28-hour 800 gpm pumping test, and those previous results indicated no effects on observation wells from the Esposti Supply Well pumping. However, GHD did install transducers in the Esposti Supply Well above and below the packer to measure pressure changes caused by hydraulic communication through the gravel pack between the 1st screened interval and the underlying screened intervals.

Pumped water was discharged to manhole S130 without the use of storage tanks or filtration. The water was clear and turbidity free. Groundwater samples were collected from the sample port, which consisted of a ¼-inch diameter brass tube operated by a ball valve located at the wellhead after the flow meter.

5.9 8-Hour First Screen Zone Pumping Test Operation

The 8-hour zone pumping test was conducted to evaluate the water quality and flow rate of the 1st screen section where lower concentrations of arsenic were found during zone sampling in 2010. The Esposti Irrigation Well was shut off the day before the 8-hour zone pumping test. Once the test

started it ran continuously for 8 hours, and at the end of the test, the groundwater was allowed to recover continuously (Figure 7). A summary of the start-up and running conditions of the test is provided below:

Pre-Test Preparation

- 1. Installed the pump into the Esposti Supply Well, August 19, 2016.
- 2. Installed the transducers in the Esposti Supply Well on August 19 and 20, 2016.
- 3. All transducers were actively recording synchronously in the well by 11:30 AM on August 19, 2016.
- 4. On August 20, 2016, GHD and Weeks ran a preliminary pump test for 20 minutes to confirm that the zone-test flow rate and direct discharge were appropriate. The pump produced a maximum flow rate of 375 gpm with the discharge pipe flow valve wide open and a gradual decline below 375 gpm was noted. GHD concluded that the 8-hour zone test would be conducted at 300 gpm.

Start/End of 8-Hour First Screen Zone Test

- 1. Pumping of the Esposti Supply Well started at 7:00 AM, August 21, 2016 at 300 gpm.
- 2. The pumping rate was held at a steady 300 gpm by manually operating the flow control valve at least once every hour.
- 3. Sampling and parameter monitoring was conducted frequently during the first hour of pumping, then every ½ hour thereafter.
- 4. End of Pumping at 3:00 PM August 21, 2016.

Groundwater Recovery Monitoring

- 1. Start of the groundwater recovery period began at 3:00 PM August 21, 2016, depth-to-water values were manually collected for one hour by Weeks, and groundwater recovery transducer data was collected.
- 2. End of recovery period and data record at 9:30 AM August 22, 2016.

5.10 8-Hour First Screen Zone Pumping Test Analytical Results and Analysis

Sample results are summarized in this section. All laboratory analysis was performed through Alpha Analytical. Field measurements of water quality parameters of temperature, pH, ORP, EC, and TDS were made frequently using an Myron Ultrameter[™]. In addition, visual observations were noted on the field sheets. This information is provided in daily work sheets and data collection forms, which are provided in Appendix H.

5.10.1 8-Hour First Screen Zone Pumping Test - Results of Sample Analysis During Test

Water samples were collected during the 8-hour zone test to monitor changes in water quality over time after continuous pumping. These samples were analyzed for arsenic, manganese, and iron in addition to frequent analysis of field parameters at start-up and during sustained pumping (Table 12). The 8-hour zone test total arsenic concentration and time data for the Esposti Supply Well are graphed in Figure 8 on semi-log scale along the time axis. As Figure 8 indicates, arsenic

concentrations decline linearly when plotted on semi-log scale. This implies that the water recovered during this test is a mixture of high-arsenic water and low-arsenic water. First water extracted is actually high-arsenic water that upwelled into the 1st zone from deeper in the well when the well was not pumping. As the 1st zone pumping continued, water high in arsenic, was cleared out and water more representative of 1st zone (low in arsenic) increased. The 1st zone pumping did not continue long enough to reach a final concentration of arsenic, but GHD's estimation is that arsenic in the first zone could be expected to range between 0.010 and 0.020 mg/L.

Sample ID	Date	Iron Diss.1	lron Total	Mn Diss.1	Mn Total	As Diss. ¹	As Total	Sample time after
				mg	I/L ²			start
ESW-9-21-07:01	9/21/2016		1.70		0.86		0.058	1 min
ESW-9-21-07:05	9/21/2016		3.40		1.10		0.052	4 min
ESW-9-21-08:00	9/21/2016		0.26		0.86		0.043	59 min
ESW-9-21-11:00	9/21/2016		0.19		0.91		0.038	239 min
ESW-9-21-15:00	9/21/2016		0.14		0.91		0.035	479 min
MCL mg/L			0.300		0.050		0.010	

Table 12 8-Hour Zone Pumping Test Results of Samples During Test (September 21, 2016)

Notes:

1 = No samples were analyzed as dissolved (filter before adding acid preservative).

2 = Milligrams per Liter (parts per million)

NA = Not applicable

<0.10 = Less than laboratory detection limit.

-- = Not analyzed

5.10.2 8-Hour First Screen Zone Pumping Test - Water Sample Analysis at End of Pumping

Samples of extracted groundwater were collected immediately prior to shut down. These samples represent a mixture of water from the 1st screen zone and the rest of the underlying well screens. The key results are summarized below in Table 13. Table A (Appendix K) provides a comparison of analytical results. As shown in Table 13 the water does not meet the drinking water standard for arsenic and manganese. Additionally, it is notable that silica was relatively high (86 mg/L). High silica concentrations complicate the treatment of arsenic by adsorptive media. Analytical results are included in Appendix J.

Constituent Upper Zone Pumping State MCL Drinking Analytical Method at 300 gpm for 8 Hours Water Standard Units in mg/L (mg/L^1) (Unless Otherwise Noted) EPA 200.8 0.035 0.010 Arsenic Calcium EPA 200.7 23 < 0.008 0.05 Chromium (Total) EPA 200.8 Chromium (Hexavalent) EPA 200 < 0.001 0.01 Iron EPA 200.7 0.140 0.3 (SMCL) Magnesium EPA 200.7 18 EPA 200.8 0.910 0.05 (SMCL) Manganese 14 Potassium EPA 200.7 EPA 200.7 52 Sodium Phosphate (Total) SM4500-PE 1.2 SM4500-SiO2 C Silica 86 Total Alkalinity as CaCO3 SM2320B 220 Chloride EPA 300.0 22 250 (SMCL) <0.20 Nitrate as N EPA 300.0 10 Nitrite as N EPA 300.0 <0.20 1.0 **Total Nitrogen** SM4500-N <1.0 Total Kjeldahl Nitrogen SM4500-NorgB <1.0 Sulfate as SO4 EPA 300.0 14 250 (SMCL) **Tannins & Lignins** SM5550B < 0.50 **Total Suspended Solids** SM2540D 3.5 Total Organic Carbon SM5310C < 0.300

Table 13 Analytical Results From Final Sample 8-Hour Zone Pumping Test (September 21, 2016 at 3:00 pm)

Notes:

1

= Some analytical results are reported in units of μg/L these have been converted to mg/L for ease of comparison with water quality standards

NA = Not analyzed

MCL = Maximum Contaminant Level

SMCL = Secondary Maximum Contaminant Level

NL = Notification Level

5.10.3 8-Hour First Screen Zone Pumping Test - Results of Field Parameter Monitoring

Parameters of temperature, pH, EC, TDS, and ORP were monitored frequently during the test. The monitoring was more frequent during pumping test startup and parameters were measured concurrent with sample collection. The raw data is available along with site visit reports in Appendix H. Review of the data indicates that temperature increases with increasing duration of pumping. This trend is shown on Figure 9 that provides a plot of temperature above and below the packer with increasing time. This change in temperature implies that the water from the formation associated with the 1st screen is cooler than the water from deeper in the well. It also implies that

the extracted water is a mixture with a significant contribution of water bypassing the packer through the filter pack. Table 14 below presents an average of the last 5 measurements collected for parameters during the 8-hour zone test. ORP was not stable enough to provide a single value to represent extracted groundwater.

Table 14 Average of Last Five Measurements Near the End of the 8-Hour Pumping Test For Each Field Parameter

Well	Temp (ºF)	рН	EC (µS/cm)	TDS (mg/L)
Esposti Supply Well	79	7.28	532	365

Notes:

^oF= Degrees Fahrenheit μS/cm= microsiemens mg/L = milligrams per liter

5.11 8-Hour First Screen Zone Pumping Test Drawdown Results and Analysis

Figure 7 shows the pressure head drawdown associated with groundwater above and groundwater below the packer. The occurrence of a pressure change below the packer indicates that there was a hydraulic connection between the 1st screen zone and the lower parts of the well through the filter pack. This likely resulted in some flow of groundwater through the filter pack from the lower part of the well and into the 1st screen zone during pumping. The hydraulic aquifer property of Transmissivity was not calculated because the volume of water bypassing the packer through the filter pack can only be estimated and this would affect the calculated value. Storage coefficient can only be calculated from data collected using data from an observation well that is constructed within the same aquifer unit. There was no observation well available during this test. Therefore, no Storage coefficient was calculated.

5.11.1 Calculation of Specific Capacity

Specific capacity, as described by Driscoll (1986) and discussed above in Section 5.5.4, is calculated by dividing the flow rate by the measured drawdown. The 300 gpm zone test specific capacity after 1, 4, and 8 hours was 2.7, 2.5, and 2.4 gpm/ft, respectively. This value represents what the 1st screened interval with flow bypassing the packer can produce in gpm for every foot of groundwater drawdown. Therefore, the final specific capacity value of 2.4 gpm/ft in the Esposti Supply Well with the packer set between the 1st and 2nd screen intervals is likely an over estimate if applied to only the 1st screen zone.

5.12 8-Hour First Screen Zone Pumping Test Rate Analysis

Similar to that previously discussed in Section 5.6 and subsections, GHD has evaluated the pumping rate limit for the 1st screen zone with a packer in place. This analysis is useful for evaluating the feasibility of pumping from only the 1st screen or constructing a new well in the

Esposti Park area with a screen restricted to the interval of 384 to 424 feet bgs. Flow rate limiting factors related to this analysis consist of the effects of high velocity water moving through the screen and the casing. Equation details and thorough definitions of pump rate analysis are included in Section 5.6 and briefly below. Four evaluations were performed:

- 1. Entrance velocity limitation;
- 2. Up-hole velocity limitation;
- 3. Dewatering limitation; and
- 4. Annular space velocity limitation.

5.12.1 Entrance Velocity Limitation

Well screen entrance velocity is the speed at which water is entering the casing, where the maximum entrance velocity through the screen is 0.1 feet per second (ft/sec). The flow rate from the well that can be extracted before the average entrance velocity exceeds the recommended 0.1 ft/sec is calculated using the equation below:

$$Q = VA$$

Where:

V = entrance velocity equal to 0.1 ft/sec (maximum)

A = open area of the entire length of screen (7.3 ft²) ^{Note}

Q = maximum pumping rate in (ft³/sec) without exceeding entrance velocity (result of calculation is 0.73 ft³/sec)

Note: The well log indicates a 10-inch diameter well with a 40-foot 1st screen interval, well screen slots were 0.125 inches at 34% open area = 7.3 ft² of open area.

Using the equation above, the maximum rate at which the well could be pumped before exceeding the 0.1 ft/sec entrance velocity limit is $0.73 \text{ ft}^3/\text{sec} = 328 \text{ gpm}.$

5.12.2 Up-hole Velocity Limitation

It is desirable to keep the up-hole velocity below 5 ft/sec because of turbulence in the flow causes pressure head loss. The cross sectional area of the 10-inch diameter casing of the Esposti Supply Well is 0.545 ft². The maximum desirable flow rate is calculated by multiplying the cross sectional area by 5 ft/sec.

Q = VA

Where:

V = entrance velocity equal to 5 ft/sec (maximum)

A = open area of the entire length of the casing (0.545 ft²)

Q = maximum pumping rate in (ft³/sec) without exceeding up-hole velocity (result of calculation is 2.7 ft³/sec)

Using the equation above, the maximum rate at which the well could be pumped before exceeding the 5 ft/sec up-hole velocity limit is 1,211 gpm.

5.12.3 Dewatering Limitation

Pumping the water down to the top of the screen would require 343 feet of drawdown, which puts the well at risk of casing collapse. This limit does not apply.

5.12.4 Annular Space Velocity Limitation

The water velocity in the annular space between the motor of a submersible pump and the well casing can be analyzed in a manner similar to the up-hole velocity discussed above. In this case, the maximum desirable velocity of 5 ft/sec will be used because of turbulence in the flow causes pressure head loss. The cross sectional area of the 10-inch diameter casing of the Esposti Supply Well is 0.545 ft². The diameter of the 8-hour zone test pump and motor is 6 inches, which results in a cross sectional area of 0.0.196 ft². Subtracting these two areas results in the cross sectional area through which the groundwater flows around the motor and up into the intake of the pump (0.349 ft²). The maximum desirable flow rate is calculated by multiplying the cross sectional area by 5 ft/sec.

Where:

O = VA

V = entrance velocity equal to 5 ft/sec (maximum)

A = open area between the submersible 6- inch motor and casing (0.349 ft²)

Q = maximum pumping rate in (ft³/sec) without exceeding a velocity of 5 ft/sec in the annular space (result of calculation is 1.75 ft³/sec)

Using the equation above, the maximum rate at which the well could be pumped before exceeding the 5 ft/sec annular space velocity limit is 783 gpm (1.75 ft³/sec). Based on this calculation the diameter of the 6-inch pump relative to the diameter of the casing will not be a limiting factor in flow rate.

5.12.5 Summary of Well Flow Rate Limitations and Pumping Rate Recommendation

The pumping rate limits are summarized in the table below:

Table 15 Summary of Pumping Rate Limiting Factors 1st Screen Zone Esposti Supply Well

Limitation	Flow Rate in gpm
Entrance Velocity	
Up-hole Velocity	1,211
Dewatering Limitation	Not Applicable
Annular Space Velocity Limit – cross section area between the submersible motor and the well casing.	783

Note:

A long-term (>24 hours) flow rate of 250 gpm (75% of 328) is appropriate given the flow rate limiting factors, reductions in well efficiency that will occur with age, and the hydrogeologic boundary that reduces Transmissivity for the Esposti Supply Well with a 1st zone isolation packer.

An appropriate design flow rate is taken as 75% of the most restrictive of the rate limiting factors. This provides a design safety factor to account for reduced well efficiency over time or hydrogeologic limitations that become apparent after long duration pumping. Therefore, the flow

rate for design purposes for the 1st screen zone when using a packer is 250 gpm (75% of 328 gpm). The contribution to flow due to packer bypass is difficult to estimate. However, considering the large increase in temperature above the packer under pumping conditions (Figure 9) packer bypass could be half of the flow. Therefore, it is estimated that the 1st screen zone can produce no more than 175 gpm (half of 250 gpm).

5.13 Esposti Irrigation Well Sampling

The Esposti Irrigation Well analytical results provide data for comparison to the analytical results from pumping the entire the Esposti Supply Well or just the upper screen of the Esposti Supply Well. The Esposti Irrigation Well operates during the spring, summer, and fall to supply irrigation water to the park. The well operates with very frequent start and stop cycles. The Esposti Irrigation Well is not metered and flow rate and total volume pumped data was not available during this test. Depth-to-water measurements were difficult to collect because of wellhead obstacles. The transducer was not placed deep enough in the well to monitor the large swings in water level caused by pump operation. When the well is pumping, the water elevation in the well drops below the elevation of the transducer.

5.13.1 Esposti Irrigation Well Water Quality

The Esposti Irrigation Well is located approximately 29 feet south of the Esposti Supply Well with two screened intervals from 100 to 220 and 240 to 300 feet bgs (Figure 2). GHD sampled the Esposti Irrigation Well and analyzed for selected Title 22 water quality parameters as a comparison with the Esposti Supply Well 8-hour pumping zone test (1st zone , 383 feet to 423 feet BTOC) and the results of the 28-hour pumping test. The Esposti Irrigation Well was running normally and the Esposti Supply Well was not pumped at the time of sample collection. The results of sampling of the Esposti Irrigation Well are summarized below in Table 16 and the lab reports are included in Appendix J. As shown in Table 16 the water meets all of the analytical standards for drinking water under Title 22 with the exception of arsenic and manganese. A comparison between the Esposti Supply Well and the Esposti Irrigation Well is available in Table A provided in Appendix K.

Constituent Analytical State MCL Drinking **Esposti Irrigation Well** Method (mg/L^1) Water Standard Units in mg/L (Unless Otherwise Noted) EPA 200.8 0.013 0.010 Arsenic Cadmium EPA 200.8 < 0.001 0.005 19 Calcium EPA 200.7 Chromium (Total) EPA 200.8 <0.010 0.05 Chromium (Hexavalent) EPA 200 < 0.001 0.01 Iron EPA 200.7 < 0.1 0.3 (SMCL) EPA 200.7 19 Magnesium 0.05 (SMCL) 1.5 Manganese EPA 200.8 7.1 Potassium EPA 200.7 Sodium EPA 200.7 31 Vanadium < 0.003 0.05 (NL) EPA 200.8 Phosphate (Total) SM4500-PE 0.95 Silica SM4500-SiO2 C 85 150 Total Alkalinity as CaCO₃ SM2320B 27 Chloride EPA 300.0 250 (SMCL) Nitrate as N <0.20 10 EPA 300.0 Nitrite as N EPA 300.0 <0.20 1.0 **Total Nitrogen** SM4500-N <1.0 Total Kjeldahl Nitrogen SM4500-NorgB <1.0 EPA 300.0 9.2 Sulfate as SO₄ 250 (SMCL)

Table 16 Analytical Results from Sample of Esposti Irrigation Well September 6, 2016 at 10:45 AM

Notes:

- Some analytical results are reported in units of μg/L these have been converted to mg/L for ease
 of comparison with water quality standards
- NA = Not analyzed

MCL = Maximum Contaminant Level

SMCL = Secondary Maximum Contaminant Level

NL = Notification Level

5.13.2 Esposti Irrigation Well Water Quality Discussion

The results of the Esposti Irrigation Well sampling represent shallow water quality from the subsurface at depths from approximately 100 to 300 feet bgs. This is 80+ feet shallower than the Esposti Supply Well's 1st screen interval. An arsenic concentration of 0.013 mg/L and high manganese concentration of 1.5 mg/L would require treatment if considered for potable use. The flow rate limitations and age of the Esposti Irrigation Well make it unsuitable as a municipal supply well.

5.14 Esposti Park Area – Summary of Aquifer Pumping Rate and Water Quality Expectations

During meetings with the Town, the concept of installing multiple new shallow wells in the Esposti Park area was considered as an alternative to bringing the Esposti Supply Well online. These concepts were discussed based on the lower concentration of arsenic in the shallower aquifer system. Although analyzing the option of new wells was not part of the scope of work of this project, much of the data presented in this Report is usable for addressing new well concepts with respect to the pumping rate and water quality. Three of these new well concepts are outlined below:

- A new well completed with a screened interval from 100 to 300 feet bgs (similar to existing Esposti Irrigation Well). This well would be expected to yield up to 200 gpm with arsenic up to 0.015 mg/L and manganese up to 1.5 mg/L. Treatment for both would be required.
- 2) A new well completed with one screened interval from 385 to 425 feet bgs (similar to existing Esposti Supply Well 1st screen interval). This well would be expected to yield up to 175 gpm with arsenic up to 0.035 mg/L and manganese up to 1.0 mg/L. Treatment for both would be required.
- 3) A new well completed with screens within the interval from 100 to 425 feet bgs (similar to combining the existing screen of the Esposti Irrigation Well together with the 1st screen interval of Esposti Supply Well). This well would be expected to yield up to 300 gpm with arsenic up to 0.025 mg/L and manganese of up to 1.25 mg/L. Treatment for both would be required.

These concepts are provided here to capture the results of analysis from this project and may be useful as a starting point for other groundwater related projects. The three concepts presented above are not provided as recommended alternative projects but for discussion purposes only.

5.15 Esposti Park Area Managed Aquifer Recharge Potential

The potential for managed aquifer recharge in the Esposti Park area utilizing the Esposti Supply Well is limited by the low hydraulic conductivity of the aquifer, poor native water quality, and physical attributes of the Esposti Supply Well as it was constructed. The hydraulic conductivity of the aquifer is relatively low because it consists of a high percentage of silts and clays. The small pore size of silt and clay aquifers make them very susceptible to clogging during the injection of water. The hydraulic conductivity for the Esposti Supply Well varies between 47 gpd/ft² to 89 gpd/ft². The lowest hydraulic conductivity referenced in Payne 2005 (Aquifer Storage and Recovery, second edition) is 40 gpd/ft². Payne identified this test well as having very rapid clogging when compared to other wells in aquifers with higher hydraulic conductivities. When operating an aquifer recharge system, frequent back flushing of the well is required to remove clogging material. Back flushing is completed by pumping the well at twice the injection rate and discharging this water to waste. Therefore, if injection is performed at a rate of 400 gpm then back flushing at a rate of 800 gpm could be expected.

Poor native water quality is a significant economic barrier to recharge by well injection. Injected water must be treated to a very high standard to remove bacteria, organics, and suspended matter. When it is recovered, it will contain both arsenic and manganese and will require treatment before use. The Esposti Supply Well was not constructed as an injection well, which is a limiting factor for its use for injecting water. While the cement well seal meets the requirements of a drinking water well it is unlikely to maintain a tight seal under injection pressures. Concrete seals tend to shrink away from the boring wall leaving a small gap or weak separation that can form a conduit for high-pressure water to migrate back up to the surface. A modern injection well has a seal design that minimizes seal bypass by high-pressure injected water. In summary, cost effective application of managed aquifer recharge in the Esposti Park area is unlikely to be successful.

Esposti Supply Well Treatment Feasibility

6.1 Esposti Supply Well Treatment Feasibility Overview

The goal of this treatment feasibility analysis is to identify key constraints and establish a planning level cost for implementing treatment for the Esposti Supply Well. This evaluation of treatment feasibility consists of a seven-step process summarized below:

- Develop a treatment system operating concept that considers water quality, flow rate, annualized operation pumping volumes, site use restrictions, and existing infrastructure limitations.
- Evaluate potential treatment options at a concept level relative to cost and fatal flaws. Summarize a short list of viable treatment alternatives.
- Evaluate and compare viable treatment alternatives for cost and application constants.
- Develop a concept level configuration of the most likely treatment option.
- Evaluate alternatives for siting this treatment system and configuration at Esposti Park.
- Develop a desktop cost analysis of the most likely treatment alternative and siting at Esposti Park.
- Compare the most viable treatment system alternative with the CEQA evaluations prepared in 2010.

6.2 Treatment System Operating Parameter Concept

The treatment system operating parameter concept developed here is based on the 28-hour pumping test, the 2010 Installation Report prepared by RMC, and discussions with the Town regarding likely operational preferences. Table 17 summarizes the key design parameters used in this evaluation. This table summarizes the most likely operational and water quality parameters of the Esposti Supply Well based on the results of this test. If the Town chooses to advance the Esposti Supply Well to the predesign stage, the parameters provided in Table 17 should be provided to the treatment equipment manufacturers for evaluation prior to pilot testing.

Table 17 Esposti Supply Well Characteristics and Design Parameters

System Operation & Parameters	
Longer-term (>24 hours) Steady State Flow Capacity (for use in pre-design)	400 gpm
Transmissivity	4,141 gpd/ft
Specific Capacity	4.2 gpm/ft
High Season Runtime	100% (24/7 during high demand months)
Annual Well Utilization	50% (Off during low demand months)
Disinfection	
Disinfectant	Sodium Hypochlorite
Discharge Point	Distribution
Well Pump	
Operation Type	On or off, non-variable flow rate, full flow only
Pressure at System Input	120 psig
Wastewater Handling	
Backwash Discharge Available?	Yes
Discharge Point	Sewer
Zero Discharge Required?	No
Treatment Options	
Bypass/Blend OK?	Yes
Spare Capacity Required?	No
Use of CO ₂ , HCl, H ₂ SO ₄ or NaOH OK?	Only CO ₂
Process Control	
System Automation	Yes
SCADA Interface	Yes
Notes	
Summary of Water Quality	
рН	7.60
Temperature	up to 80° F
ORP (EMF)	variable
Conductivity (EC)	520 μS/cm
Tannins-Lignans	<0.50 mg/L
TDS	350 mg/L
TSS	3.5 mg/L
Turbidity	0.26 NTU

Cations				
Hardness	120 mg/L CaCO₃			
Ammonia	<0.50 mg/L NH ₃			
Calcium	22 mg/L			
Magnesium	16 mg/L			
Sodium	53 mg/L			
Anions				
Alkalinity	220 mg/L CaCO₃			
Bicarbonate	270 mg/L CaCO₃			
Carbonate	<5.0 mg/L CaCO₃			
Chloride	21 mg/L			
Fluoride	0.15 mg/L			
Nitrate	<0.40 mg/L NO ₃			
Phosphate	1.4 mg/L			
Silica	50 mg/L SiO ₂			
Sulfate	14 mg/L SO4			
Metals				
Antimony	<6.0 µg/L			
Total Arsenic	57 μg/L			
Copper	<50 μg/L			
Iron	<100 µg/L			
Lead	<5.0 μg/L			
Manganese	860 µg/L			
Mercury	<1.0 µg/L			
Selenium	<5.0 μg/L			
Vanadium	<0.003 μg/L			

6.3 Potential Treatment Option Concepts

A desktop analysis of water treatment processes for the removal of both manganese and arsenic was performed. This analysis identified six treatment concepts that remove manganese and/or arsenic. Some of these processes are usually used to remove other contaminants such as high salinity. However, manganese and arsenic are non-target compounds and are removed efficiently only when in relatively low concentrations. The processes included in Table 18 removes manganese and/or arsenic in specific water treatment applications. Each treatment processes varies in complexity, cost, and operational constraints.

All of the processes listed in Table 18 remove manganese and arsenic to some degree. However, the first three listed have significant operational constraints for treating high concentrations of

manganese and arsenic. These constraints and system costs make them a poor choice for the Esposti Supply Well. The last three are all proven technologies that have relevance to potential treatment of the Esposti Supply Well. Concept applications were developed for the most relevant three processes specific to the Esposti Supply Well site with all of the constraints in infrastructure and operations. For ease of comparison, Table 18 provides only the system capital cost. The cost of site preparation and water handling appurtenances is similar for each of the treatment alternatives. Operation cost is a variable between these treatment options. However, fatal flaws in three of the six treatment options remove them from detailed consideration. The operational cost among the three that are relevant is similar so that operational cost is not a decision factor. However, operation cost is included for the most viable option (Section 6.6).

Process and Relevance to Esposti Supply Well	Relative Cap. System Cost ¹	Viability Rating
Biological – This is a new technology primarily targeting multi- This process relies on living bacteria to degrade or mineralize soluble contaminants to non-soluble forms. This technology is in fewer vendors to support installations. Operation requires continuous operation is preferred. Technology is unproven for	Moderate capital (\$0.9 M) cost, moderate operation cost, new technology, limited competition.	Poor – May require manganese. Instability of suppliers and do not align with
Membranes – Membrane treatment can remove manganese, contaminants. However, oxides of manganese and arsenic will backwash. Membranes cannot be shut down easily or remain discharge and has a very high power demand. The treated water	High capital cost (\$1.4 M), high operation cost due to power demand and frequent maintenance.	Poor – high cost, waste brine management and operational complexity do not align with project goals.
Resin Media – Resins can remove arsenic and provides simple on-off cycling with infrequent backwash. Resin regeneration can managed. Resins are also sensitive to adsorption of non-target breakthrough curve that requires frequent sampling and a Resins are not cost-effective for manganese because of the low	Moderate capital (\$0.7 M) cost, high is directly arsenic loading rate. process is required	Poor – requires removal of manganese arsenic. Resin systems management requirement. Cost and
Iron Coprecipitation – Removes manganese and arsenic. Well provide soluble iron. Oxidation of the iron produces a flocculent waste. Manganese is removed if greensand is used as a filtering	Low/Moderate capital (\$0.5 M) cost, moderate operation cost. Multiple manufacturers. Sludge management can be a significate operational cost.	method. At high arsenic, the process

Table 18 Esposti Supply Well Summary of Potential Treatment Options

Process and Relevance to Esposti Supply Well	Relative Cap. System Cost ¹	Viability Rating
Catalytic Oxidation (Greensand) – Removes manganese by greensand. This is an effective treatment for manganese but results in only partial treatment of arsenic. Backwash is required reclaimed. System can be idled with a pump-to-waste cycle at	Low capital (\$0.4 M) cost, moderate operation cost. Multiple manufacturers keep market competitive.	
Media Adsorption – Arsenic is removed by filtering the water Al. Removes arsenic with simple on/off cycling and infrequent reduced sampling frequency. Pilot testing is required to determine Media is not good for multiple contaminants including manganese. Subject to competing adsorption by non-target compounds.	Moderate capital (\$0.4M) cost, moderate operation cost. Operation cost is proportional to actual production.	Good – simple technology to operate but media use and disposal is a significant cost item.

Notes:

1 = Relative capital system cost. This cost includes only the treatment plant. It does not include the site work or appurtenances needed for all of the treatment options. Site work and appurtenances costs are relatively similar among the options. Capital costs were obtained from phone discussions with suppliers of equipment.

6.4 Comparison of Viable Treatment Options

The review summarized in Table 18 identified three treatment methods that are relevant to the Esposti Supply Well. Two of these methods treat either arsenic or manganese, not both. Because of this, these two treatment processes are combined into a two-step process to address the water quality issues for the Esposti Supply Well. The resulting treatment concepts for the Esposti Supply Well are provided below:

- One-Step Treatment Iron Coprecipitation (Figure 10)
 Iron coprecipitation completes treatment of both manganese and arsenic using an addition of ferric chloride (FeCl₂) and oxidizer to the water to form a flocculent. The formation of flocculent captures the arsenic. The flocculent is filtered out using greensand filtration such that the manganese is oxidized and retained on the greensand. This flocculent (containing arsenic) and manganese oxide is then backwashed off the filter media and sent to a backwash storage tank or direct to sewer. The concept has two potential configurations; "A" configuration that includes a backwash tank to reclaim of the backwash water (Figure 10) and "B" configuration with backwash to sewer without a backwash tank (not shown in Figure 10).
- Two-Step Treatment Combining Catalytic Oxidation with Media Adsorption (Figure 10):
 - Catalytic Oxidation (greensand) for treatment of manganese With this process an oxidizing chemical such as chlorine or permanganate is added to the raw water and then filtered over a bed of greensand. The oxidized manganese forms a loose chemical bond with the greensand and is removed from the water. The system is backwashed to remove the manganese and the greensand is continuously reactivated through the addition of oxidizing chemicals. There is no need to replace

the greensand except on a long-term basis (5 to 7 years) after the backwashing process physically breaks down the greensand. The cost of greensand replacement is minor.

 Media adsorption for treatment of arsenic – There are a variety of media on the market for the removal of arsenic. Treatment modeling of the specific water chemistry is required to narrow down the various media options. On-site pilot testing or testing using rapid small-scale column testing follows treatment modeling. Determining the exact media appropriate for the Esposti Supply Well is not critical to the cost analysis at this concept level evaluation.

The two treatment concepts are summarized in Table 19. For this evaluation, iron coprecipitation is considered a one-step process which removes both manganese and arsenic in a single treatment process. As an alternative, catalytic oxidation and media adsorption are combined in a two-step process to remove manganese and arsenic, respectively. The number and size of treatment vessels, backwash frequency, and cost of consumables are calculated from information provided by manufacturers of the respective equipment. Concept configurations of the two different treatment concepts is provided on Figure 10. For comparison, the configuration of the Esposti Supply Well if used as an irrigation well is provided in Figure 10.

Table 19 Comparison Between Viable Treatment Options

Process		Number of Vessels	Backwash Frequency	Consumable \$/Acre Ft ¹	Notes
One Step Process	S ^{2,3}				
Iron Coprecipitation (One step Manganese and arsenic removal) with two	A -System configuration with low flow rate sewer discharge (backwash tank)	Two 10-foot diameter vessels @ 200 gpm each	Every two days @ 1,245 gpm for each vessel for 10 min. each	\$510	Backwash at 1,245 gpm is in excess of sewer capacity, which requires a backwash tank of 35,000-gallons.
possible configurations A and B Vessels in parallel	B - System configuration with high flow rate sewer discharge	Three 8-foot diameter vessels @ 133 gpm each	Every two days @ 850 gpm for each vessel for 10 min. each	\$510	Backwash at 850 gpm direct to sewer discharge is near limit for dry weather sewer capacity.
Two Step Process	S ⁴				
Greensand (Step 1 - Manganese removal)		One 10-foot diameter vessel @ 400 gpm	Every three days @ 900 gpm for 10 min.	\$NA⁵	Backwash at 900 gpm direct to sewer discharge is near limit for dry weather sewer capacity.
AdsorptiveVessels in seriesMediadiameter(Step 2 -vessel @Arsenic400 gpmremoval)		vessel @	Twice a month@700 gpm for 10 min.	\$652 ⁶	Backwash at 700 gpm only to reduce compaction within bed.

Notes:

1 = Non chlorine consumable cost includes Ferric chloride, adsorptive media, and pH control. Chlorine costs are not included because of the variables in chlorine source cost require additional analysis. 2 = Hydraulic loading during filtration 2.4 gpm/ft², hydraulic loading during backwash 15 gpm/ft² 3 = Ferric chloride cost \$900/ton of 40% solution, 7 mg/L dosing concentration. Cost for chlorine feed at 6.7

mg/L Cl₂ not included in consumable calculation

4 = Hydraulic loading during filtration 5.3 gpm/ft², hydraulic loading during backwash 11.9 gpm/ft² 5 = Cost for chlorine feed at 2.3 mg/L Cl₂ not included in consumable calculation 6 = Cost for chlorine feed at 0.5 mg/L Cl₂ not included in consumable calculation

- Sewer has been tested in dry weather up to 900 gpm and flows at 65% of full pipe (dry weather)

- Backwash discharge in excess of sewer capacity requires backwash tank of 35,000-gallon capacity for all backwash inputs with 30% freeboard and slope bottom (20-foot base X 18 feet high). Sludge discharged to sewer at flow rate below sewer capacity over two-day period.

6.4.1 Selection of Treatment Option

The one-step treatment concept using iron coprecipitation requires a significant input of FeCl₂ with a resulting high volume of waste flocculent to manage. This results in either an unacceptably large backwash tank or frequent high-flow backwashing to the sanitary sewer with high iron loading to the water reclamation plant. A large backwash tank is unacceptable at Esposti Park due to significant visual impacts and site constraints. Three smaller vessels are required to reduce the backwash flow rate for the iron coprecipitation configuration B concept. Smaller tanks can be backwashed at a lower flow rate that is within the capacity of the sanitary sewer (850 gpm). However, this increases operational complexity and extends the duration of backwash operations. Backwashing with the

configuration B concept is very frequent and if the sewer were temporarily unavailable (i.e., sewer infiltration by rainfall) then water treatment would cease. For these reasons, both the configuration A and configuration B of the iron coprecipitation concept are undesirable alternatives compared with the two-step process.

The two-step treatment concept has a higher system capital cost because two tanks are needed in addition to piping and controls linking two separate systems. However, each system is less complex to operate and backwash frequency is less of a critical operational necessity. The two-step treatment alternative is the most viable option for addressing the high concentrations of both manganese and arsenic with the operational parameters desired by the Town.

6.5 Treatment System Siting Options

During various meetings with the Town, areas of Esposti Park were identified as potential locations for the installation of a treatment system. These locations are very preliminary and have not been vetted for functionality relative to the location of the well, power supply, water connection, vehicular access, and sewer disposal. They have also not been vetted relative to impacts to the residences or park operations. These locations are also not the only possibilities for a system location.

Esposti Park is a high-use facility for the Town and minimizing the impact of a treatment system is key to siting the treatment facility. Three location options are presented in this report as example locations; 1) northwest location option (Figure 11), 2) southeast location option (Figure 12), and 3) well location option (Figure 13). All three of these locations require connections to water, sewer, and power. The well location option has the highest visual impact on the park because of the central location. The southeast location option is less visible from the road but is in a highly used area near the parking lot and main ballfields. The northwest location option is the least impactful on the park but requires the longest underground piping connections. The northwest location is used in the cost analysis because it is the furthest from the well and has the longest piping runs. However, the location of the compound is not expected to significantly affect the overall project cost.

6.6 Treatment Cost

This cost evaluation considers the two-step treatment process located in the northwest corner of the park. Other system configurations and locations are possible but the cost of the overall project is unlikely to change significantly unless one or more primary design options such as flow rate (400 gpm) or end use (potable) are revised.

6.6.1 Treatment Cost - Capital Investment

Table 20 provides a summary of the line item costs associated with design and construction of a treatment system for the Esposti Supply Well.

Table 20 Esposti Supply Well Treatment Capital Cost

Esposti Supply Well Capital Cost For Two Step Treatment

Catalytic Oxidation (Mn) With Adsorptive Media (As) Conceptual Estimate for System Installation

DESCRIPTION		ΤΙΤΥ	ESTIMATE	
		UNIT	UNIT COST	TOTAL
Preliminary Design				
Location selection, survey, geotech, visual and noise impact assessments	1	LS	\$60,000	\$60,000
Preliminary CEQA analysis, assume MND with traffic, GHG models, tribal consultation	1	LS	\$50,000	\$50,000
Preliminary DoDW application and meetings	1	LS	\$12,000	\$12,000
Evaluation of specific vendor designs and requirements	1	LS	\$4,000	\$4,000
Evaluation of power connection for site	1	LS	\$4,000	\$4,000
Install permanent pump for 400 gpm system and power ¹	1	LS	\$25,000	\$25,000
Sewer capacity evaluation, field verification, permit application ²	1	LS	\$15,000	\$15,000
Pilot testing of Cat. Oxidation (Mn) - field trailer and well pumping @ 400 gpm	1	LS	\$30,000	\$30,000
Rapid small scale column tests (RSSCT) of 3 media (As) ³	3	EA	\$7,000	\$21,000
Preliminary Design subtotal				\$221,000
Basis of Design Report				
Report to compile predesign results and finalize treatment process	1	LS	\$18,000	\$18,000
Basis of Design Report subtotal				\$18,000
Detailed System Design and Bid Package				
Prefabricated treatment plant design coordination with manufacturer ⁴	1	EA	\$3,500	\$3,500
Site Design (site, power, and piping connections) 15% of contractor site work subtotal ⁵	1	LS	\$69,107	\$69,107
Bid package and engineering bid support	1	LS	\$8,000	\$8,000
Design subtotal				\$80,607
Permitting Final Documents				
CDPH Negotiations and Meetings due to SRF Loan	1	EA	\$5,000	\$5,000
CEQA Mitigated. Neg. Dec. with visual impact map and construction mitigation plan	1	EA	\$22,000	\$22,000
Sewer discharge permit application	1	EA	\$4,000	\$4,000
Permitting Document subtotal				\$31,000

Esposti Supply Well Capital Cost For Two Step Treatment					
Catalytic Oxidation (Mn) With Adsorptive Media (As	s) Conceptua	al Estima	te for System Insta	llation	
DESCRIPTION		ΓΙΤΥ	ESTIMATE		
DESCRIPTION	NUMBER	UNIT	UNIT COST	TOTAL	
Prefabricated Treatment Plant					
- Filter tanks (two 10-foot diameter vessels)				incl	
- Tank internal distributors				incl	
- Initial filter media				incl	
- Headers and interconnection piping				incl	
- Filter flow sensors				incl	
- Filter control panel				incl	
- Backwash controls and booster pump (no sludge handling or backwash tank)				incl	
Prefabricated Treatment Plant with shipping	1	LS	\$450,000	\$450,000	
Sales tax at 8.25% of total				\$37,125	
Treatment Plant subtotal				\$487,12	
Site work and installation of prefabricated treatment plant					
Markup on purchase of prefabricated treatment plant (10%)				\$48,713	
Grade and soil support for treatment plant	1	LS	\$30,000	\$30,000	
Cement pad for treatment plant and gravel access	1	LS	\$30,000	\$30,000	
Unit Install	1	LS	\$12,000	\$12,000	
Chemical metering and Delivery System	1	EA	\$16,000	\$16,000	
Chemical System Install inside small prefabricated enclosure	1	LS	\$11,000	\$11,000	
pH adjustment system (assume CO2)	1	LS	\$35,000	\$35,000	
Process Piping inside treatment plant compound	1	LS	\$55,000	\$55,000	
Pump booster for backwash water to sewer	1	LS	\$10,000	\$10,000	
Backflow prevention	1	LS	\$6,000	\$6,000	
Site Electrical Design Modifications	1	LS	\$24,000	\$24,000	
Process Controls and Integration	1	LS	\$12,000	\$12,000	
Fence and visual screening of treatment tank (redwood panel)	1	LS	\$12,000	\$12,000	
Power connection (overhead, new lines)	300	FT	\$100	\$30,000	
Raw water well to treatment plant buried in road (4-inch)	400	FT	\$150	\$60,000	
Treated water to distribution with backflow prevention buried in road (4-Inch)	100	FT	\$150	\$15,000	
Sewer line connection backwash tank to S130 buried in road (4-inch force)	600	FT	\$120	\$72,000	
Contractor Site Work subtotal				\$460,713	
Contractor Site Work and Prefabricated Treatment Plant subtotal				\$947,838	
General Conditions (8%)				\$75,82	
Bond / Insurance (2%)				\$18,95	
O&P (18%)			<u> </u>	\$170,61	

Esposti Supply Well Capital Cost For Two Step Treatment

Catalytic Oxidation (Mn) With Adsorptive Media (As) Conceptual Estimate for System Installation

DESCRIPTION	QUANTITY		ESTIMATE	
	NUMBER	UNIT	UNIT COST	TOTAL
Contractor site work with prefabricated treatment plant subtotal				\$1,213,232
Construction Management (15% contractor site work subtotal)				\$69,107
Subtotal \$1,632,94				
Predesign-Level Estimating Contingency (30%)				\$489,884

Predesign-Level Project Budget Estimate (2016 Dollars)

1 - Installation of the well pump is required for pilot testing and sewer flow confirmation. The cost and use of a temporary pump is high.

2 - A detailed sewer evaluation is required to verify that the sewer capacity is available under all backwash conditions. Backwash events may be restricted to times when capacity is available.

3 - Many equipment vendors offer field pilot test services for catalytic oxidation (greensand filtration) for removal of manganese (Step 1). During the field pilot test, three-200 gallon samples of the treated water are collected and sent to UC Davis for Rapid Small Scale Column Test of media for removal of arsenic (Step 2).

4 - Design services are for the purpose of specifying the performance of the equipment package. The treatment system manufacturer will provide process and equipment design specific to their systems.

5 - Design services are for the required site work to connect the prefabricated treatment plant to the Town's distribution system. Owner/Consultant designs raw and treated water connections, waste handling, reagent storage, and dosing systems and pH control.

6.6.2 Treatment Cost – Annual Operation

Table 21 provides a summary of the line item costs associated with operation and maintenance of a two-step treatment system for the Esposti Supply Well.

\$2.122.829

Esposti Supply V		-		9 M
Catalytic Oxidation (Mn) With Adsor			ESTIN	
DESCRIPTION	NUMBER	UNIT		TOTAL ANNUAL
Monthly Costs				
Monthly non-disinfection consumable (media replacement)	6	Month	\$34,575	\$207,450
Monthly power due to well pump and treatment system (150hp total @ \$0.15/KWhr)	6	Month	\$12,150	\$72,900
Disinfection	6	Month	\$2,500	\$15,000
Compliance reporting	6	Month	\$2,500	\$15,000
Labor	6	Month	\$3,200	\$19,200
Sampling and analysis	6	Month	\$2,000	\$12,000
Additional training and/or operator license	6	Month	\$1,000	\$6,000
Long-Term Maintenance Costs				
Catalytic oxidation (greensand plus) replacement (Mn)	0.2	Year	\$35,000	\$7,000
Non-routine analysis	6	Est	\$500	\$3,000
Equipment repair and replacement average annual	6	Month	\$1,500	\$9,000
Predesign-Level Annual Operation Budget Estima	ate		Annual Cost	\$366,550
Assuming 324 Acre-ft./Year production ¹			\$/acre-ft.	\$1,131

Table 21 Esposti Supply Well Operation Cost

1 - Assume system operation at 400 gpm 24 hours/day for 183 days/year, amortization of capital cost not included

6.7 CEQA Analysis

Replacement of the Town's existing Esposti Irrigation Well was considered as Project W-2 in both the Water Master Plan and the associated programmatic EIR. This project was proposed in the Water Master Plan to provide a renewed water supply to meet existing and future demands and evaluated at a project-level in the associated EIR.

As described in the EIR, the Esposti Supply Well was the well installed in the spring of 2010 with an anticipated production capacity between 270 and 1,000 gpm. At the time of well construction, preliminary examinations of the groundwater in the vicinity of the well indicated that water extracted from this site may require treatment to reduce naturally-occurring concentrations of manganese, iron and/or arsenic in groundwater. As such, construction and operation of a new disinfection and treatment facility at the Esposti Park site, including space for chemical storage, was anticipated and evaluated in the EIR. The treatment system and chemicals evaluated would utilize a wellhead treatment system for manganese, arsenic, and potentially iron, as well as an updated chlorination

system. The treatment system would include a horizontal treatment tank approximately 4 feet in diameter and 6 feet long. The type and quantity of treatment chemicals, and the size of chemical storage tanks, would be determined after additional testing. However, use of ferric chloride (flocculation), sodium hypochlorite (disinfection), and sodium hydroxide (pH adjustment) would likely be required. The treatment system would be housed in a new pump and water treatment building constructed of concrete masonry unit with a metal roof, between 1,000 and 2,500 square feet (sq. ft.) in size and similar in appearance to the existing restroom facilities at the park. The roof would be removable so that the pump can be removed for maintenance, and the building would have an exterior designed to blend in with the park and surrounding structures. The total footprint of the replacement well and facilities at this site would not extend beyond the parcel boundary of the park.

The Esposti Park project (Project W-2), as evaluated in the EIR, assumed that during periods of maximum production the well pump would run 24 hours per day. Motor noise would be negligible at the site because pump motors would be installed below ground (submersible pump type) or within the pump and treatment building (top set motor with turbine bowls). Lighting on the exterior of the buildings would be limited to standard door lights that would be set on timers or remain off at night.

To evaluate CEQA requirements on the current work conducted for this feasibility study and described herein, a long-term production rate of 400 gpm is recommended for the Esposti Supply Well. Groundwater produced from the well contains arsenic at concentrations of approximately 0.060 mg/L and manganese at concentrations around 1.0 mg/L. These concentrations are above the drinking water standards; therefore, treatment will be required prior to use as a potable supply. Testing has indicated that a two-stage treatment process is appropriate for the site, consisting of green sand to remove manganese followed by media treatment to remove arsenic. A treatment system sized for a production rate of 400 gpm would consist of two vertical tanks, approximately 12 feet in height, for the greensand and media treatment, and one horizontal tank, approximately 9 feet in height, for a contact tank. These tanks could fit within a space approximately 40 feet by 45 feet (or approximately 1,800 sq. ft.), along with a disinfection and oxidation building and the well connection. This treatment system could be located at one of three locations within Esposti Park (as sited depending on proximity to both the drinking water distribution and sanitary collection system pipelines) in the northeast corner of the park, in the southeast corner of the park, or immediately adjacent to the Esposti Supply Well (Figures 11, 12 and 13, respectively).

As configured herein, the treatment system fits within the size parameters evaluated within the programmatic EIR; the treatment system requires 1,800 sq. ft. of space, less than the maximum 2,500 ft² evaluated in the EIR. However, the 12-foot tall tanks require a much larger building if the system is to be enclosed inside a structure. The size of the treatment tanks assumed in the EIR was much smaller than those needed based on the recent testing. The site locations described herein assume a fenced enclosure for the treatment system (instead of a treatment building) because access for maintenance is available from outside of the fence line within the 20-foot easement (Figure 10). This change in facility size and design was not evaluated in the programmatic EIR. If these options are to be considered, it is recommended that an initial study (IS) be conducted to identify which impact areas may need to be re-evaluated and the appropriate level of environmental documentation to be prepared. At a minimum, it is anticipated that aesthetics (visual), noise, and traffic impacts may be different for a treatment system constructed and operated

as described herein (versus in the programmatic EIR). For planning purposes and assuming that no additional significant unavoidable impacts are identified as part of the IS, it is assumed that a Mitigated Negative Declaration (MND) will be sufficient for meeting the requirements of CEQA. Additionally since the completion of the program-level EIR, AB52 has gone into effect. AB52 requires consultation with interested Native American Tribes. Therefore, AB52 consultation should also be initiated as part of the CEQA process.

7. Scope and Limitations

This Report: has been prepared by GHD in association with Hazen and Sawyer for the Town of Windsor and may only be used and relied on by the Town of Windsor for the purpose agreed between GHD and the Town of Windsor. GHD otherwise disclaims responsibility to any person other than the Town of Windsor arising in connection with this Report. GHD also excludes implied warranties and conditions, to the extent legally permissible. The services undertaken by GHD in connection with preparing this Report were limited to those specifically detailed in the Report and are subject to the scope limitations set out in the Report. The opinions, conclusions, and any recommendations in this Report are based on conditions encountered and information reviewed at the date of preparation of the Report. GHD has no responsibility or obligation to update this Report to account for events or changes occurring subsequent to the date that the Report was prepared. The opinions, conclusions, and any recommendations in this Report are based on assumptions made by GHD described in this Report. GHD disclaims liability arising from any of the assumptions being incorrect. If GHD has relied on information provided by the Town and/or others when preparing the document: GHD has prepared this Report on the basis of information provided by the Town of Windsor and others who provided information to GHD (including Government authorities). which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the Report which were caused by errors or omissions in that information. The opinions, conclusions, and any recommendations in this Report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points. Investigations undertaken in respect of this Report are constrained by the particular site conditions, such as the time of year and rainfall conditions. As a result, not all relevant site features and conditions may have been identified in this Report. Site conditions may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this Report if the site conditions change.

Figures

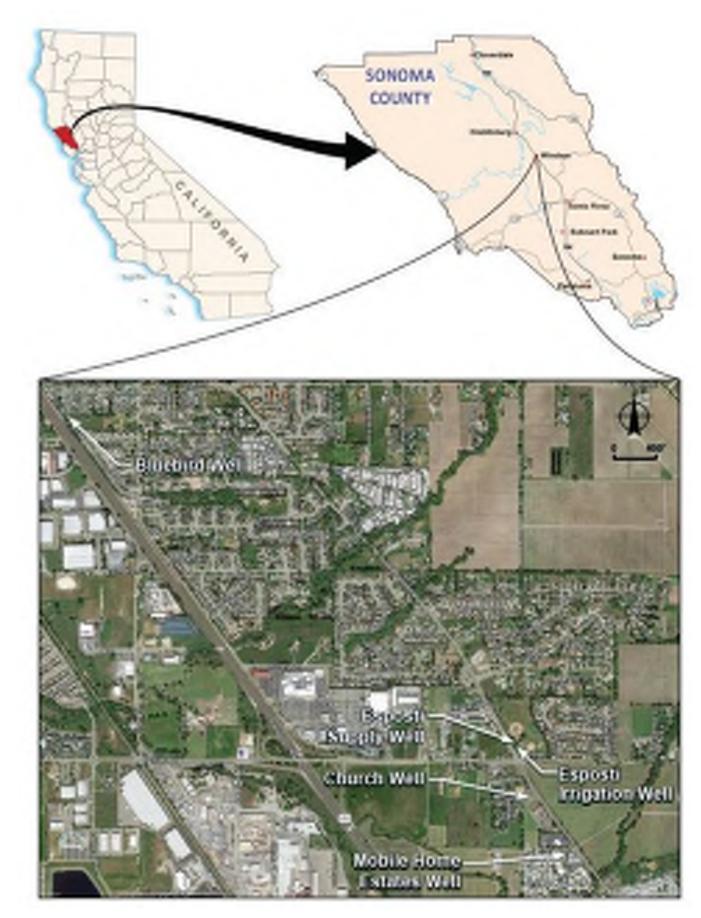


Figure 1 Site Location

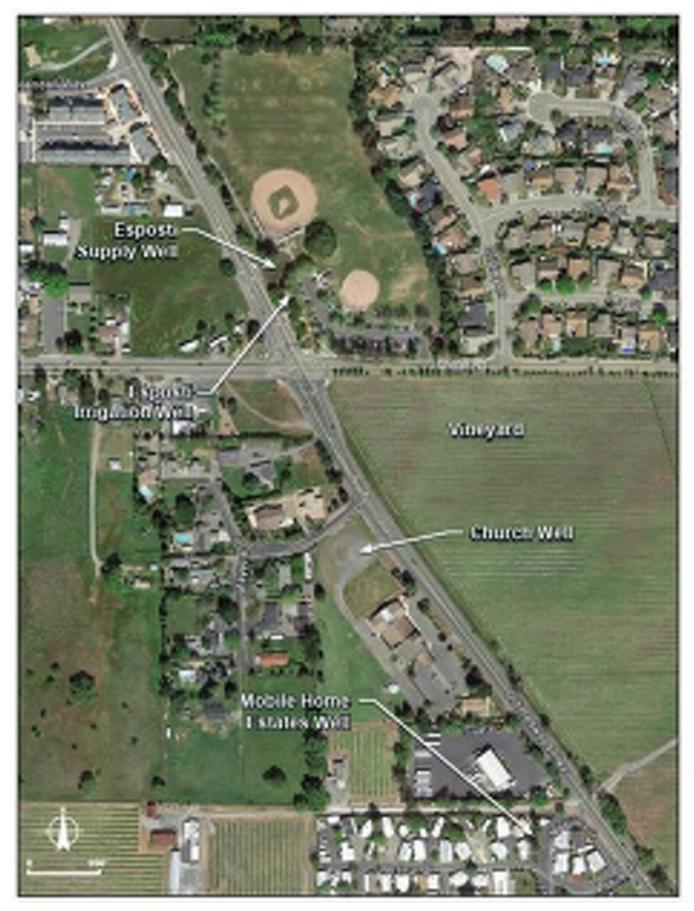


Figure 2 Aerial Location Map

Figure 3 Esposti Supply Well With Camera Tool

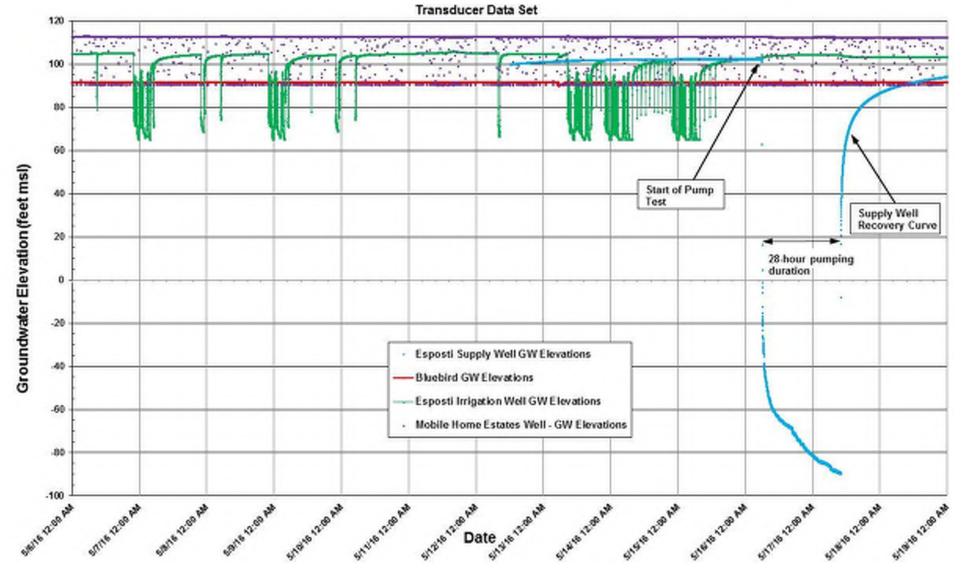


Figure 4 28-Hour Pumping Test All Wells

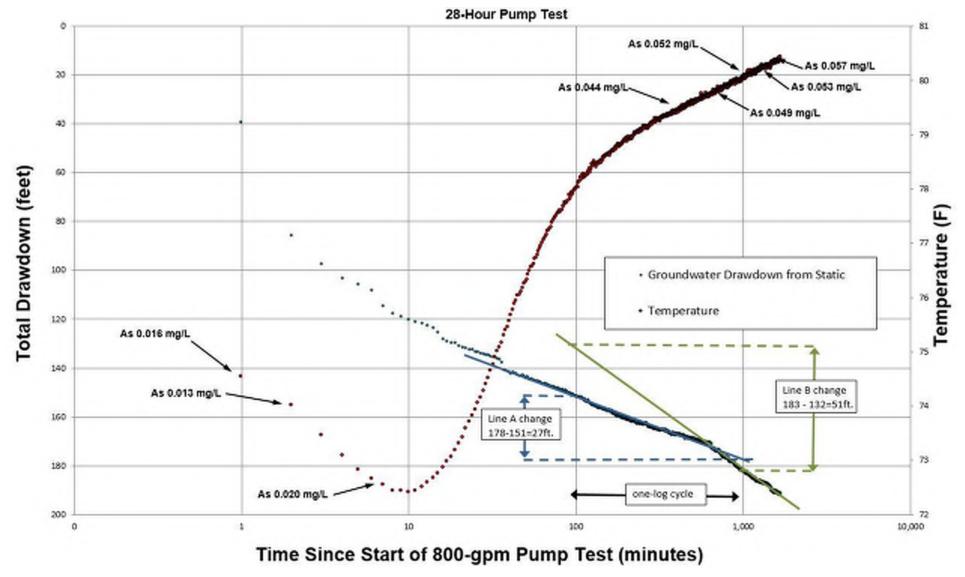


Figure 5 28-Hour Pumping Test Semi-Log Plot

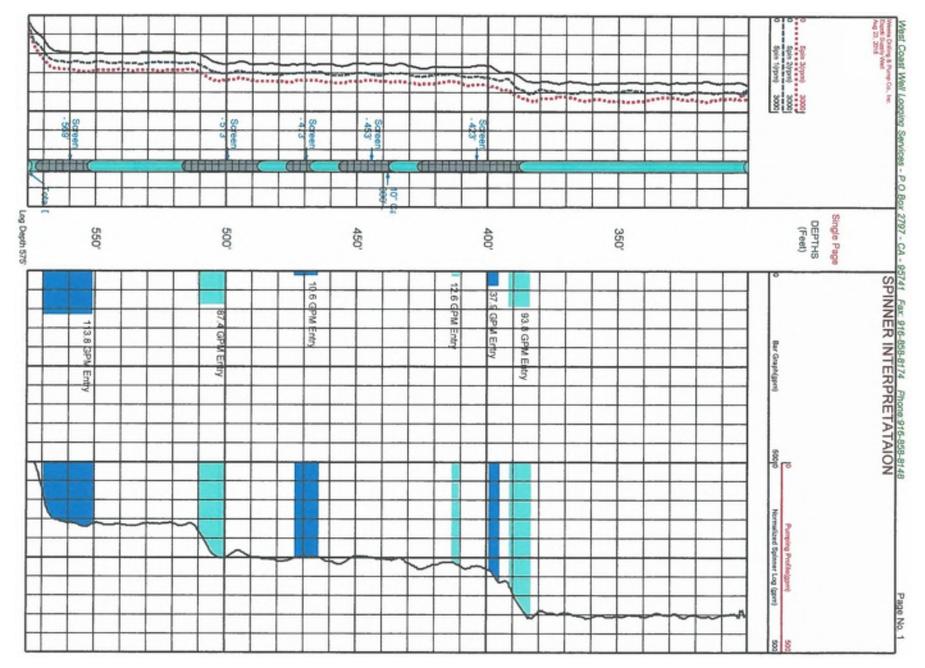


Figure 6 Active Spinner Log 400 gpm Pumping Rate

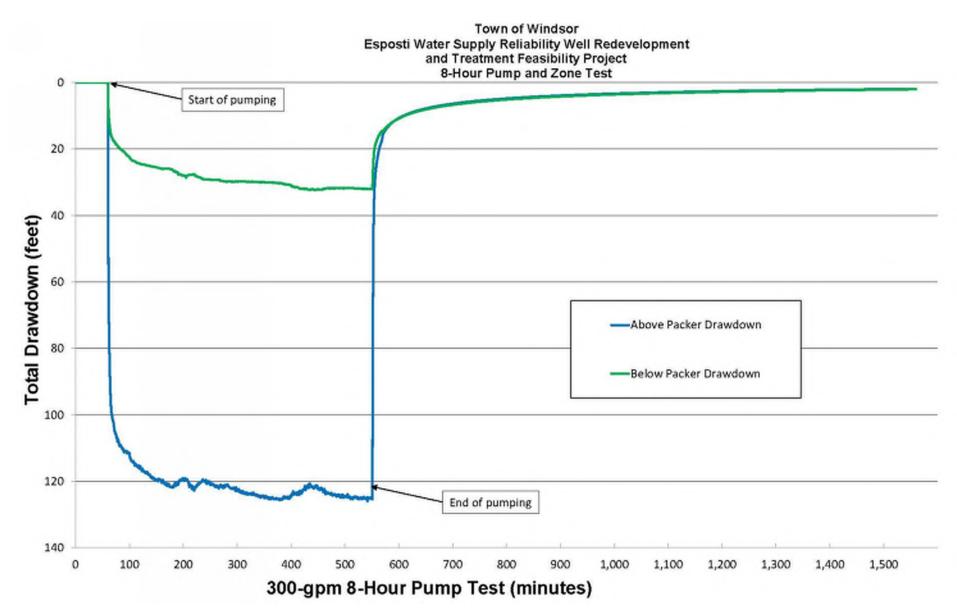


Figure 7 8-Hour First Screen Zone Test Above and Below Packer Groundwater Drawdown

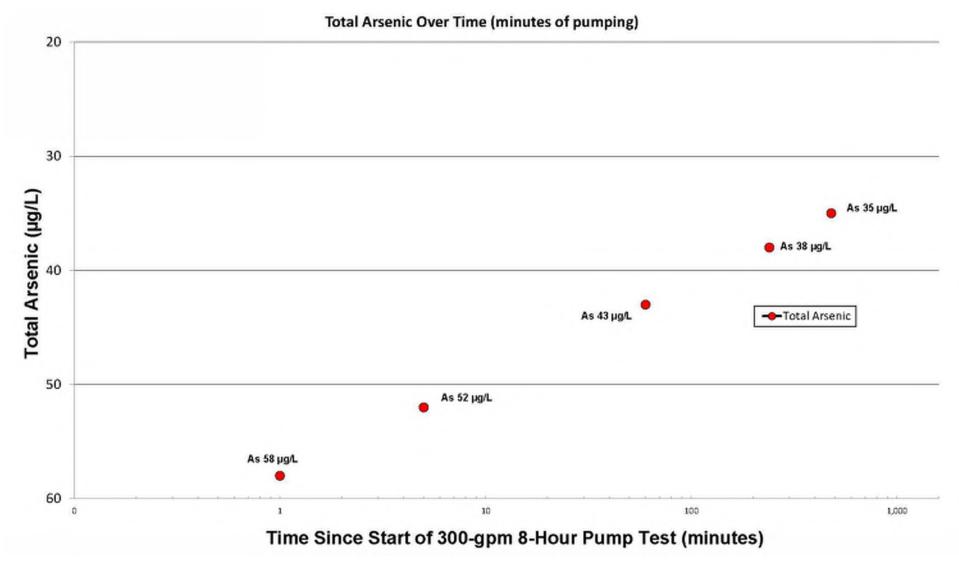


Figure 8 8-Hour First Screen Zone Test Arsenic Concentrations

Town of Windsor Esposti Water Supply Reliability Well Redevelopment and Treatment Feasibility Project

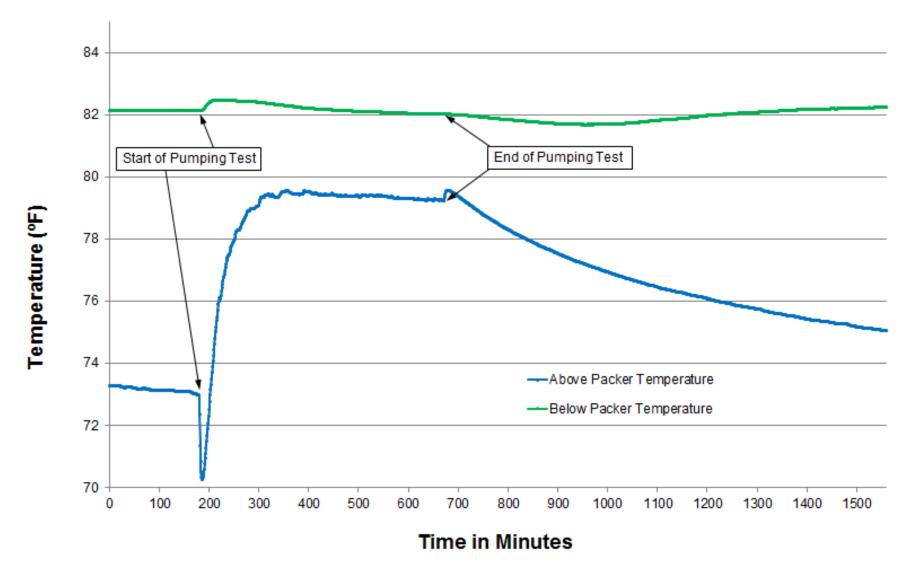


Figure 9 8-Hour First Screen Zone Test Temperature Above and Below Packer Groundwater Drawdown

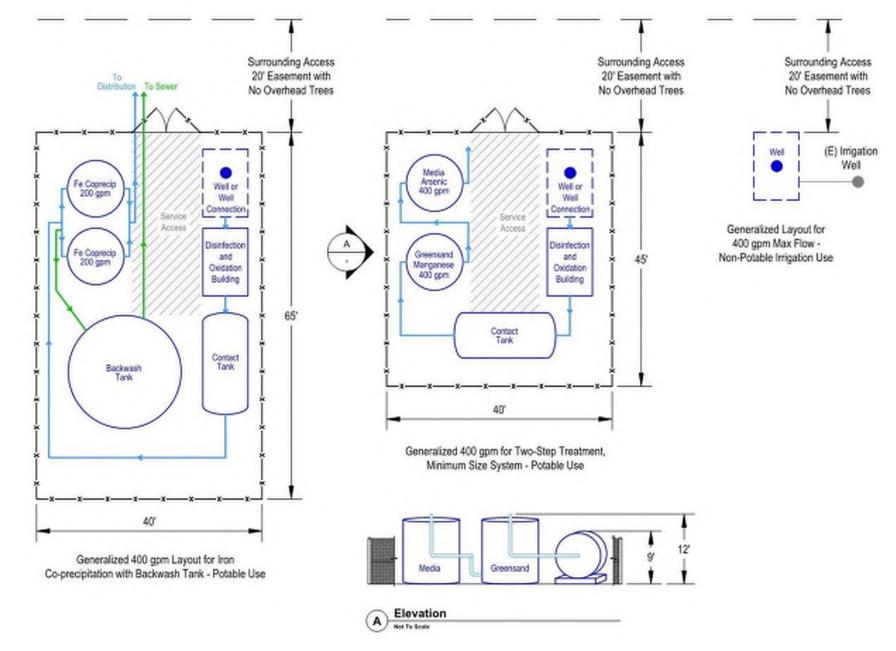


Figure 10 Compound Options

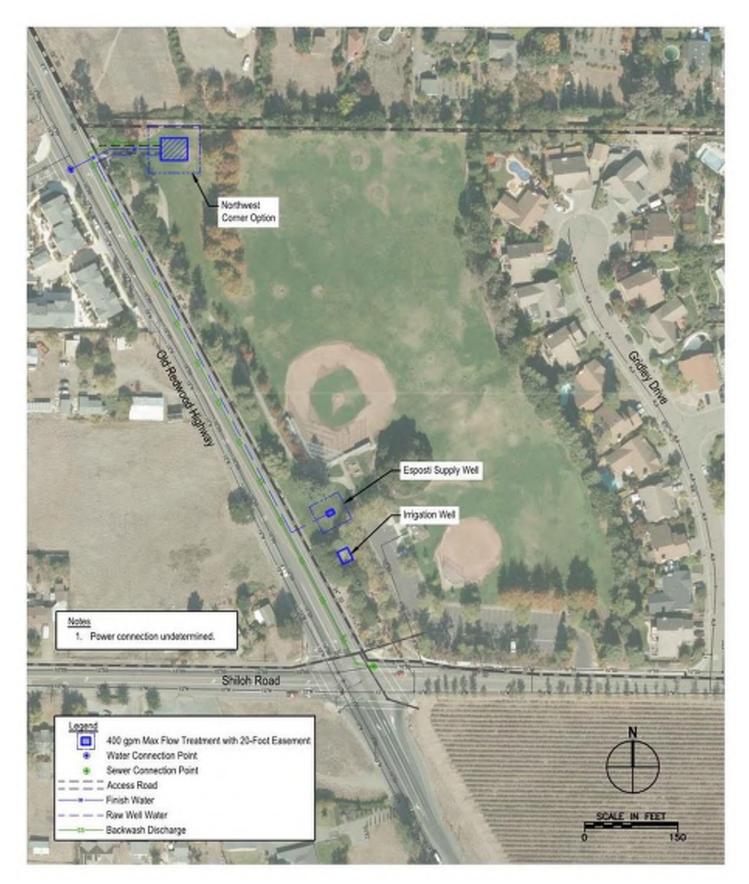


Figure 11 System Location, Northwest Option

Figure 12 System Location, Southeast Option

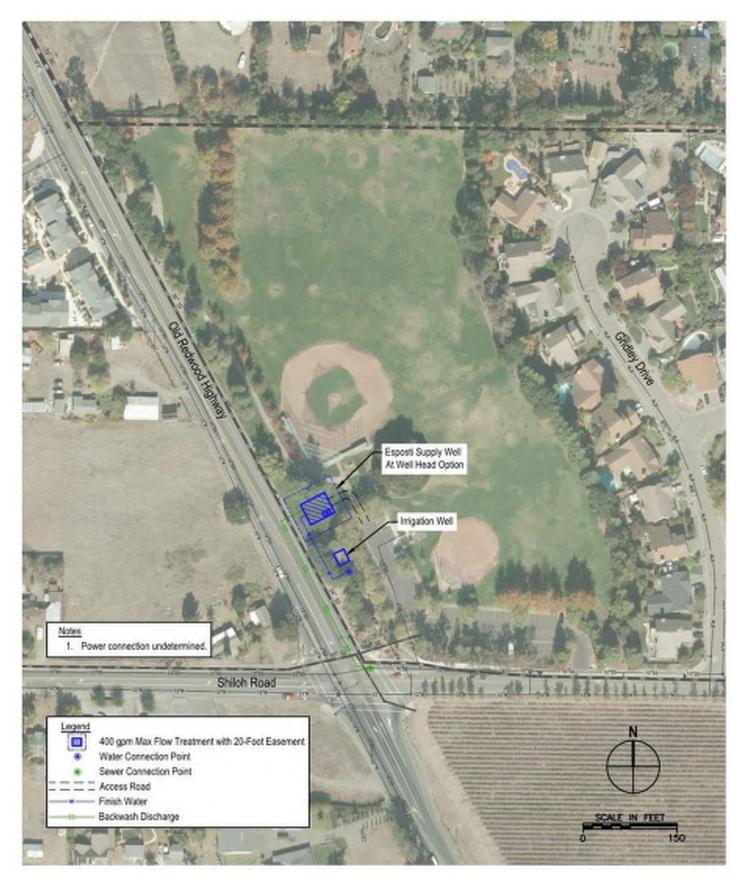
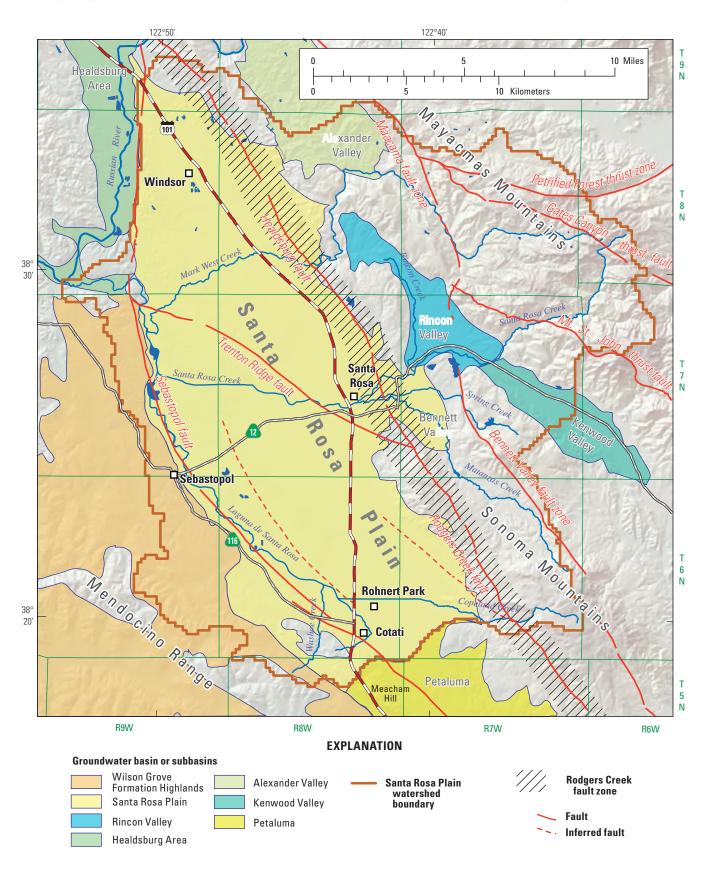
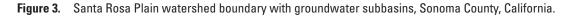


Figure 13 System Location, Well Option

Appendix A – Figures from Governmental Agencies Related to Esposti Well Hydrogeology

Prepared in cooperation with the Sonoma County Water Agency


Hydrologic and Geochemical Characterization of the Santa Rosa Plain Watershed, Sonoma County, California



Scientific Investigations Report 2013–5118

U.S. Department of the Interior U.S. Geological Survey

10 Hydrologic and Geochemical Characterization of the Santa Rosa Plain Watershed, Sonoma County, California

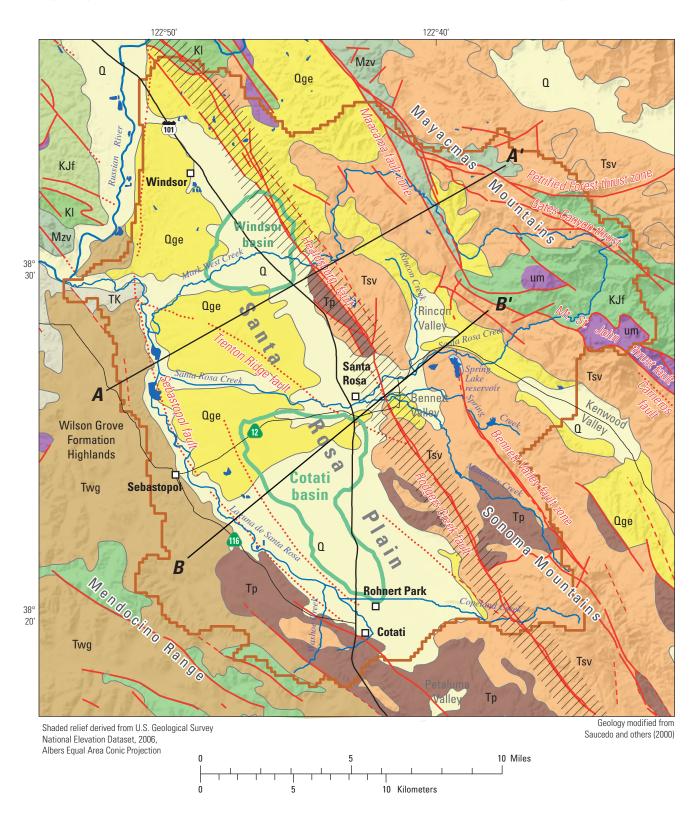
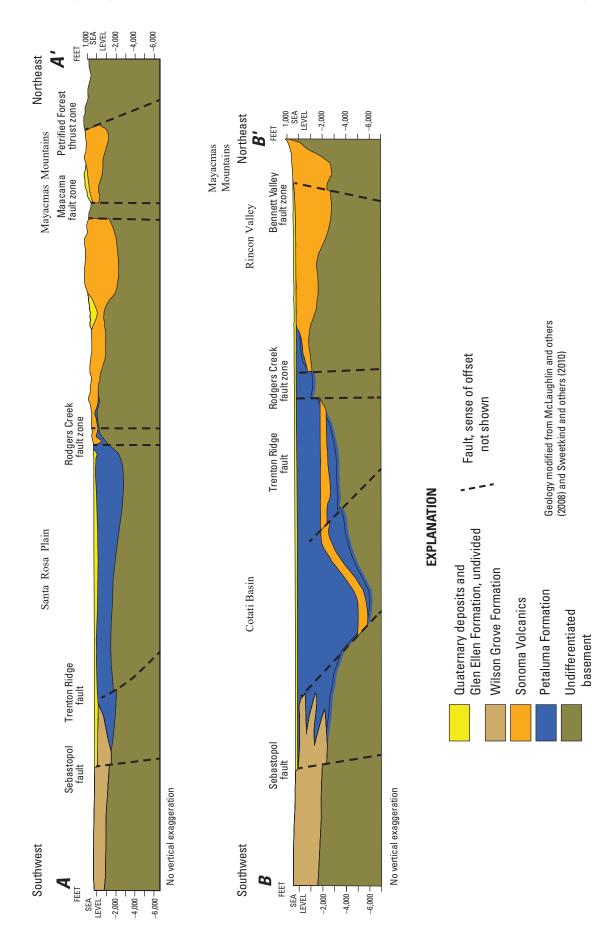
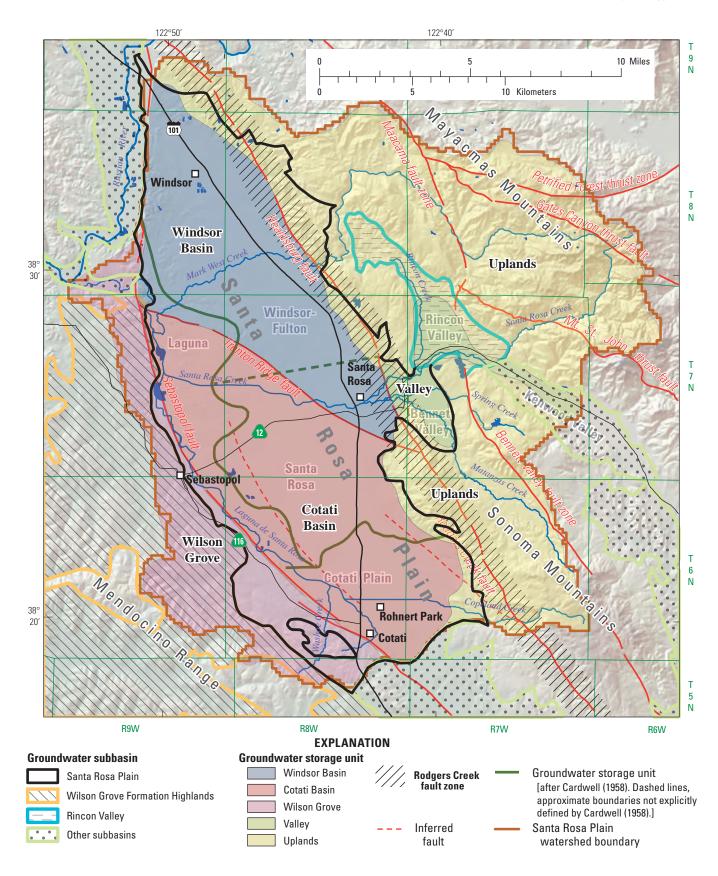
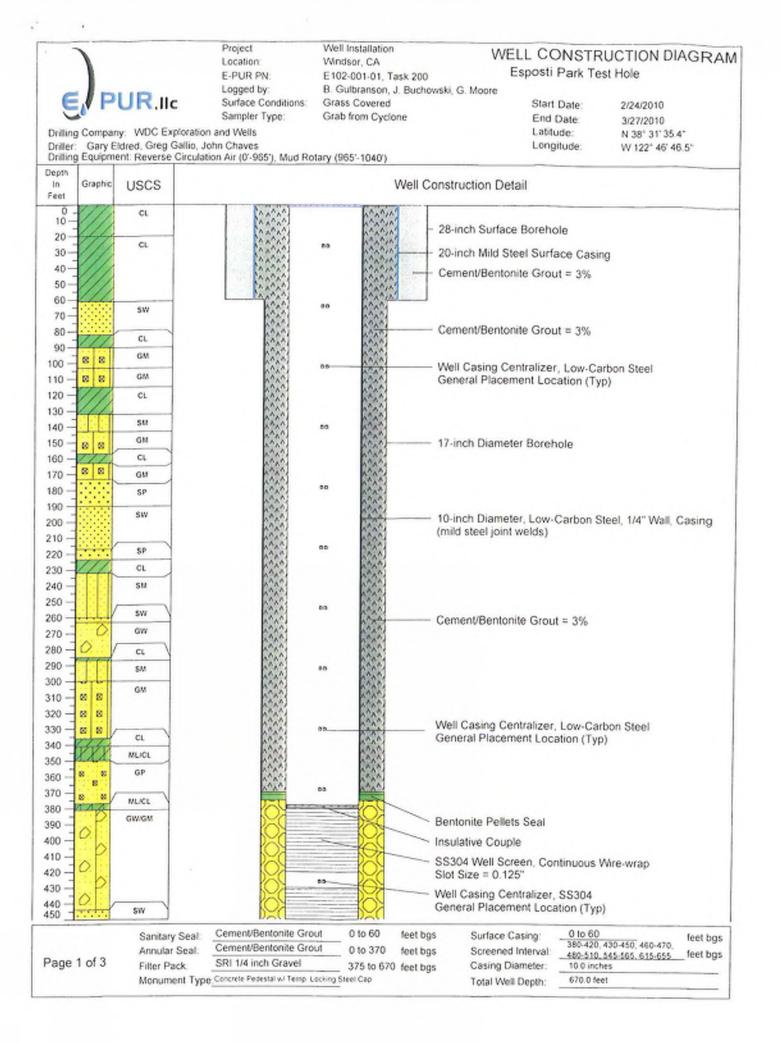
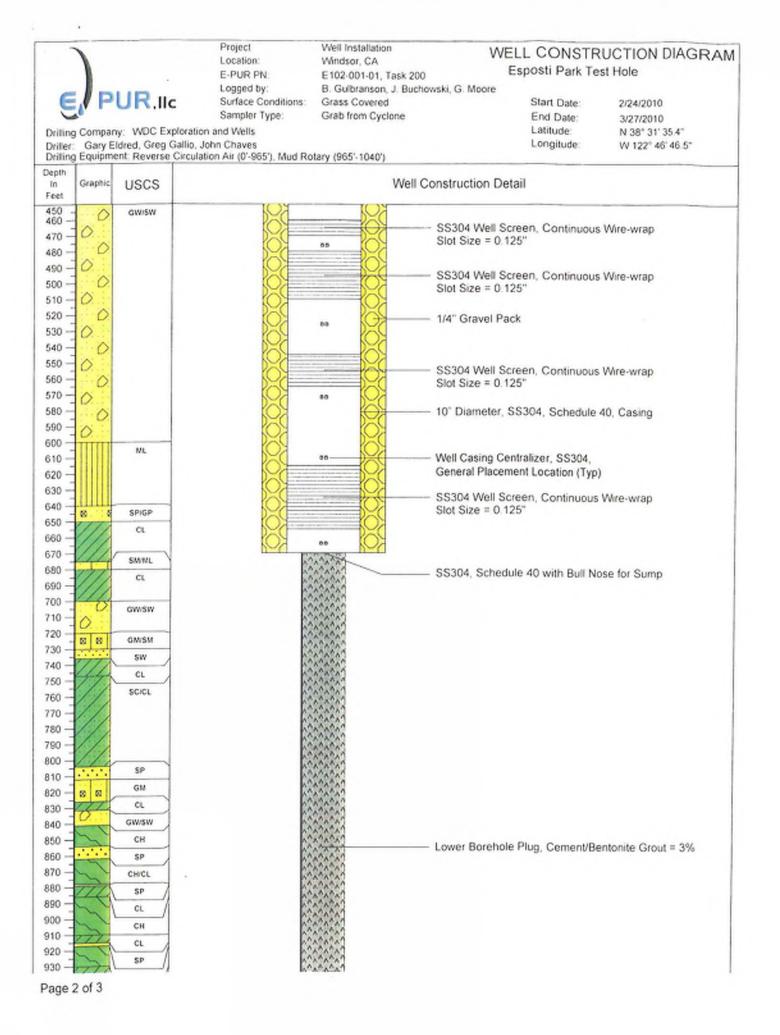



Figure 1. Santa Rosa Plain watershed, Sonoma County, California.



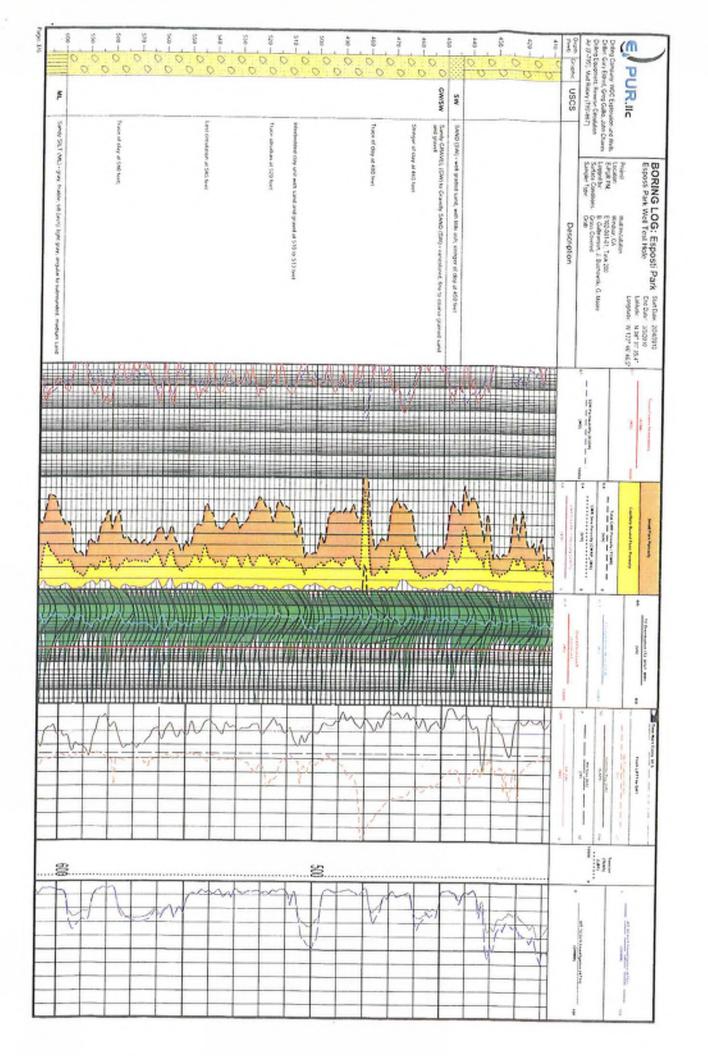

Figure 24. Groundwater basins, subbasins, and storage units in the Santa Rosa Plain watershed, Sonoma County, California.

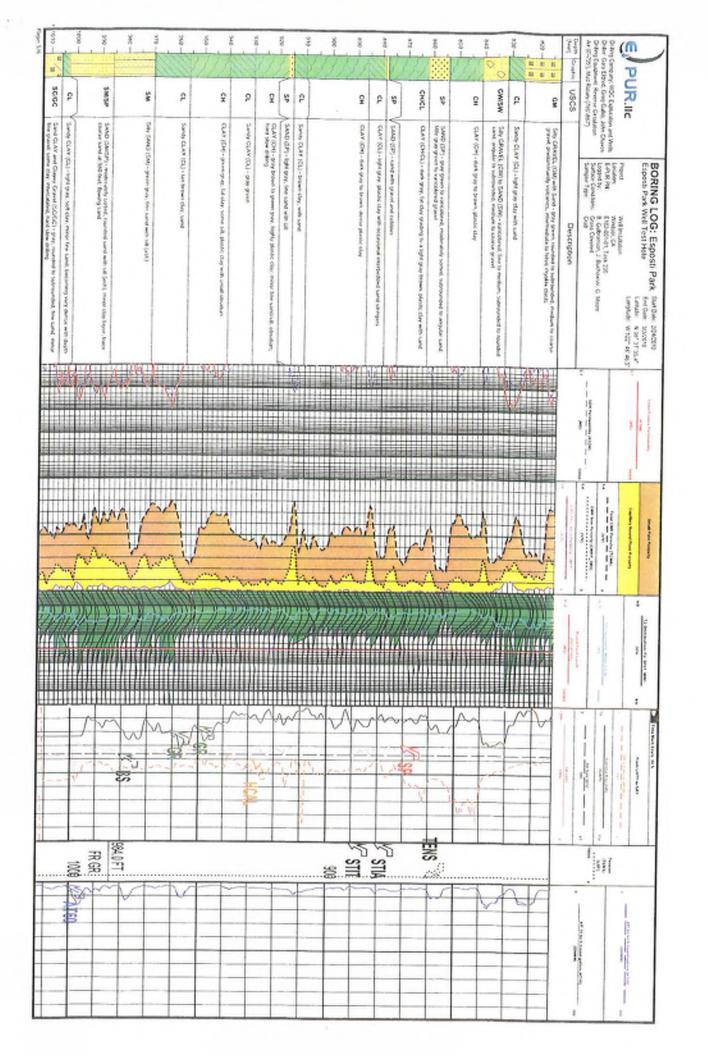

Appendix B – Well Installation Well Logs: Esposti Supply Well, Esposti Irrigation Well and Bluebird Well

*The free Adobe Reader may be used to view and comple	te this form. However, software mi	ust be purchased	to comp	lete, save	e, and reu	se a saved l	form.	
File Original with DWR	State of Cali				Ď	WR Use Or	ıly – Do	Not Fill In
Page <u>3</u> of <u>3</u>	Well Completion Refer to Instruction		t				T	
Owner's Well Number Esposti Park #1	No. e011330				St	ate Well Nu	mber/Sil	
Date Work Began 02/24/2010 Dat	e Work Ended <u>3/27/2010</u>				Latitude			Longitude
Local Permit Agency <u>Sonoma County Permit ar</u> Permit Number <u>WEL 09-0438</u> Permit I	10 Resource Management I Date _1/20/10	Dept			l.	L I АРМЛ	II TRS/Oth	
Geologic Log					Mo	l Owner		
Orientation Overtical Overtical	OAngle Specify	- Name Tow	un of V	Vindeor		i Owner		······································
Drilling Method Mud Rolary	Drilling Fluid Bentonite mud	Mailing Add						······
	scription al. grain size, color, etc							Zip <u>95492</u>
SEE ATTACHED	n, grant size, color, etc					Location		
	<u> </u>	Address <u>6</u>	000 0	ld Rody			I	
		City Winds					unty Sr	200ma
		Latitude 3	38	31	35	N Longitu	ide 12	22 46 46 W
			Dea	Min.	Sec.	H LongAo	D	eo Min. Sec. mal Long
		Datum		Decima	I Lat.		_ Decir	mal Long.
		APN Book_						
		Township _						on
		(Sketch must		t ion Sk e h by hand a		printed.)		Activity
				North				odification/Repair
								Deepen
	······································	-					O De	Otherestroy
							De uni	sonbe procedures and materials der "GEOLOGIC LOG"
	· · · · · · · · · · · · · · · · · · ·							Planned Uses
								ater Supply
		ts.				st		Domestic
		West				East	_	thodic Protection
								ewatering
							-	at Exchange
							O Inje	
	and the second second		ι.		,			onitoring mediation
		See	.41	tach	Id		O Sp	
				South	~~4		O Te	st Well
		Hustrate or describe			ads, building	s, fences,		por Extraction
		Please be accurate	ch a map. 1 é and comp	Ute additiona plete	s baber i vec	essary.	O Oth	her
		Water Leve	el and	Yield o	of Com	pleted W	ell	
		Depth to firs Depth to Sta		21			_ (Feet	below surface)
		Water Level			(Fee	t) Date M	Measur	ed_04/10/2010
Total Depth of Boring 1040	Feet	Estimated Y						onstant Rate
Total Depth of Completed Well 670	Feet	Test Length						own <u>79 (</u> Feet)
	*	*May not be	repres	entative	of a wel			
Depth from Borehole	ings Wall Outside	Screen Slo	ot Size	Dent	h from	Annula	ir Mate	erial
Surface Diameter Type Mate Feet to Feet (Inches)	riai Thickness Diameter	Type if	f Any	Su	face	Fill		Description
655 670 17 Blank 304 Stainles	······································		iches)	0	to Feet 370	Cement		
670 1,040 Cement				370	371	Bentonite		
				371	670	Filter Pack	< 1	1/4
							<u> </u>	
			10		l]		
Attachments	I, the undersigned, certify that			on Stat		the best	of my b	powledge and holiof
Well Construction Diagram	Name <u>for Moreland for V</u>	VDC Explorat	ion an	d Wells			- пук	nomedye and beller
Geophysical Log(s)	Person, Firm or Corpora 9580 County Road 93 B	иол	Zamo	ora	-	CA	<u> </u>	695
Soil/Water Chemical Analyses Other Site Map	Signed Address	2/	2	City	7-23-1	Stat	te	Zip
Attach additional information, if it exists.	C-57 Licensed Water We	ell Contractor		,	Date Sig		3326 57 Licer	nse Number

DWR 188 REV. 1/2006

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM




e) P	UR,IIc	Project Location: E-PUR PN: Logged by: Surface Conditions: Sampler Type:	Well Installation Windsor, CA E 102-001-01, Task 200 B. Gulbranson, J. Buchowski, C Grass Covered Grab from Cyclone	Esposti Park Te	2/24/2010
Driller: Gary El	y: WDC Explorate Idred, Greg Gallio, ent: Reverse Circula	on and Wells		Latitude: Longitude:	3/27/2010 N 38" 31' 35.4" W 122" 46' 46.5"
Nepth In Graphic Feet	USCS			uction Detail	
940	CH	ŝ	66663		
60	СН		26262		
170	CL	2			
90	SMISP				
10	CL				
20 - 0 / 0	sc/GC				
130 - 777	CL	X	222021 222021		

No. 1	8		5	8		8	÷.,	ie -	181	5 E E	1.	8	8	a Lute	S	8	1	8 [15	5 L	-		Delet d Delet d Delet d	(
			R R	0		8.6				B. E. R	8.8 E	1							1	111		Graphics	any boot	5
	W	4	5	1		C M	SM		٩	GM	ŝ	5		SW					۹		6	USCS .	Detery Cenyany, NGC Esponses and Meb. Deters Ceny Botes, Cong Callo, John Chaes Deterg Ecoperant Roverse Columbia Ar (8-775), Mut Rouny (79(1887))	PUR.IIc
	Sand (Sw) - See Is your	SAND (CP) - kallouboved, so kounded and housed quarter	State and like	the second cases	Currently and the	Sity GRANEL (GM) - as above	Say SAVD (SM) ubergular to su		Say CLAY (CL)	Sandy Gewords rounded to sub-	Grandly SAND sand, some, var sit, Grand class	Santy OLAY (C		SAMD (SDD) - N				the of subgroups	Grandy CLAX		Sundy CLAY (S to coarse, subs			
	e to coasse used, well praced, unitial in angulasity and collar to above.	SOUNDER, Understandend für Fragmönde fins to tradition Land, ubstandaust send	pravet werth take obtained, wereveren to be proved, contrast, tree - underregister to verterverveland pravet well's take obtained, were's of unity same, tree to revoluers granned, unity are to verterverveted.	annih crine (cri) i fibi jesteri, (trik) (stod		GMJ - at above with five gravel is coarse sand, surcoiding	Saty SAMD (SM), specifyeen, pronty somet, invened to subcounted, the savel, twe, sublengular to subcounted grawely with save coston.		Safe GLAY (CL) - Kan proving term, plottle days with self and their sand	Sanny Geluxi (S. 1044) - sakelalaset shangarg to graven/gray, poorty votres, tree isi medium, roondara iti sahangular yawet, some sanot, itilis isit. Green tree gravesi lavual slaviti sakela	Genelly SHAD (SDV) - susceitant, pointy voted, live to rectain, anywar to subsounded static some variobaines, panely lateral, live to somera, anywar to subsounded general, title sit. Grand Clarit metaland mentary serelistics to subsource.	Samey CLAY (CL1 - Hyne gray dilay with same		SAMD (SIM) - service endowed, pondy poned, free to coarse, submaniant to watarregister same with site same and site present 76-71 sets, some metawoopt ourset paudic and biotecars.					Cranelly CLAY (CL) and Saindy (CLAY (CL) - light branes, may fine its stampe strained tand.		Savely CLAY (CL) - medium to 63H boown, skill, pisolici clicy, surcedosed, powly ustral, line to cliance, selamoniar to angular tand, piece particul, narrend free to clicine is and	Description	E-Pulk PA E-sty Q0141, 1 Jun, 200 UnignetBin E. Subfanssun, J. Burlhands, G. Mosee Subface Controllon: Guay Cherrol Sampler Type: Guay	3
		a M		alayan gene			Į,,			, A			13-1-1-1		94952				-	1	1		-	57
10 III			- 12		Ņ	-57		1.24	2.0	ų.	1 1 1 1 1 1 1			h.				1	X	1			Mar Transfer	
														-			1	1	0	1				1
1				5		岱		1	X,		H/A						Ň		d e o	1	1	1	1	
145		ćγ	-	Į					-				.00						P h y	<i>.</i>		ALC: NOTION	The second secon	Bury Income Vices
	V	m./hm	Í.	1	1	L.		yî î T	nn.			1	anera.	別				1	5 - 0	1		1000		-
1)	1	122	11	1	2	A.		1		VA))		T and			Íù.	Ŵ	1		-	1	1	1	E	:
//	#1			1		2		1		him								1	5.0	ć		diversit.		3
																	1	ľ	gin			1		
5	V	N	1	4	~Y	17	V		M		M	0	90		Y	2	1		-	1	1	1	ili	
	-		-	+	-							44		171	-	-		1	2	1		140	1	-
No.	-	YA		+	_					-				_	_	_		1	h-6 s				- 196	
	-		γ	-	_	~	- 23	d	177	1 0				~		1	/		0 1	1			4 ž	
200											10							3	n'r e				53	
£	K	m		r	1	4/	W	Jes .	1		h,t	3	Л			-			r v a	1	1			í.
Ē	1	1º-	A		Y	A.		_		M	10.			-			1	1	5					and the second s
	+	_	фį							W						-	1	1				,	A Law Concernance	H
		-	-1	t								-					1			1				

8 .	× .	1	8	- i	ž ·	ž	, i	1	5	JIG	8 8		8 3	ŝ	100	240	8	220 -	20	Direction in the	0.0	Differ	(m
000	000		•.•.				8 8 8 8		8.8			0	000							Guera	Tourse und	Conpany Exten	P
	CWICM	MUCL		1	and.	2				ę	g	2	ŝ	SW		ŝ	2	Sp		USCS	Kolay (795-2	WDC Explore	PUR.IIc
Alexanderi est	GRANEL was	SET and CLA		median produce	and and the	Sundy CLAY				Say GRINE	Say SAND (V Sandy CLAR	See the second	Sand (San)		Tany SAND (C	Sity CLAY (C	Savi (SP)				Drilling Company, MDC Exploration and Webs Drilline Carry Estimat, Ging Gallan, John Davers	
concts of 400 fixed	GRAVEL with SAND (GWCM) - sustailesel, environity well server, line to contra- tedroordest gravel, some angular to subarrigular sand	SLT and CLNY (MLICE) - Byte prever grap, and, summ direr to through turnel, pulse green line used		webar plant, moleculty will left if to their school, schoold is unburded and	par, i week staam (MacCut) - sijnt tooven, taetour, buden, toe and toes they (parvil) novel to:	Savely GLAY (CL) + light goay cliq; hand				Sity GRAVEL [Get] - Un above with the granet and sizes sand	Sign SAND (SML) (you, isolated to salinuaden). Die sone sinserial missioner page saatt deurdater mystelle welt het statenig en saline givens, leiseaareg staaseness is geveel welt degen	Sandy CLAY (OL) - Sprigray day, Snv Land	Control (C) (C) - the Statement gravity with Samid, pointly scripts, Satisfacient to Schweigeler, See (Education C).	coarte grained, subroun		Tally SAND (SM) - unexament, priority orderst, numbed to submyounded to submyoute name free to bline all (DM), same granification	Sahy GLAY (GL) - Nghogray day; wan un	Sant (SP) - varicoland, fee is medium, poofly graded used		Description	1 8	Lanzahori Wirencov, CA Lanzalle Proc. Ectopol 141, Tanik 200 Longerd Bry B. Calabranism, J. Buckwarek, C. Mooree	
U IV	FIN	e AA	11546		M		W.	×10		W	MIN		\$ ²		48	n HHJ	12/1	per s	ni t		-	Т	45
					ţ											j j							
	11111	111	1111									111		-		****		100					
	,√ ∕		1 A ~~			1.	A,	10	14 14 14 14 14 14 14 14 14 14 14 14 14 1	₽ ⁵ ir		~^		1 ⁴				1		Centers Proceeding	Test Table Tests Tests		Contraction of Boundary Street of Boundary
A								100					001							13 10 10 10 10 10 10 10 10 10 10 10 10 10	· · · ·	L	Langing Bound Their Provely
A					71									X1)						destruction of the second seco	· · · ·	L	
					71									X1)						a description of the second se	· · · ·		Names (Branch Thurly & Arrivaly 1997 1997 1997 1997 1997 1997 1997 199
					71									X1)						Non No	A final data and the first state of the second	+ +	
																				0 00 </td <td>The second secon</td> <td></td> <td></td>	The second secon		
																				N Non	The second secon		

		ă.	- 011	Tio -	3		8.8	10 0	8 8	600	-100		5	8 -	E	Nel C	Deller Ga Deller Ga	of the second
	2000	1.10	Cheles	1111	2		8 8 2	0.0	1111		-					Course C	y Elbrid, G Aprilia Radio America Radio	
**					-	e sw	CANSA	CWISH		SHANE	4	٩		-		uscs	Drifer: Gary Edino, Gary Guillo, John Chures Drifers Gougeneric Revenue Ganzalaten Ar (19-795), Mad Ratary (795-887)	R.lic
and Ard - Loci Over				samely adventional logit (year class) stamony adventions	AND LOUGH	Sets CoVI - daw geen pay, way like to module graned surd, sur pooly volent, fee grand Sets CoVI (CL) - daw gran, set day, web instances up	Sey Crivers, (CH) to Sey Steed (SM) - color	socialized memory powy prod, luborous		grant no day	Say SAND/Sandy SA, 2 (SMAR) - grap to subcolared the to states, subspected to to be called used and should be may be subcolared and track the set where the to be to be	sang suwr (st.) - nign grup sing and sin jandy with neuronooded gray, sint stay, same bu	SAVD and CRAVEL (SPRCP) - subcisional, involvemently sorted, free to revolvem, subtration in subwarputer sends some variationed, sudmunriced, free to modeum planet, embedded gran, self stay				alon.	n and Wells
web Arb.				many lips o	015050	d, free grow	04 (perc) 10	d function		And In the	Sandy Sa	(cr)-1994	CRANEL !				Lopped by Surface Clands Sampler Type	
n, nounded				Protect les	949 944	an Drok, wa	Carl Stars	onty received			- (Swint)	o lino lindo	Seider - v				8	8.
10 140404N				(ask) and	the figure of	y face to re-	(SM) - coli	tabiante				ad use (any	ancolored, a			Desc	Grant Con Grant Con	Vel Top
Sed, modes				C spectrum	ded lound	dum gum	r and lookers	The subsequences	and that could remain the little	(card) tan p	notined to	-0.04	united for			Description	B. Caldonian, J. Burteviste, C. Moore Gauss Covered Call	Esposis Park Well Tost Hole Projett Well Installate Looken Welling CA
And survey				and with gravit book, jokan to use		- dual a	8	to reduce		diame tout	ALL U.S.	a fe proper	is modum				hinate, C. I	
Sand any				pellan to una		11		module county			e, sullane	, wit stay,	to readown				Aust	8.6
SUN LE				ALC: N		to subrounded		an una be		- North	Sed So	same Dia	- Libraria					300010 N.H.C. 31 35 N.H.C. 31 35
		de la seconda		196		t D	717		11.12.92	4	Ń		2	A				59
n	121	Y	40) (10)			1/	a anima		N 17 L	Ŵ/		ren site	$\langle \gamma \rangle$		W		1472	1
												****					3	12
																	18	
Ī						4	21							13		2	1	1
		1111111	11111		11111	A 11				1111								
ļ	al-	10		F		4.					N	10,00	24	20		(head)		
Ų		$\overline{\mathbf{A}}$	1	ſ				hand .		1	N.	MA, ~~,	NY.	27		test in the second second		
			24	ſ						∧.		MAR.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Tangle Constants in a sub-		Sand David Press Research Sandharp Turner Print Providence David Sand Print Print Print Print
					haf m A			1								the statement of the st		Sand David Press Research Sandharp Turner Print Providence David Sand Print Print Print Print
																10 10 100 100 100 100 100 100 100 100 1		Stat Star Percent College Bundt Paul Percenty Tage (an Percenty Form)
				+47								in y			ad Voc	And	(00) (00)	Stat Star Percent College Bundt Paul Percenty Tage (an Percenty Form)
				447												deter date de 194 - 194 - 19400 - 1940 - 1940 - 1940 - 1940 - 1940 - 194		Stard Stard France All
				447												101 and 101 an	(00) (00)	Stat Store Presents Contract Truck Presents Truck Can Presents (Can)
				447												and the second s	1 1	Start Processing All Start Starting (TU) (SU) Version All All Start Starting (TU) (SU) Version All All Start Starting (TU) (SU) All Start
				447												and the second s	1 1	Start Processing All Start Starting (TU) (SU) Version All All Start Starting (TU) (SU) Version All All Start Starting (TU) (SU) All Start
				10 												and the second s	International and the second s	Section France Additional (T) (sp): section
																tion and the second sec	1 1	Start Processing All Start Starting (TU) (SU) Version All All Start Starting (TU) (SU) Version All All Start Starting (TU) (SU) All Start
f -																tion and the second sec	¹⁰ 10 10 10 <th< td=""><td>Start Start Frances All Start Start Start Str. (17) (2010) All All Start Sta</td></th<>	Start Start Frances All Start Start Start Str. (17) (2010) All All Start Sta
f -																tion and the second sec	0 mm mm mm feature	Start Start Frances All Start Start Start Str. (17) (2010) All All Start Sta
f -																1 10 10 10 10 10 10 10 10 10 10 10 10 10	0 0	Section Frank All Sections(1) (p)) (we) All All (we) All All (we) All All (we)
f -																1 10 10 10 10 10 10 10 10 10 10 10 10 10	¹⁰ 10 10 10 <th< td=""><td>Section Frank All Sections(1) (p)) (we) All All (we) All All (we) All All (we) All (we)</td></th<>	Section Frank All Sections(1) (p)) (we) All All (we) All All (we) All All (we)
f -																1 10 10 10 10 10 10 10 10 10 10 10 10 10	0 0	Stand Proce Pression All Descendences (T) (p(k)) week All All Procession Proces

age on		Lithelegi UCS Unife	Page 6/5	000	- N - N	Peul) Draphis	Colleg Compon Delay Compon Delay Economic Delay Eco
		LithelegicLog Notes: UCS Unified Soli Classification System (Visual-Manual Mechod)	Surfuse Soul Annulous Seat Filter Pack Manumerel Type	8		uscs	Duly Dury 100 Executor are Nets Define Cary Etrat. Corg Cade, Jan Ocurs Dahn Cary Etrat. Corg Cade, Jan Ocurs Dahn Cary Etrat. Corg Dahn Corg Dahn Cary Etrat. Corg Dahn Cor
		oon System (Vis	Surfuse Sent Santary Soul (Geouf) Annubus Sent Geouf Fater Pack SRI 114 inch Gravel Menument Type: Templorary well cap	Samp CLW (01) - soft clur; some samp intervaliant, have show of linest benom of boring			
		wal-Manual Me		come sand, intercala		Description	BORING LOG: Esposi Park Ken Skerber Sk
	- C -	chod	5	find, have show drilling		on	LOG: Esposi Park Ce Da well Tost Hole Water Lande Water Lande Water Lande E Galerone J. Buchesis, G. May E Galerone Cal
		TABLE AND	Exerned Internal Cataing Durmeter: Tetal Boring Dupor:				
			1 I				Production Conservation
			- Hand Bogs			64 (FER 1	
		P - Spontaneous Po	Geophysical Log Notes: Geophysical logging by S Geophysical logging by S		¢₽ V_	Total Development	Management
		SP - Spontaneous Potensial				and the second	et TO Community Linux way as a second
			CON 1			10 10 10 10 10 10 10 10 10 10 10 10 10 1	The section of the se
			-	FR SOME	1025.0 FT		o one of the second sec
			-	X AT10			
							A the same set of the

Page 1

Ref: 02520-09001 (RMC# 143.012B)

July 7, 2010

Craig Scott Town of Windsor P.O. Box 100 Windsor, CA 95492

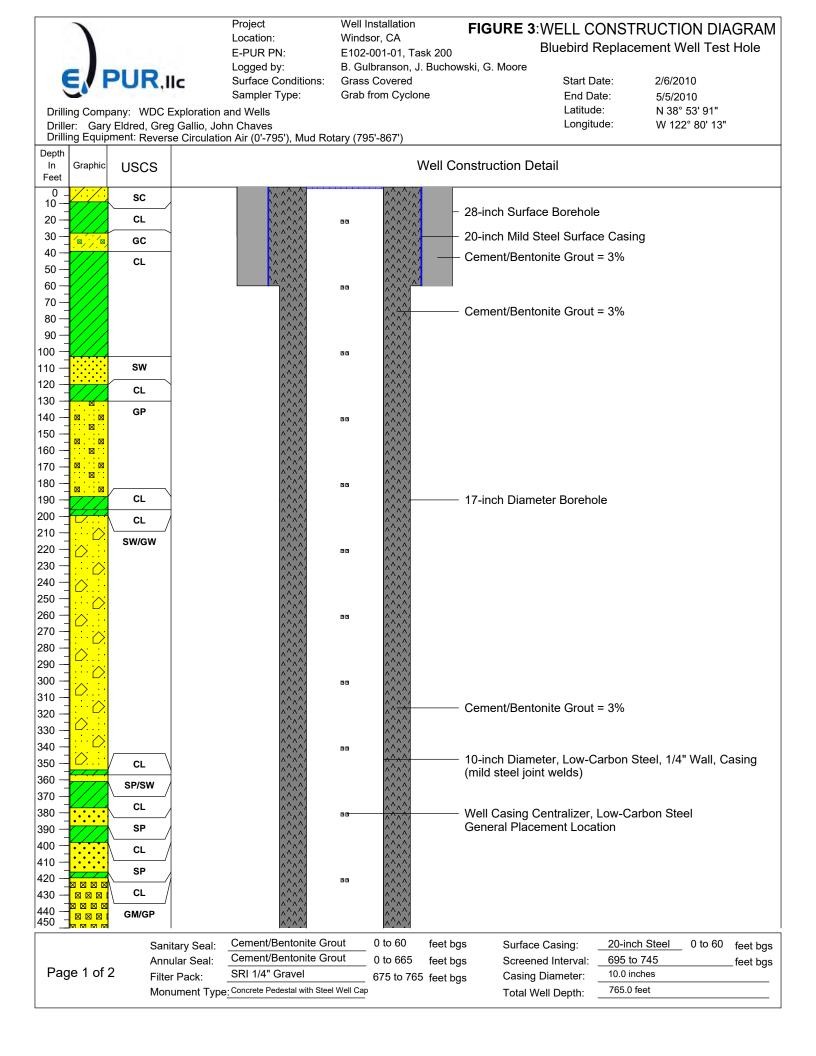
Re: Windsor Well Installation -Well Locations-Bluebird Site and Esposti Park Site

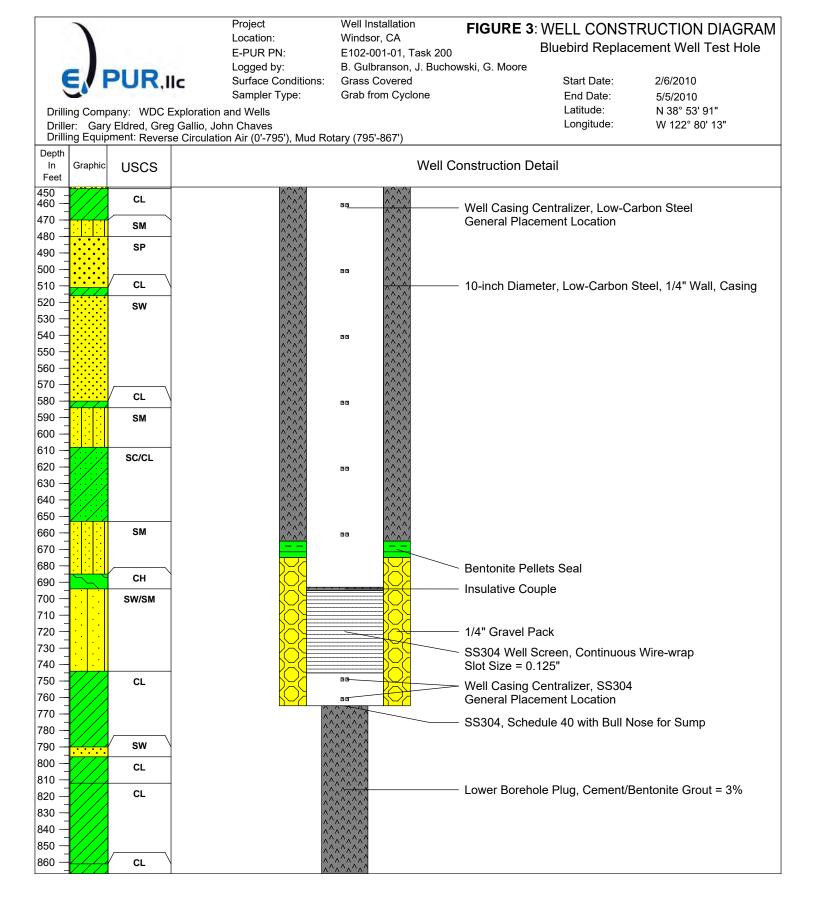
Dear Mr. Scott:

As requested, Winzler & Kelly performed a field survey utilizing GPS equipment on June 28, 2010 to establish the locations of two new wells. This field survey established a benchmark at each pump pedestal of the new wells, one located at the Bluebird Site and one located at the Esposti Park Site.

The basis for the survey of the positions is the map titled "CONTROL SURVEY 1996 A.R.M. MONITORING PROGRAM FOR THE RUSSIAN RIVER" filed August 28, 1996 in Book 554 of Maps, at Pages 28-32, Sonoma County Records. Point E coordinate values and elevation were held for the survey. Listed benchmark elevations are NAVD '88. Coordinate values are California State Plane Coordinates Zone 2 (NAD '83).

Bluebird Site Well Chiseled square at N'ly corner well head slab. N 1959115.4041 E 6332436.6130 Elev. = 118.34 Lat = 38° 32' 20.306185" N Long = 122° 48' 05.144352" W


Esposti Park Site Well Chiseled square at N'ly corner well head slab. N 1954509.6739 E 6338689.6507 Elev. = 140.93 Lat = 38° 31' 35.316839" N Long = 122° 46' 45.948870" W


Winzler & Kelly appreciates the opportunity to provide surveying services for the Town of Windsor for this project and we look forward to serving the Town in the future..

Sincerely, WINZLER & KELLY

Richard Maddock, PLS 8131

495 Tesconi Circle, Santa Rosa, CA 95401-4696
 tel 707.523.1010 fax 707.527.8679
 www.waml-k.com

. JAN 15 198 12:15 LES PETERSEN DRLNG 707 573 9483 ESPOSTI PARK

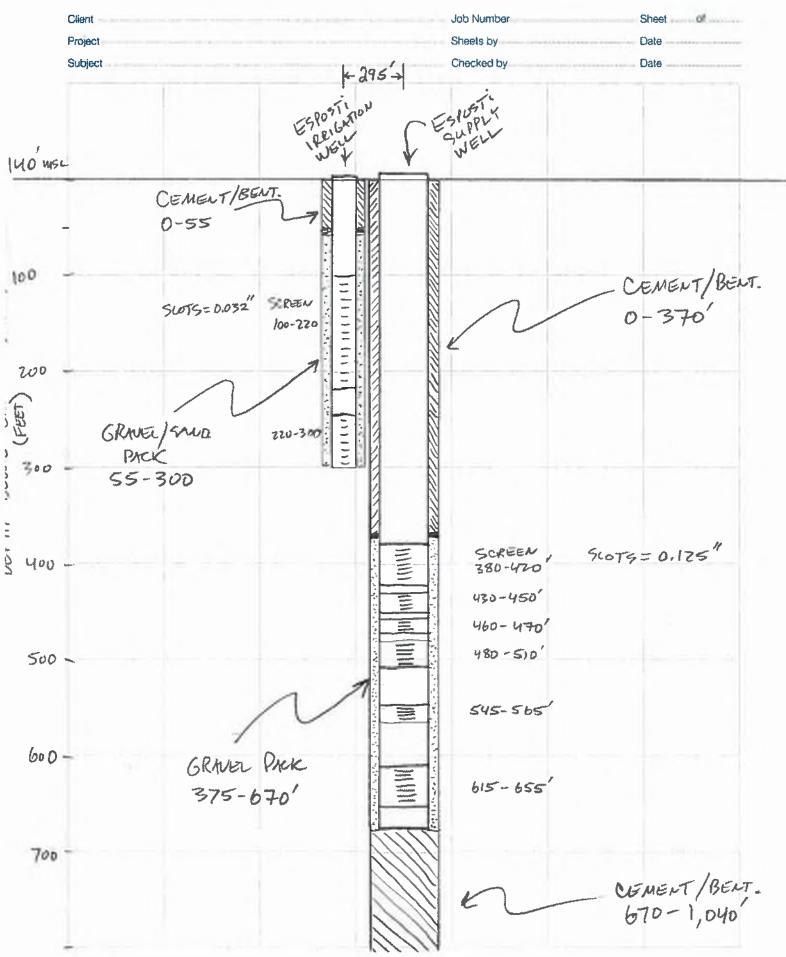
P.4 JAN 15 '98 11:17AM

Do not fill in

ORIGINAL File with DWR

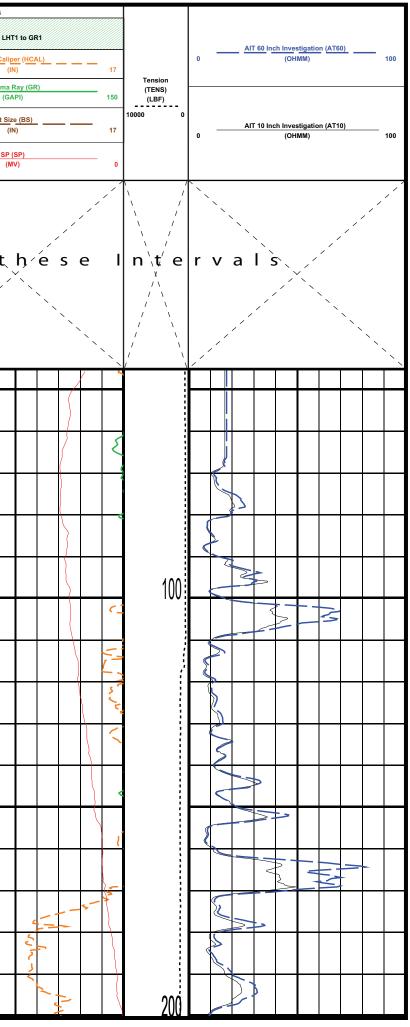
THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES WATER WELL DRULLERS REPORT

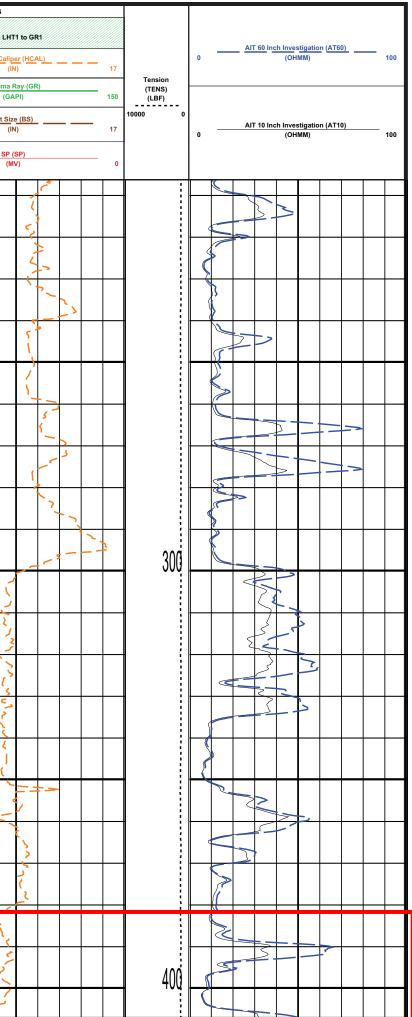
STATE OF CALIFORNIA


No. 291794

Notice of Intent No.	State Well No.
Local Permit No or Date A. P. #65-222-20	
(1) OWNER: Nove_County of Sonoma (Parks)	(12) WELL LOG: Total depth _300 ft. Completed depth ft.
Address 2403 Profess Lazal Dr.	from (t. 10 (t. Formation (Describe by color, character, size or material)
CitySanta_Rosa, CaZII"	0 -5 top soil
•	5 -17 brown clay
(2) LOCATION OF WELL (See instructions):	17 -20 brown clay and gravel
Courty Sonome	20 -34 brown cemented gravel
Well address if different from about 6000 Sh-i-Leth Rds-	34 -50 sandy brown clay
Township Santa Roca Burge Section	50 -54 fine gravel
Distance from estics, reads, sailwords, busers, etc.	54 -70 brown day gravel streaks
	70 -79 brown clay
	79 -93 blue clay
OF TYPE OF WORK:	93 -100 brown clay
New Well 🎌 Deepening 🗖	100 -111 blue gravel
Berenstraction	111 -135 Whue clay and gravel
Beconditioning	135 147 l'ine blue gravel
Horizontal Well	147 -163 brown elay and gravel
Destruction 🗂 (Describe)	163 -195 grovel
destruction materials and pro-	195 215 proven clay and gravl strk
	215 243 (1) (""""
(4) PROPOSED USE	243 -280 gravel
	783 -300 Sandy Arown clay/grvl str
irrigation XX IN Inclustriat	Carlo
Test Well	
Numerinal V	
Other U	(1)) z Slf 30
AVALLY HOCK DOX SKCKS	
OU FORINGINES IN CAMERATING STATES	
Bolary CX Bevery I'l Yes XX No. Star 24	
Calle (1) No II Depose of love	
Other I Borket Borket Finn 55 19 300 (
CY CASING INSTALLED DY PERPENDING	
Sheet [] Plastic NX Concrete [] Pere at perturbation mestice of series	
From To Dia Causer Wall Store Store	
_0 <u>300</u> ~8 #200 032 Streen	······································
(9) WELL'SEAL	
Wasserfacesonhare seal productor? New SYX Nor The Proglad optim 55	
Wornstata scaled against reduction? See 1 No To Interval 6.	
Stational discharge TO. C. C. Q. M. I.N.	Work started 8/17/8919 Completed 8/23/89 19
(10) WATEB LEVELS	WELL DRILLER'S STATEMENT:
Depth of first water, if known ft	This well was drilled under my privalicition and this report is true in the
Standing level alter well completion _ Gate to an	best of my knowledge and behef.
TENWELL TESTS	Signed 10hn lepsen-
Was well fost made " Yes ber So 1 Burndy where?	(Well Drillor)
[Prove of the second state of the second st	NAME LES PETERSEN DR LL INC & PUMP, INC.
Within water at anit of testftft	Address 5434 Old Redwood Highway
Abergiest analysis multiple area a solution to the second statement of the sec	Cay Santa Rosa, Ca. 95403 7m
Warmentrie log marke Yes to Do December an an advergenta this report	License No. 261084 Date of this report
DWE THE REV. 12-001 IF AMPTIONAL SPACE IS NEEDED, USE	NEXT CONSECUTIVELY NUMBERED FORM B4 #4145

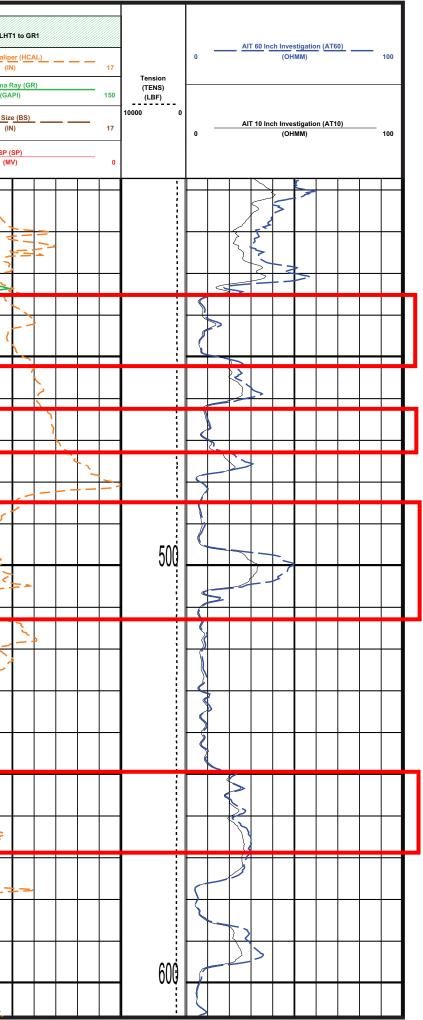
STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES


W	ELL DATA				a Alighe and the
(Ĭ)	System Name: Town of Winds	or	Syste	m Number:	49-017
(2)	Source of Information: Town of	Windsor	· · · ·	-	
	Collected by: <u>Michael L. Cav</u>	e .lr_	Date	<u>.</u> .	
			L/alc	•	
(2)	Number or Name	Ecoarti Vall			
(3)	Date drilled	Esposti Well 8-17-89 to 8-23-89			
(4)	Location: Neighborhood	6000 01d Redwood Hwy, W	indsor, CA 9	5492	
• •	Distance to: Sewer		1.1030(1.011.0	<u> </u>	
	Sewage disposal	· · · · · · · · · · · · · · · · · · ·			
	Abandoned well	NA	······································		······································
	Nearest property line				
4-1	Plot plan on file?	Yes			
(5)	Housing: Type	_ NA			
	Condition Pit depth (if any)				
	Floor (material)				
	Drainage	·····	·		
	Difficingermanning		······		·····
(6)	Well Depth	<u>300 FT</u>		* *	
(7)	Casing: Depth	300 FT			
(1)	Diameter	8 inch			····
	Турс	PVC 200		·	
	Height above floor	 			
	Distance to highest perforations.	100 FT		·····	
	Sanitary sealed (yes or no)	Yes			
	Sanitary surface seal(yes or no)	Yes			
	Gravel pack (yes or no)	<u>Yes 8 x 16</u>			
	Second casing depth	_ <u>NA</u>			
	Second casing diameter	.NA			
	Annular seal (depth)			····	
(8)	Impervious Strata: Thickness	NA	•	-*	
	Depth to	NA	· · · · · · · · · · · · · · · · · · ·		
	· • • •				
(9)	Water Levels: Static	<u>.55 FT</u>	·		
	When pumping	<u>135 FT</u>	L		
110	Promoti Malan	0.11			
<u>(</u> 10,) Pump: Make	Goulds		· · · · · · · · · · · · · · · · · · ·	
	Capacity, g.p. n.	Submersible 260 GPM at 60 PSIG			
-	Lubrication	Product	···		
	Power	230 VAC, 3 Phase			
• •	Auxiliary power			•••••••••••••••••••••••••••••••••••••••	
· · ·	Controlled by	Manual HOA Switchs & Irr	ination Time	° Svstem	······
	Discharge to	Distribution System Irri	gation Park		
(in)	Frequency of Use	Irrigation & Emergency s	· .		
		- *	Nation and Annual Street St		
	Flood Hazard	No			
(13)	Well log on file?	Attached			
(14)	Remarks and Defects (Use other side if necessary)				
					Concern 1

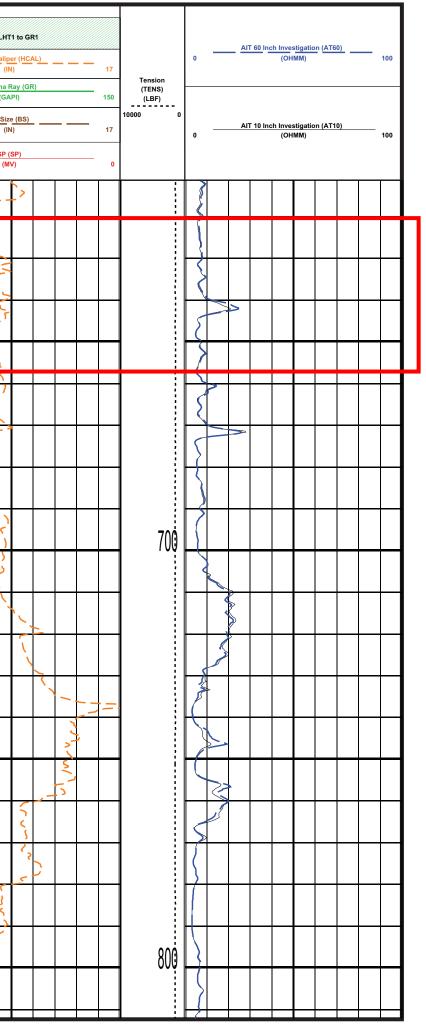


				BORINC Esposti Pa	G LOG: Esp ark Well Test Ho	oosti Park	Start Date: End Date:	3/3/2010		Tim		s Permea TIM)	bility	_		Small	Pore Poros	sity		т. 60		on (T2_DIST (US)	_MW)89		Time Mark I	Every 60 S From LHT
		R,IIc		Project Location:	Well Installatio		Latitude:	N 38° 31' 35 <u>.</u> 4" W 122° 46' 46.5"	0.1		()	MD)		10000		Capillary B	ound Fluid R Porosity (7		HILT Calip (I) Gamma F
Driller: Ga Drilling Ed	ary Eldred, (quipment: R	Greg Gallio, . everse Circu		E-PUR PN: Logged by: Surface Conditi	tions: Grass Covered	, J. Buchowski,	G. Moore		_	SDI	R Permea	ability (K	SDR)		0.4	CMR 3ms P	(V/V)	RP 3MS)	0	0.3		<u>mic Mean (T2</u> (MS)	LM)	50 7		(GA Bit Size
		tary (795'-86 [°] JSCS		Sampler Type:	Descrip	tion			0.1		()	/ID)		10000	0.4	CMR Free F	. ,	y (CMFF)	0	0.3	(T20	Fluid Cutoff CUTOFF) (MS)	3000	-200		SP ((M
0		CL			n to light brown, soft, gular sand; poorly so				``.								(0,0)								```	
10 —										``.	```	×´ N	/ ́	C	E e	``、 o p	ີ ທ ົ່ນ	, ´´ v s i		al		ò×ǵ	ý gin	q	ì r	`` ```t
20		CL			ndy CLAY (CL) - lighed and the second s					, , , , , , , , , , , , , , , , , , , ,			```				<u>, , , , , , , , , , , , , , , , , , , </u>			ц і		, 9 , 9		9		
- 40 —									, / ·						, , , ^{, ,}	, 	-1-1			 			``\	È /		/
- 50 —																										
- 60		SW	SAND (SW)) - varicolored po	oorly sorted, fine to	coarse subrou	inded to subar	ngular sand																	<u> </u>	
70 —		300			/el 70-71 feet; some											60-										
80 —		CL	Sandy CLA	Y (CL) - light gra	ay clay with sand				╞╤┿┥									2 2 3								
90		GM			colored, poorly sorted	d, fine to mediu	ım, angular to	subrounded																	- 4 - -	
					oorly sorted, fine to c mentary sandstone to		to subrounded	d gravel; little								<u>}</u>		17								+++
110 —		GM	Sandy GRA rounded to s	VEL (GM) - vario subangular grave	colored changing to rel; some sand; little	green/gray, po silt. Green fine	oorly sorted, fir grained basal	ne to medium, It clasts																		
120 —		CL	Silty CLAY ((CL) - dark gray/	/green, plastic clay; v	with silt and fine	e sand								~										•	
130 —		<u></u>	Silty SAND	(SM) - aray/aree	en, poorly sorted, rou	inded to subroi	unded fine sa	and: fine																	_	
140 —		SM	subangular	to subrounded g	gravel; with rare cobl	ble		ine, ine,											Ę							┿┿┙
150		GM	Silty GRAVE	EL (GM) - as abo	ove with fine gravel	to coarse sand,	, varicolored												110						~	
160 —		CL	Sandy CLA	Y (CL) - light bro	own, clay; sand										_5	-										┿┿
170		GM	Silty GRAVE gravel; with	EL (GM) - varicol rare cobble; unit	blored, unsorted to points of silty sand, fine	oorly sorted, fin to medium grai	ne, subangular ined, angular t	r to subrounded to subrounded.														N			[]	
180 —		SP		- varicolored, su d frosted quartz	ubrounded to rounde	d, fine to mediu	um sand; abur	ndant well									->	~							3	
-		SW	Sand (SW)	- fine to coarse s	sand, well graded, si	milar in angula	rity and color	to above											••••			╶╞╼╋╋╪┽╢╢ ┫╴			$\frac{1}{3}$	
200		544																							<i>S</i>	

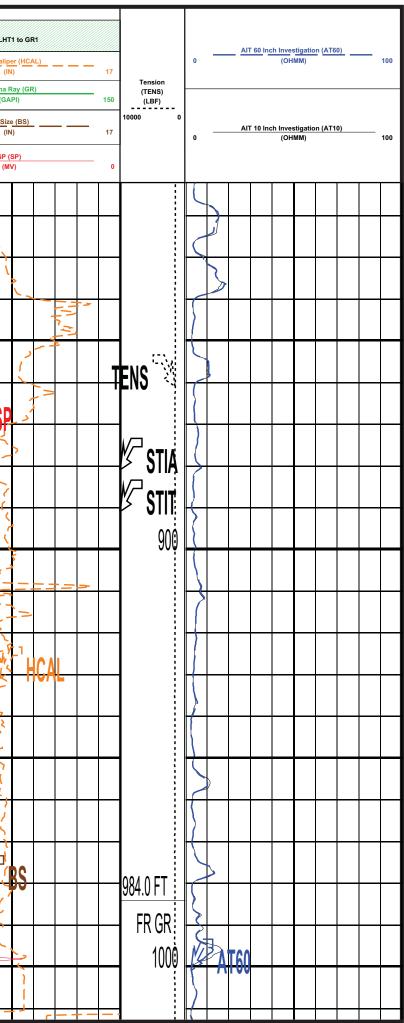
Page: 1/6



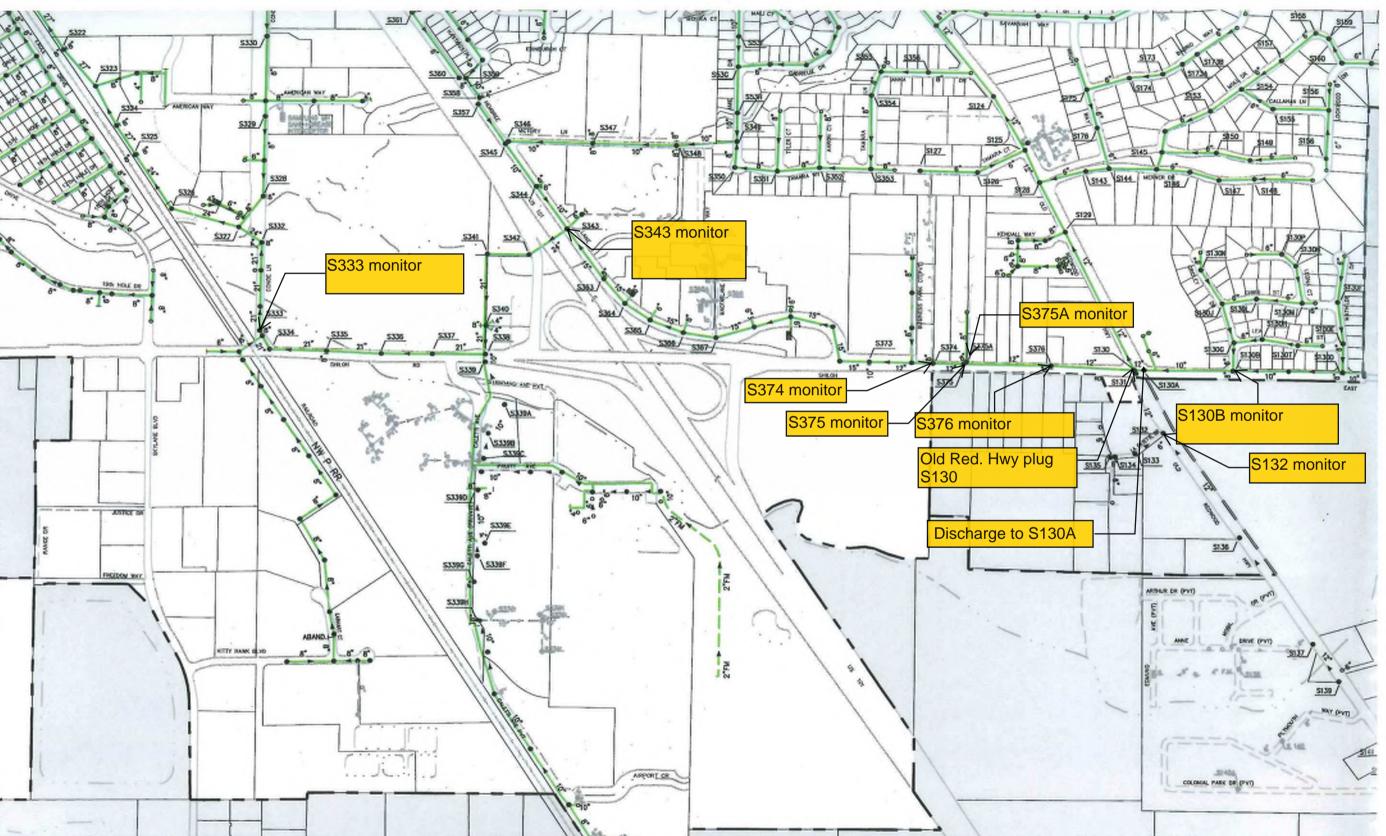
	ID		BORING LOG: Esposti Park Esposti Park Well Test Hole	Start Date: 2/24/2010 End Date: 3/3/2010 Latitude: N 38° 31' 35.4" Longitude: W 122° 46' 46.5"	0.1	Timur/C	Coates Pern (KTIM) (MD)	neability	10000	C	Small Pore Porc		60 <u>T2</u>	Distribution (T2_D (US)	<u>IST_MW)</u> 89	Time M	Mark Every 60 S From LH
Drilling Company: \ Driller: Gary Eldred Drilling Equipment:	WDC Exploratio d, Greg Gallio, J : Reverse Circul	John Chaves Ilation	Project Well Installation Location: Windsor, CA E-PUR PN: E102-001-01, Task 200 Logged by: B. Gulbranson, J. Buchowski, G Surface Conditions: Grass Covered			SDR Pe	ermeability	(KSDR)		0.4	Total CMR Porosity (V/V) IR 3ms Porosity (Cl (V/V)	0	0.3	2 Logarithmic Mear (MS)	(T2LM) 3000	7 50 7	(Gamma (G Bit Si (
Air (0'-795'), Mud R Depth (feet) Graphic	USCS		Sampler Type: Grab Description		0.1		(MD)		10000		(V/V) IR Free Fluid Poros (V/V)	ity (CMFF)	0.3	Bound Fluid Cu (T2CUTOFF) (MS)	3000	-200	SP (I
210 —																4	
220 -	SP	Sand (SP) -	varicolored, fine to medium, poorly graded sand													2	
230	CL	Silty CLAY	(CL) - light gray clay; with silt														
240 - 240	SM	Silty SAND few to little s	(SM) - varicolored, poorly sorted, rounded to subrou silt (ash); some gravel units	nded to subangular sand;												\mathcal{Z}	
250																	
260	sw	Sand (SW) sand	- varicolored, poorly sorted, fine to coarse grained, s	subrounded to subangular													
270 - C	GW	GRAVEL (G few obsidiar	GW) - red stained gravel with sand, poorly sorted, sul n clasts	brounded to subangular,													
280 - 280		Sandy CLA	Y (CL) - light gray clay; fine sand	,							-					\mathcal{E}	
290	SM	Silty SAND	(SM) - gray, rounded to subrounded, fine sand, abur yolite with red staining on some grains; increasing c													S S	
300 - 🛛 🖄 🖄 - 🖾 🕅 310 - 🖾 🕅 310 - 🖾 🖾	GM	Silty GRAVI	EL (GM) - as above with fine gravel and some sand													S	
320 — X																	
- <mark>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</mark>																	
340	CL	Sandy CLA	Y (CL) - light gray clay; sand														
-	ML/CL	SILT and C	LAY (ML/CL) - light brown, tan/buff, friable, fine ash;	trace fine gravel													
350 — <mark>A. A. A.</mark> - <mark> </mark>	GP		ith SAND (GP) - varicolored, subrounded to rounded ivel; moderately well sorted, fine to coarse, subangu													Ż	
370 — 🛛 🖂 🖄																	
- <mark>⊠.∷⊠</mark> 380 —	ML/CL	SILT and Cl sand	LAY (ML/CL) - light green gray, ash, some clear to fr	osted sand, pale green fine							5						
390 -	GW/GM	GRAVEL wi subrounded	ith SAND (GW/GM) - varicolored, moderately well sc I gravel; some angular to subangular sand	rted, fine to coarse,													
400 - 2		Abundant v	olcanics at 400 feet														<u>></u> > ر -



	Ruc	Esposti Park Well Test Hole End Dat Latitude Longitud	ate: 2/24/2010 tte: 3/3/2010 e: N 38° 31' 35,4" tde: W 122° 46' 46.5"	0.1		tes Perme (KTIM) (MD)		10000		re Porosity nd Fluid Porosity	60		ition (T2_DIST_I (US)		Time M	lark Every 60 S From LH ²
Drilling Company: WD0 Driller: Gary Eldred, Gr Drilling Equipment: Re	C Exploration and Wells reg Gallio, John Chaves				SDR Perm	neability (K	SDR)		0.4 (orosity (TCMR) //V) sity (CMRP_3MS)	0 0.3		thmic Mean (T2L (MS)	<u>//)</u> 3000	50	Gamma (GA Bit Siz
Air (0'-795'), Mud Rota		Sampler Type: Grab Description		0.1		(MD)		10000		//V) I Porosity (CMFF)	0	(nd Fluid Cutoff <u> (MS)</u>	3000	7	(II SP
(feet) Graphic U	303	Description							0.4 ('		。 (-200	M)
420															8	
430														┝┼┼┼╢╢╸┼╴		
440														╞╪┼╢╢╸┼╴	2	
450 -	SW SAND (S	SW) - well graded sand, with little ash; stringer of clay at 450 feet		97										╺╺╴╴	\leq	(
	W/SW Sandy G and grav	RAVEL (GW) to Gravelly SAND (SW) - varicolored, fine to coard el	se grained sand												A	
470 —	Stringer o	of clay at 465 feet							Z						<u>}</u>	
480	Trace of	clay at 480 feet													Z	
490 -															\mathbf{A}	
500 -					>					\geq					2	
510 — ··· 🏠	Interbedo	ded clay unit with sand and gravel at 510 to 513 feet														
- <u>()</u> 520 - <u>()</u>	Trace ob	sidian at 520 feet								, Š						
530																
540 — <u> </u>					>											
	Lost circu	ulation at 545 feet														
560			r													> { > }
570 -														╎╎╎╎╢<mark>╏</mark>╶┍ ┫	- I 11	
580 — X	Trace of	clay at 580 feet;													5	
					>											
	ML Sandy SI	ILT (ML) - gray, friable, silt (ash); light gray, angular to subround	led, medium sand												7	<u>4 ! k</u>


Page: 3/6

				BORING LO Esposti Park We)G: Esposti Park Ill Test Hole	Start Date: 2/24/2010 End Date: 3/3/2010 Latitude: N 38° 31' 35,4"	_	Timur	Coates Per (KTIM)	meability			Small Pore Capillary Bound			 60	stribution (T2_DIS (US)	ST_MW)89	Time M	Mark Every 60 S From L
Drilling C Driller: G Drilling E	Company Bary Eldre Equipmer	UR, IIC v: WDC Explorati ed, Greg Gallio, ht: Reverse Circu	ion and Wells John Chaves ulation	Location: W E-PUR PN: E ² Logged by: B.	/ell Installation /indsor, CA 102-001-01, Task 200 . Gulbranson, J. Buchowski, G grass Covered	Longitude: W 122° 46' 46.5"	0.1	SDR I	(MD)	(KSDR)	10000	0.4	Total CMR Porc (V/V CMR 3ms Porosit	sity (TCMR)) / (CMRP_3MS)	- 0	0.3	Logarithmic Mean ((MS)	<u>T2LM)</u> 3000	7	HILT Ca Gamm (0
	95'), Mud Graphic	I Rotary (795'-86	57')	Sampler Type: G	Description		0.1		(MD)		10000	0.4	(V/V CMR Free Fluid Po (V/V	prosity (CMFF)	0 - 0	0.3	Bound Fluid Cuto (T2CUTOFF) (MS)	ff 3000	-200	SI
-																			\leq	
-		SP/GP		lar sand; some varicolore	colored, moderately sorted, ed, subrounded, fine to med	fine to medium, subrounded ium gravel; interbedded														
650 — - 660 —		CL		•	l silt (ash) with interbedded	gray, soft clay; some fine									Ę					
670 — - 680 —		SM/ML	✓ subangular gravel; no c	sand; abundant gray to v clay	gray to varicolored, fine to co varicolored silt (ash); red an	d yellow, fine to medium														
- 690 — -		CL			ally stiff clay; abundant fine														i >	
700 — - 710 — - 720 —		GW/SW	GRAVEL to varicolored, r	SAND (GW/SW) - dark g moderately poorly sorted, s	gray to varicolored, subrour subrounded to subangular, me	nded, medium to large gravel; dium to coarse with some fine san														
-		GM/SM		. , , , .	SM) - color and texture as a															\$ 1
740 —		SW CL	poorly sorte) - dark green gray, very ed; few gravel (CL) - dark gray, soft clay	fine to medium grained san y; with micaceous silt	d, rounded to subrounded,													1	
- 750 — - 760 —		SC/CL		nating light gray clay/silt (, poorly sorted, rounded to s (ash) and sand with gravel b	ubangular, fine to medium ieds; yellow to orange												▋╶┼┼┼╢╢┛╌┦	\sim	
															W.V.V.					
- 790 — - 800 —																				
		SP	SAND (SP) (ash)	- gray green, rounded to	o subrounded, moderately s	orted sand; abundant silt									Z					


)		BORING LOG: Esposti Park Esposti Park Well Test Hole Start Date: 2/24/2010 End Date: 3/3/2010 Latitude: N 38° 31' 35,4		Timur/Co	oates Per (KTIM) (MD)	meability	100	0000	<u></u>	mall Pore Po			 60	on (T2_DIST_ (US)	<u>MW)</u> 89		ime Mark Eve	ery 60 S From LH1 HILT Calip
Drilling Driller: Drilling	Company: Gary Eldre Equipment	UR, IIC WDC Explorati d, Greg Gallio, J t: Reverse Circu Reter: (7051 86	ohn Chaves Logged by: B. Gulbranson, J. Buchowski, G. Moore lation Surface Conditions: Grass Covered	5"	 SDR Per	rmeability	(KSDR)			D.4	CMR Porosi (V/V) ns Porosity ((V/V)	ty (TCMR) CMRP_3MS)		0.3	 mic Mean (T2L (MS)	<u>M)</u> 3000	7 50 7		Gamma I (II (GA Bit Siz
- -	Graphic	Rotary (795'-86 USCS	") Sampler Type: Grab Description	0.1		(MD)		10	0000	CMR Fre	. ,	osity (CMFF)	0	0.3	Fluid Cutoff CUTOFF) (MS)	3000	-200		SP (: (M)
- 820	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	GM	Silty GRAVEL (GM) with Sand - gray green, rounded to subrounded, medium to coarse gravel; predominantly volcanics, intermediate to felsic rhyolite clasts		<u> </u>														
- 830 —		CL	Sandy CLAY (CL) - light gray clay with sand		3					4									
-		GW/SW	Silty GRAVEL (GW) to SAND (SW) - varicolored, fine to medium, subrounded to rounded sand; angular to subrounded, medium to coarse gravel															R	
840 — - 850 —		СН	CLAY (CH) - dark gray to brown, plastic clay														$\overline{\langle}$		
- 860 —		SP	SAND (SP) - gray green to varicolored, moderately sorted, subrounded to angular sand; little gray green to varicolored gravel															5	
870 —		CH/CL	CLAY (CH/CL) - dark gray, fat clay grading to a light gray brown, plastic clay with sand																∕ ↓ \$₽
-		SP	SAND (SP) - sand with gravel and cobbles								1						▋↓		> >
380 — -		CL	CLAY (CL) - light gray, plastic clay with occasional interbedded sand stringers																ZK
90		СН	CLAY (CH) - dark gray to brown, dense plastic clay									}							
910 —	\rightarrow	CL	Sandy CLAY (CL) - brown clay, with sand									≯			╾╋┽┽╢╢				
-	· · · · ·	SP	SAND (SP) - light gray, fine sand with silt										**• ₂				₿ ≴	>	Z K
920 — - 930 —		СН	CLAY (CH) - gray brown to green gray, highly plastic clay; minor fine sand/silt, obsidian; hard slow drilling														$\left \right\rangle$,	
- 30 - 40		CL	Sandy CLAY (CL) - gray green														ĮΥ		
- 		СН	CLAY (CH) - green gray, fat clay, some silt, plastic clay with small obsidian															B	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 60 — -		CL	Sandy CLAY (CL) - tan brown clay, sand																
70 — -		SM	Silty SAND (SM) - green gray, fine sand with silt (ash)														\square	3	
980 — _												, i	Ş						
990 — -		SM/SP	SAND (SM/SP) - moderately sorted, rounded sand with silt (ash); minor clay layer; trace coarse sand at 980 feet; flowing sand															> -\/	
000 —		CL	Sandy CLAY (CL) - light gray, soft clay, minor fine sand; becoming very dense with depth															┥┨┦	1
- 10		SC/GC	Sand CLAY and Clayey Gravel (SC/GC) - gray, rounded to subrounded, fine sand; minor fine gravel; some clay; intercalated, hard slow drilling												╶╶<mark>╷</mark>╷╷╢╢┨ ─	┿┼┼╢╢╢	FI I		
ge: 5/6	• • ••		nne graver, sonne olay, intercalateu, fidi u siow utiling			1111									<u>↓ </u>		⊢r -	- + -	

	BORING LOG: Esposti Park Esposti Park Well Test Hole Start Date: 2/24/2010 End Date: 3/3/2010 Latitude: N 38° 31' 35.4"	Timur/Coates Permeability (KTIM) 0.1 (MD) 10000	Small Pore Porosity Capillary Bound Fluid Porosity	T2 Distribution (T2_DIST_MW) 60 (US) 89	Time Mark Every 60 S HILT Caliper (HCAL)	<u>AIT 60 Inch Investigation (AT60)</u>
Drilling Company: WDC Exploration and Wells Driller: Gary Eldred, Greg Gallio, John Chaves Drilling Equipment: Reverse Circulation Air (0'-795'), Mud Rotary (795'-867')	Longitude: W 122° 46' 46.5" Project Well Installation Location: Windsor, CA E-PUR PN: E102-001-01, Task 200 Logged by: B. Gulbranson, J. Buchowski, G. Moore Surface Conditions: Grass Covered Sampler Type: Grab	<u>SDR Permeability (KSDR)</u> 0.1 (MD) 10000	0.4	T2 Logarithmic Mean (T2LM) 0.3 (MS) Bound Fluid Cutoff (T2CUTOFF)	T Interviewer 17 Gamma Ray (GR) 50 (GAPI) 150	Tension (TENS)
Depth (feet) Graphic USCS	Description		0.4 (V/V) 0		-200 (MV) 0	
- ⊠ Σ 1020	AY (CL) - soft clay; some sand; intercalated, hard slow drilling; Bottom of Boring					1026.0 FT FR SONIC AT10 1037.0 FT
Page 6/6 Filter Pack:	Sanitary Seal (Grout)0 to 60feet bgsScreened IntegrationGrout0 to 370feet bgsCasing DiameSRI 1/4 inch Gravel375 to 670feet bgsTotal Boring DTemporary well captofeet bgsTotal Well De	10.0 inches Depth: 1040.0 feet	Geophysical logging	g by Schlumberger (Bakersfiel Magnetic Resonance Tool	- (

<u>Lithologic Log Notes:</u> UCS Unified Soil Classification System (Visual-Manual Method)

Appendix C – Sewer Capacity Memo and Flow Test Observation Records

Town of Windsor, Esposti Well Project Sewer Manhole S375A

S375A on private drive, 10-ft north of Shiloh Rd, Windsor, CA

S375A on private driveway, looking north off Shiloh Rd, Windsor, Ca

6.5 ft from rim to bottom, 8-inch sewer lateral

S375 on Shiloh Rd, Windsor, Ca.

S130B on Gridley Drive, Windsor, Ca

S130B Looking Inside, 12-ft from rim to bottom, 8-inch sewer

S130B on Gridley Dr Windsor, Ca, Looking North

S130B on Gridley Dr, Looking west on Shiloh Rd, Windsor, Ca

DATE: 5/9/2016 LOCATION: ESPORT PARK, WINDSOK PROJECT NAME: ESPOST: REHAB. EVENT: SEWER DISCHARGE Souce DECHARGE MOUTORING SITE SAFETY 4/75WN LOSE, SORAN 6855-155W DTW = 40.55 TOC DQ10-TURNON ESW TO CONFIRM SP. C.P. 4 @ 0940 START PUMING 200 6PM TO SIZO * @ 0945 START DUMPING FROM RER TANKS, BUT FILTORS CLOGGED (?) AND ONLY DOES LOOGPAL CLEAN ONE BAGS-FILTERS V GOOD FOR HOUDEFLON 1105-START DISCHARGING @ 200 GPM TO SI30 DTW @ 1235 = 104.22 HEAD = 270 LOST COMMUNICATION W/ IN-91Th 700 @ 1235 1255 - DISCHARGING @ ZOU UPM FRON FUTOR PUMP 1330-ESW DTW = 106.68, 441340 DTW = 106.69 1345- ESU PUMP OFF - NO CHPACITY. 400 6PM 0910-1345 1425 - START DISCHARGE @ 400 6PM 1515- 9108 MONITORING 2 BNOW DISCHARDING @ 2006PM 48.40 - DTW 2341 PM 221.42 head 1600 - STOP GURGE/PURGE - TWKS FULL 1620 - RC/WEEKS OFFSITE * FINAL NOTES PUMPED ESW @ 400 6PM FOR 4. SHONES 2. DRAWDOWN BEGAN TO FLATTEN OUT @ 65. TOTAL DRUDOWN WAS 66.14.

a di

FIELD REPORT

DATE: 5/9/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: Cloudy at am 1000 Support at pm /440
PRESENT AT SITE: Jourdan (Townork	uindser)
DATE: dd/mm/yr 05/09/10	

Time: use 24 hour time record at 15 min intervals or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
0936	5375	0 15%	Initail
000	5375	20%	Initail 5% increase witter
1100	5374	15%	
1105	5375	15%	
nit .	5374	15%	
1113	5375	15%	
1121	5374	30%	
(123	5375	30%	
1140	5374	30%	
1143	5375	30%	
1238	5333	25%	
1252	5374	30%	
1305	5374	30%	
<u> 3 i </u>	5374	30%	
<u> </u>	5374	30%	
341	5374	30%	
1423	5374	30%	
1430	5374	35-40%	400 gpm
1440	5374	40-45% 45%	400 gpm
1453	5374	<u>45%</u>	Ji
1506	5374	30.92	
-			
		,	

Page / of /

FIELD REPORT

DATE: 5/9/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA	
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20	
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: 930 "at am Overca-+ 60" "at pm	
PRESENT AT SITE: Weeks, Town (3), GI	HD(1)	
DATE: dd/mm/yr 5/9/16		

Time: use 24 hour time record at 15 min intervals or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
0933	5374	~15%	Earch open flow
0940-0942			Sid Flow Coming in A
0954		~15-20% QODerent	increme in flow - for
0001		~15-20% apprent ~15-20%	Fairly open flow Side flow coming in A increase in flow - Re Same
	· · ·		
			· · · · · · · · · · · · · · · · · · ·
			·····
	····		
2. E			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	
	· · ·		
	·····		
	-14		

FIELD REPORT

DATE: 5/9/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA	
PROJECT NAME: Town of Windsor, Esposli Well	JOB NO: 11110001.20	
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: * at am * at pm	
PRESENT AT SITE: WeeKS GHD		
DATE: dd/mm/yr 5 1 9 1 16		

Time: use 24 hour time Manhole Observed flow as a % record at 15 min Other observations number/description of full pipe intervals or more freq. 5376 15% 09:44 AM \$ 376 09:53 85% AM 10% in crease 1000 AM 11 1/ at 100 cer Same 11 11 1100 AM 15 OPPUL -LOW 200 11 11 115 11415 GPM 20% 5% increase AM AM 11 11 Same 1122 17 5% in cree in flow 11 11 119445 25 AM 12.69 11 11 An. 25/1 10 % increasin flow Same (11) 12:49 PM 5 h MCCEARDM 300 (111 1310 8m 3*07* SAME 1111 1325 In Same 0% Same 1339 PM 11 <u>eľ</u> in crease. 14 359 ルなら PM 11 csease int 1440 11 15 2 Samo 'Y M 11 PM 11 11 <u>359</u> 11 11/55 1-1-1 11 Same 11 11 5% 2m 509, 1510 pecseuse off

Page / of L

Special notes regarding: traffic during test, trucks, buses. Pedestrians, kids in the area, homeless. Is location appropriate for night monitoring. Photograph location and inside of manhole. Consider appropriateness of manhole as a permanent monitoring station with automatic measuring for final system.

on <u>S19116</u> Light traffic on shiloh Kd at <u>S376</u> from <u>f:30</u> Hm to 1:40 pm heavier traffic after <u>3:00 pm</u> & one or two pedestrony Walking bye. Page Zof Z

:

FIELD REPORT

DATE: 5/16/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: 9 ° at am Sunny
PRESENT AT SITE: Rich Ramos -	800 G P M

DATE: dd/mm/yr 5/16/16

Time: use 24 hour time record at 15 min intervals or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
8:46AM	374	50%	GOOD Flow/ ClEARMATE
BIYLAM	375	50%	GOOD FLOW CLEAR WATTER
8:51 Am	3 43	50%	27"@1/3 - 10"@ 50% 6000 Flow/CLEAR WATER
9:06 AM	327	50% -	6000 FLOW/CLEAR WATTR 6000 FLOW/CLEAR WATTR

Page___of

FIELD REPORT

DATE: 5/11/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: ° at am ° at pm
PRESENT AT SITE: WEEKS	JOSE BANNELOS
DATE: dd/mm/yr <u>J</u> 1 <u>//</u> 1 <u>J/</u>	

Time: use 24 hour time record at 15 min intervals or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
	c 271	10%	i co Ma
1313	2219	35%	increase Flou
1315	5316	······································	20% increase int
1325	2516	Same	Same in Flo
1332	5316	35%	Same in Flou
1244	5376	409	5% 'accease in a
1359	5376	Same 40%	Same 11 1
14/4	5316		Same 11 11
1424	5376	46 2	5% in creaseint
14 11	<u> </u>	11	AT 700 water starts t
	11	11	tila King into Lecter
11	11	1/	the Southside but
1439	5376	45% Same	Same at 700 6lm
1450	5376	50%	59. in crease in Ala
1458	\$ 376	552	St. meserse in fla
1306	5376	60%	5% increse for
1321	5376	Same 60%	Same 11
1535	5376	Samp 602	Same 11
1550	5376	Same 602	Same 11 11
1525	checked SPI30B		ak cood
2000 1605	STE	Same 609	Same 1111
1620	5376	5ame 609.	Same IIIIa
1635	\$376	Same 602	Same 11 11
16 53	5376	40 9	Diop 2095
	-		

Page___of___

		5/11/2016
		······································
· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	

Special notes regarding: traffic during test, trucks, buses. Pedestrians, kids in the area, homeless. Is location appropriate for night monitoring. Photograph location and inside of manhole. Consider appropriateness of manhole as a permanent monitoring station with automatic measuring for final system.

on S/11/16 A little more people walking than Sllofib. flow it's nice and Clear & Heavy track, man hole is on the bike long Page_ oſ

Kent O'Brien 707-478-9559 cell and text

FIELD REPORT

DATE: 5/11/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA	
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20	
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: ° at am 1:\3 ° at pm ຽບການ	
PRESENT AT SITE: Jourdan (Town o	FWINdsor)	

DATE: Malminutyr 5 / 11 / 11

Time: use 24 hour time record at 15 min intervals or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
1310	5374 (Shiloh)	10%	Inital inspection
1320	5374	40%	Inital inspection clear water 1400gr
1328	5374	40%	C SALAR AND STREET
1338	5374	40-45%	at 500 spm at 600 ypm
1349	5374	45-5090	at 600 yom
1356	5374	50%	<u>J</u>
1403	5343 [Hem	bree) 50%	Looks good
413	5327 (conde)	25-30%	plenty of capacity
1429	5374	50-55%	lat 200 minut
1440	5374	50-55%	at 700 gam
1455	5374	50-60%	at 700 gpm at 800 gpm
1504	5374	60%	at 900 gpm
1511	5374	60-65%	at 900 gpm
1522	Sol 5343 (Hembree)	500/10	at 900 apm
1526		40-50%	at 900 gpm
1536	5374	60-65%	at 900 gpm
1556	5374	60-652	
1617	5374	60-65%	
1625	<u>5374</u> 5374	40 %	
1654	5374	40 %	Endofrun
		N	
		1	

Page___of____

FIELD REPORT

DATE: 8/23/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: ° at am ° at pm
PRESENT AT SITE	
DATE: 123/2016	

Time: use 24 hour time record at 15 min intervals or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
1115	5130	10% Ocom	pump
1122	5130	459, 400,00	20% going ORH
1132	5130	5090 41000	~
		31	
Jum Start:	1:20		
4			
1013!			
	(7-		
	4		VOR HUY. 1 DIE 10
	× 6.5		sh No Flow
			at
	W.Sr.	2	Start
	Li I		
	/3		~~~
		4 	12 , 20%
······································			1 1.16)
		2	Flow oping
		ž	Low
		2	N.O.R. Hand
	- · · · · · · · · · · · · · · · · · · ·		

Page___of___

DRAFT Technical Memorandum

Esposti Park Groundwater Disposal Plan

Subject:	Esposti Park Sewer Discharge Analysis
Prepared For:	Kent O'Brien/GHD
Prepared by:	lan Jaffe, RMC
Reviewed by:	Leslie Dumas, RMC
Date:	April 29, 2016

1 Background

The Town of Windsor's (Town's) Esposti Park Supply Well is currently undergoing redevelopment and testing as part of a program to bring this well on-line as a water supply source for the Town. Groundwater produced from the well will be discharged to the Town's sanitary sewer during the well redevelopment and testing events. Specifically, waters generated during well development and testing will be discharged to the sanitary sewer in Shiloh Road, with a plug installed at the intersection of Shiloh Road and Old Redwood Highway to direct discharged waters and prevent these waters from entering the Old Redwood Highway trunk line as that pipeline is nearing capacity. This analysis was conducted to estimate the expected increase in sewer flow depth and the time to flow concentration at three potential monitoring sites in the Shiloh Road sanitary sewer as a result of the proposed groundwater discharges.

2 Analysis

Initial data for the sewer line in question were collected from a map of the Town's sewer system (as provided by the Town) and from a technical memorandum describing a sewer model for the Town that was utilized for evaluating groundwater discharges to the same sewer line in 2010. The sewer the diameter and length of the pipe segments were obtained from the map, and the expected peak dry weather flow in the sewer line receiving the discharge, as well as the pipe slope, was obtained from the modeling memorandum. These initial data are presented in **Table 1**.

Manhole	S374	S375	S376
Length (ft)	1294	1106	563
Diameter (in)	12	12	12
Slope (ft/ft)	0.006	0.006	0.006
Manning's "n" (assumed)	0.013	0.013	0.013
PDWF (gpm)	132	132	132

Table 1: Information for Pipeline from Discharge Point (S130) to Potential Monitoring Locations

Note: gpm - gallons per minute; ft - feet

Using Manning's equation for open channel flow in a circular channel, an iterative process was used to determine the initial (baseline) flow depth in the pipeline of interest assuming a baseline flow rate of approximately 2 feet per second (fps). Next, the iterative process was repeated for the seven discharge flow

scenarios (e.g. anticipated discharge rates to the sewer) to determine the depth of flow and velocity of flow in the sewer at the monitoring locations. Using the distance to the observation points and the calculated velocity, the time to flow observation was estimated. The freeboard (depth of unfilled pipe) was also calculated. It was assumed that the depth of flow at each of the potential observation locations was equal as the pipe diameter and slope is assumed to be uniform from the discharge point to all three observation manholes (as noted in the modeling memo). The results of the iterative process are presented in **Table 2**.

Flow Added	Total Flow	d/D	Flow	Freeboard	Time to observation point (min)		
gpm	gpm	in/in	fps	inch	S374	S375	S376
Baseline (0 gpm added)	132	0.220	2.29	9.36	9.42	8.05	4.09
50	182	0.26	2.52	8.88	8.56	7.32	3.72
100	232	0.295	2.71	8.46	7.96	6.80	3.46
200	332	0.355	2.99	7.74	7.21	6.17	3.14
500	632	0.505	3.54	5.94	6.09	5.21	2.65
600	732	0.555	3.67	5.34	5.88	5.02	2.55
800	932	0.650	3.87	4.20	5.57	4.76	2.42
1,000	1132	0.750	3.99	3.00	5.40	4.62	2.35

Table 2: Flow Depth and Time to Flow Observations

Appendix D – Temporary Sewer Discharge Application and Permit

PAR	T A - APPLICATION / PERMITTEE INFORMATION
A1.	Applicant Business Name Town of Wondsor
A2.	Physical Address of Facility or Location Discharging Wastewater Espost; Park, esh: 10 Road
	City Windsor State CA Zip 95492
	Phone (707) 838-5385 - Elizabeth Cargay
A3.	Mailing Address \$400 Windsor Road, Bldg. 100
	City Wandsor State CA Zip 95492
A4.	Chief Executive Officer Ted Whiton
	a. Title Principal/Sensor Civil Engineer
	b. Mailing Address 2235 Mercury Way Suite 150
	City Santa Rusa State CA Zip 95407
A5.	Environmental Consultant Kent O'Brien
	a. Title Senior Hydrogeologist
	b. Mailing Address 2235 Mercury Way, Suite 150
	city Santa Rosa State CA zip 95407
	c. Phone (707) 523-1010
A6.	Primary Contact Person David J. Vossler
	Title Sensor Geologist
	Day Phone (707) 523-1010 Night/Emergency Phone (707) 477-1283

PART B – SITE INFORMATION & TREATMENT

Purpose: The Site Information Section is primarily used to determine the substances which may enter into the wastewater discharge from the business activity and the intention of how it will be treated.

B1. Site History

Summarize the business activities and/or manufacturing processes responsible for the wastewater. Provide the name and contact information of the current property owner:

neveously install Town well, Exposti Well, requires Tosting, Discharge will be of extracted coment and to sanutur. Via settling fan les ndvaler semer flow con

B2. Describe the nature of the site contamination (if any): Naturally occurring Manganese, and total Arsenic.

B3. Identify the contaminants of concern in the wastewater discharge (eg. Hydrocarbons, BTEX, PAHs, Metals, Suspended Solids, etc.) Include supporting analytical data for the wastewater :

Manganese and Total Arsenic. Attackment 1 - Memorandum, April 7, 2016 - Summarises the analytical Binding from the Esport: Well-

B4. Describe the proposed treatment system(s) and sampling location(s) and attach a schematic: _____

Groundwater extracted will be routed through 20,000 gal Setting tanks . I & required to further reduce the turbidity, infine bag follor will be used. Disharged Via prop and growity Flow to Sanitary sener at \$ 930 A. Monitoring flow will be at \$ 130 A, CT 4, CT 5. Attachment 2 - Site Map & Groundwarter containment and descharge location Map.

PART B - SITE INFORMATION & TREATMENT CONTINUED

B5.	Operating Period & Discharge Flow See Attachment 3 Specify the proposed operating period for the activities (i.e. the period during which wastewater is discharged to the sanitary sewer)
	Hours/Day: 24 Days/Week: 5 Weeks/Year: 3 Two Discharge
	Specify the typical number of hours of discharge to the sanitary sewer during the following periods: $08:00 \text{ to } 16:00: \underline{\$ hours} 16:00 \text{ to } 24:00: \underline{\$ hours} 0:00 \text{ to } 08:00: \underline{\$ hours} .$ 100 gpm April 18 - April 1.2.2, 2016
	Expected maximum flow rate of discharge: 500 gpm may 4 - May 12, 2016
	Expected average flow rate of discharge: 350 SPM Apr. 118-Apr. 122, 2016 May 4 - May 12, 2016
	Maximum volume of treated wastewater to be discharged to the sanitary sewer: $2m$ gallons
	Anticipated start date for project: April 18, 2016
	Anticipated end date for project: September 22,2016

PART C – CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

I, the undersigned, and Engineer/Consultant (where applicable), certify that this firm's operation and its resultant wastewater discharge will achieve consistent compliance with the Town of Windsor's Municipal Code and Ordinances, permit requirements (as detailed herein), and applicable Federal and State discharge regulations and requirements. If the wastewater discharge does not meet all the applicable regulations, my firm is responsible for immediately halting the flow causing non-compliance, installing wastewater pretreatment equipment, or performing whatever is necessary to meet the waste discharge requirements. I am aware that there are significant penalties for violation of the regulations, requirements and conditions of this permit, the Town of Windsor's Municipal Code and Ordinances, and the State and Federal Government discharge regulations and requirements, including the possibility of fine and imprisonment.

Signature:	1 Jalla	
Title:	Senior Geologist	
Date:	4-15-2016	

This document must be signed by the most responsible person of the organization applying for the discharge permit. This includes the owner, president, corporate officer, or any other representative of the organization in an authorized decision-making capacity. The person signing this document is legally responsible for all information contained herein, and becomes liable for any and all future enforcement actions.

Attachment

Memorandum

07 April 2016

То	Frank Caligiuri		
Copy to	James Tamburini, Chuck Ward		
From	Kent O'Brien	Tel	415.296.2043
Subject	Preliminary Design Basis Esposti Well	Job no.	111/10001/

The project is located in the Town of Windsor, CA. The information listed below is a summary of well and groundwater information for the site that is pertinent to the preliminary design for the Esposti Park Well contaminant removal system. Information was obtained from knowledge of the site as well as from the September 2010 Groundwater Well Installation and Testing Project Summary Report prepared by RMC.

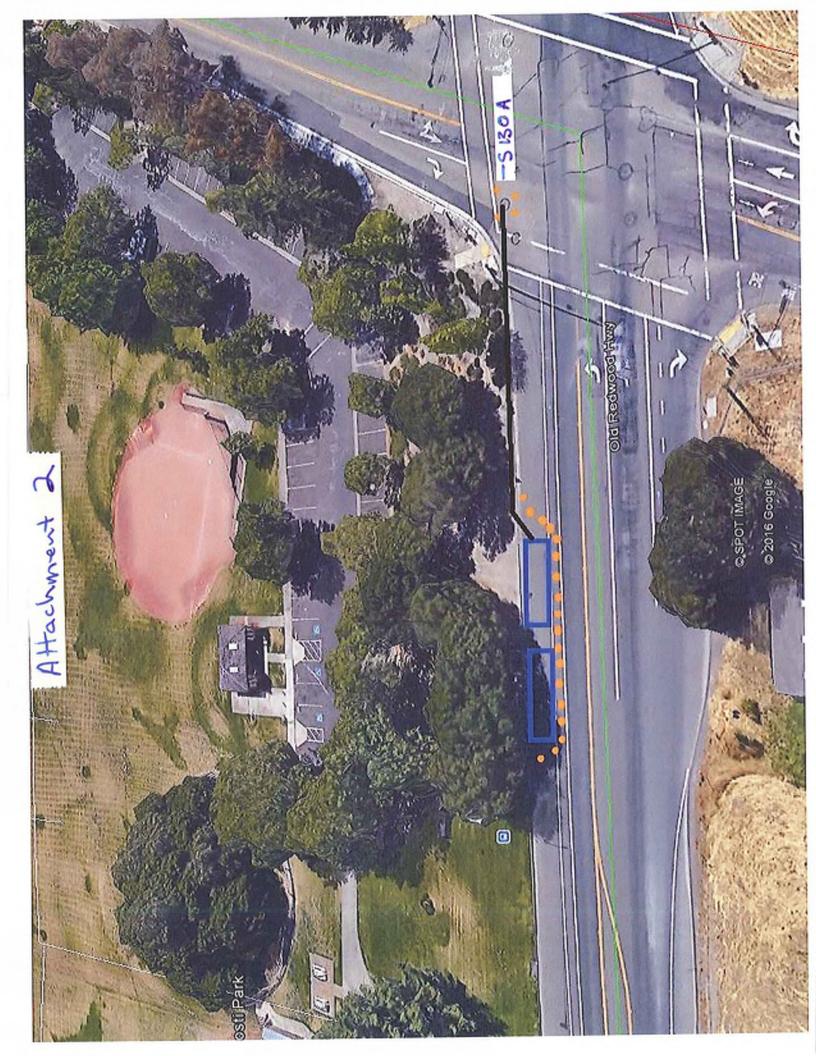
This information is provided for developing a laboratory bench test program to be conducted in May of 2016. GHD believes that there could be a benefit to bench testing Greensand Plus with various oxidizers. The removal of arsenic would be completed as a second process. By bench testing oxidizers for manganese removal, we would reduce the number of variables that needed to be evaluated during field Pilot Testing to be performed in August/September of 2016.

System Operation & Parameters

 Flow Capacity: 	800 gpm
 Annual Well Utilization: 	50% of Time
Disinfection	
o Disinfectant:	Sodium Hypochlorite
 Discharge Point: 	Distribution
Well Pump	
 Operation Type 	Intermittent, full flow
 Well Pressure 	120 psig
Wastewater Handling	
 Backwash Discharge Available? 	Yes
 Discharge Point 	Sewer
 Zero Discharge Required? 	No
Treatment Options	
 Bypass/Blend OK? 	Yes
 Spare Capacity Required? 	No
 Use of CO₂, HCI, H₂SO₄ or NaOH OK? 	Only CO ₂
Process Control	
 System Automation 	Yes

111/10001//TM1-Preliminary Design Basis

T 1 707 523 1010 F 1 707 527 8879 E santarosa@ghd.com W www.ghd.com


0	SCADA Interface	Yes
0	Notes	
Sumn	nary of Water Quality Assumptions*	
0	pH**	6.67
0	Temperature**	66 °F
0	ORP (EMF)**	4 mV
0	Conductivity**	458 µS/cm
0	TDS**	300 mg/L
0	Turbidity**	354 NTU
Ca	ations	
0	Hardness	120 mg/L CaCO3
0	Ammonia***	0.3 mg/L NH ₃
0	Calcium	22 mg/L
0	Magnesium	15 mg/L
0	Sodium	54 mg/L
Ar	lions	
0	Alkalinity	230 mg/L CaCO ₃
0	Bicarbonate	280 mg/L CaCO3
0	Carbonate	<1.0 mg/L CaCO ₃
0	Chloride	17 mg/L
0	Fluoride	0.37 mg/L
0	Nitrate	<2.0 mg/L NO ₃
0	Phosphate	(Unknown)
0	Silica***	87 mg/L SiO ₂
0	Sulfate	12 mg/L SO4
Me	etals	
0	Antimony	<6.0 µg/L
0	Total Arsenic	56 µg/L
0	Copper	<50 µg/L
0	Iron	<100 µg/L
0	Lead	<5.0 µg/L
0	Manganese	750 µg/L
0	Mercury	<1.0 µg/L
0	Selenium	<5.0 µg/L
0	Vanadium	(Uknown)

Notes:

* Water Quality data from Composite 1 of May 2010 sampling event with noted exceptions

** From Borehole at depth of 200 feet bgs

*** From Depth-specific results between 380-420 feet bgs

Attachment 3

Groundwater Discharge Plan - Esposti Well

Phase of Project	Event	Approx. Date of Sampling		
Setup	Video/non-pump spinner	4/18/2016		
	Prior to redevelopment	4/18/2016	Assume no sewer sample	
	Start of redevelopment	4/19/2016	High turbidity samples	
Well	Mid redevelopment	4/20/2016	High turbidity samples	
Redevelopment	End of redevelopment	4/22/2016	Low terbidity samples	
Redevelopment	End of redevelopment	4/22/2016	Soil samples of sediment	
	Video/non-pump spinner	4/22/2016		
	Notification to Town	4/22/2016	Vell condition summary by em	
	Full Well Pumping	5/3/2016	Pump 3 hours with spinner log	
	Select well segments	5/4/2016	Install packer lower pump	
	Lower pump at 200 gpm	5/4/2016	2 hours	
	Lower pump at 350 gpm	5/4/2016	2 hours	
Well Packer	Lower pump at 500 gpm	5/5-6/2016	24 hours	
Testing	Move packer	5/9/2016	Install packer upper pump	
resung	pump at 200 gpm	5/9/2016	2 hours	
	pump at 350 gpm	5/9/2016	2 hours	
	pump at 500 gpm	5/9-10/2016	24 hours	
	Remove packer	5/9/2016	Prep for pumping full well	
	Pump at \$00 gpm	5/11/2016	6+ hours	
	Setup	\$/23-25/2016		
Pilot Test	Pilot testing	9/6-17/2016		

.

Non-Residential One-Time Discharge Permit

Permittee: Town of Windsor 8400 Windsor Road Windsor, CA 95492 Discharge Located At: Esposti Park Old Redwood Highway @ Shiloh Road Windsor, CA 95492

PERMIT#: TD-04152016 EFFECTIVE DATE: 04/15/2016

EXPIRATION DATE: 12/31/2016

The above discharger is authorized to discharge non-contaminated, non-sediment laden groundwater and/or well water generated from the project at Esposti Park, Old Redwood Highway at Shiloh Road to the Town of Windsor's sewer collection system. This discharge shall be in accordance with the Town's current Sewer Code and/or Ordinances, and all applicable provisions of federal or state law or regulation, and in accordance with discharge point(s), effluent limitations, monitoring requirements, and other terms and conditions set forth herein.

PART I - SPECIAL CONDITIONS

- 1. The discharge rate to the sanitary sewer shall be at a discharge rate that will not result in any spillage or surcharging of the sewer system. At no time shall the flow rate of the discharge exceed 800 gpm. Permittee must contact the Town of Windsor's Wastewater Treatment Facility prior to discharging flow rates exceeding 500 gpm.
- 2. Sediment must be removed prior to any discharge to the sanitary sewer.
- 3. The Town reserves the right to require water quality sampling and testing at any time. Should any of the sample results indicate that pollutant concentrations are beyond the treatment capabilities of the wastewater treatment plant, the Town reserves the right to revoke this permit and prohibit further discharge.
- 4. All discharge volumes shall be reported to this office by a Town approved method which may include, metering, storage tank volumes, and/or pumping flow rates to determine the permit discharge fees. Note: Monthly discharge volumes shall be reported within 15 days of the end of each month, and the total discharge volume shall be reported to this office within 30 days of the completion of this project.
- 5. Permittee shall notify this office 48 hours in advance of the commencement of the discharge so that a member of the Industrial Waste Group may be on site at the beginning of the operations to verify the discharge point to the sanitary sewer.
- 6. The Permittee shall be responsible for all liability imposed by law for personal injury or property damage caused by work done by Permittee under this permit, including work beyond the scope of this permit. If any claim of such liability is made against the Town, its officers or employees, Permittee shall defend, indemnify and hold them, and each of them, harmless from such claim and liability insofar as permitted by law.

<u>CERTIFICATION</u>: I agree to comply with all terms and provisions of this permit and all other regulations set forth within the Town's current Sewer Code and/or Ordinances in the Town of Windsor, or any applicable provisions of federal or state law or regulation.

PLEASE SIGN AND PRINT NAME BELOW 12016 iest i Owner/Manager Title -Date 18/16 Title Env. Program Marager Date 'n Inspected by: Title Acting PW Dir / Tewn Engr Date 4/18/16 Approved by:

Appendix E – Street Encroachment Permit

ALLOW 2-3 WEEKS TO PROCESS		
Town of Windsor Engineering Division	ENCROACHMENT	PERMIT
TOWN OF CONTRACT O	PERMIT NO.	2016-16
WINDSOR Windsor, CA 95492-0100 Office Hours: Mon – Thurs 7:00nm – 6:00pm	(For office use only)	(Date / Initials)
(Form A)	USA Number:	NA
APPLICANT TO COMPLETE THIS PART (Please Print or Fill out electronically)	Performance Bond #:	last it
X Type of Activity	Maintenance Bond #:	0,08
Utility: Water, Sewer, Recycled PG&E, ATT, Comcast	Expiration Date:	1
Sidewalk / Curb / Gutter / Pavement 🔀 Maintenance	Permit Fee:	-0-
Driveway: New / Replace / Repair Debris Box	Permit Issue Date:	4-7-16
Equipment: Crane, scaffold Outside Water	Permit Expiration Date:	9-28-16
Other: Drainage	Date Permit Finaled:	
Check One: Project General Contractor D Project Subcontractor		
Permittee: Weeks Dollincy	Phone Number:	107-823-3180
Address: 6100 Hwy 120	Fax Number:	707-823-4258
Sehastopol CA 95473	Cell/Emergency:	707-583-1822
Contact: Joshua Moere	Business Registration #:	005460
E-mail: Joshua Qweeksdrilling.com	Contractor's License #:	177681
0	Contractor's Class:	CG1/D21 C57(36
Attention: General Contractors & Subcontractors - List all subcontractor		
Project Name: Espost: Well Developmen		the second s
Work Site Address:	Construction End Date (Est	
Scope of work: Develope 10" well to reduce		
Developert & Runperl water will be Fushed	to bil Cold & Sauce	Non.
participation of the participa	e to man peace process	
Excavation in Public Right-of-way? No Yes If "yes" pr	ovide U.S.A. Ticket Number*:	
	I not be issued without applicant providing US	A ticket mamber.
Is there an existing water well? No DYes N/A Is there	an existing septic system? 🗌 No [Yes K N/A
PERMITEE TO READ AND SIGN BELOW: Permittee agrees to accept all responsibility for loss and/or damage to any and release the Town of Windsor, its agents and employees, from and aga expenses which may be asserted by any person or entity including Permit- negligence of Permittee performing the work associated with the Encroacel on the part of the Town of Windsor, but excluding liability due to the sole of Windsor. The indemnification obligation is not limited in any way by any limitation of by or for Permittee under Worker's Compensation, disability or other emplo- any insurance held or provided by Permittee and shall continue to bind Permittee shall comply with all Encroachment Permit requirements and p limited to the procurement and maintenance of insurance and bonding requit THE UNDERSIGNED AGREES THAT THE WORK WILL BE DO THIS PERMIT'S TERMS AND CONDITIONS, THE STATE VEHICLE AND IS SUBJECT TO INSPECTION AND APPROVAL. Date: 04/07/2016 Permittee Signature:	inst any and all liability actions, claims thee arising out of or in connection wi ment Permit, whether or not there is ec- uctive negligence or sole willful miscon on the amount or type of damages or co byee benefit acts or the terms, applicabil d the parties after termination/comple- rocedures, attached hereto as Exhibit / rements set forth therein.	damages, costs, or the willful act or neurrent negligence duct of the Town of mpensation payable lity or limitations of tion of this permit. A. including but not ND SUBJECT. TO
Print Name: Joe	shua Moore	
When Environchment Permit is itered for a special event involving a stress		

(When Eneroachment Permit is issued for a special event involving a street closure a copy shall be forwarded to Police and Fire)

Page 1 of 2 I:\80 - Public Works\Admin\Eng Div\Policies & Procedures\LD Procedures\gDraft Packet handouts\Handouts for Encroachment Permits\Public Encroachment Permit Handout Packet\Form A - Encr Permit AppR2

A COPY OF THIS ENCROACHMENT PERMIT SHALL BE ON THE JOB SITE TOWN OF WINDSOR ENCROACHMENT PERMIT

	Provide business name, contact name, address	s, phone number and e-mail.	
ı.	unknown & this +	ime	
2.			
3.			
1.			
5.			
6.			
7.			
8.			
9.			1
10.			
11.			
12.			
1.	Each subcontractor shall obtain an encroachment work they are responsible for.	permit for the portion of	the proposed
2.	If the subcontractor is not covered under the Prim subcontractor must have their own insurance as re submit the required insurance documents for revie	equired by the Town of V	then the Vindsor and
be C	ompleted by Town Staff Only		
THIS PROV INTE OJEC	ENCROACHMENT PERMIT IS ASSOCIATED WITH A CAPITAL EMENT PROJECT, A LAND DEVELOPMENT PROJECT OR A NANCE OR REPAIR CONTRACT, THE PUBLIC WORKS T MANAGER OR PUBLIC WORKS SUPERVISOR RESPONSIBLE		
	E PROJECT SHALL INITIAL THIS APPLICATION VERIFYING - DJECT IS READY TO BE ISSUED AN ENCROACHMENT PERMIT:	PROJECT MANAGER SIGNATURE/ INITIALS	Date

Page 2 of 2

I:\80 - Public Works\Admin\Eng Div\Policies & Procedures\LD Procedures\gDraft Packet handouts\Handouts for Encroachment Permits\Public Encroachment Permit Handout Packet\Form A - Encr Permit AppR2.docx

Town of Windsor Engineering Division 8400 Windsor Road, Bldg 100 P.O. Box 100 Windsor, CA 95492-0100 (707) 838-5340, Fax (707) 838-5300

Project Ready to Issue an Encroachment Permit

Project Manager Name: Elizabeth Car	CAAN
Project Name: ESposti Water Sup	oply Reliability Project
Brief Project Description: <u>MUDICIPAL Well r</u> Test and treatment Pilot Te	edevelopment, Pump

I, <u>Careau</u>, as the Project Manager for the aforementioned project has verified that the following items have been completed, reviewed and approved by myself or authorized agent and that the project is ready to be issued an Encroachment Permit as required by the Town of Windsor Municipal Code.

The following items have been approved:

	51. 9 m	The following checked items have been approved by Project Manager	Comments
hment		Completed Encr. Permit Application	Attached
ncroac	approved	USA number (if required)	N/A ·
The following Items must be approved prior to issuing an Encroachment Permit. Engineering staff to mark Required Items		Plans .	Attached
issuin Requir	ich are	Cost Estimates	submitted as part of Contract
prior to mark	off which	Contractor/Subcontractor's License	177681
roved j taff to	check o	Contractor/Sub Business License	n/2005460
be app ering s	er to c	Insurance Documentation	nlos 005460 See attached
ing Items must be approve Permit. Engineering staff	Manage	Bonds or other type of Security	n/a
g Items ermit. I	ect	Traffic Control Plan	see attachd
llowin, Pt	Proj	Tree concerns have been satisfied	nla
The fo		Existing Wells and Septic concerns have been satisfied	n/a

The terms, conditions and restrictions for the Encroachment work are part of the contract documents. No additional terms, conditions and restrictions are required.

Date: 4

Print Engineering Tech Name processing the Encroachment Permit Application

Project Manager's Signature beth argai Print Project Manager's Name

I:\80 - Public Works\Encroachment Permit\Forms\Ready To Issue SHEET form.doc

Revised: 3/16/2016

Town of Windsor Public Works Department 8400 Windsor Road, Bldg. 100 P.O. Box 100 Windsor, CA 95492-0100 (707) 838-5340, Fax: (707) 838-5300

 1200	PA 24. 1	1	
 6 F - N	12 0.7	1.0	
	IN 1997	1 1	~

ENCROACHMENT PERMIT TERMS, CONDITIONS & RESTRICTIONS

- OFFICIAL USE ONLY - OFFICIAL USE ONLY - OFFICIAL USE ONLY - OFFICIAL USE ONLY - OFFICIAL USE ONLY - OFFICIAL USE ONLY -

Encroachment Permit #: 2016-16

Location: 6000 Old Redwood Highway - Esposti Park

Scope of Work: Develop 10" well: flush well, pump, test and treatment pilot testing

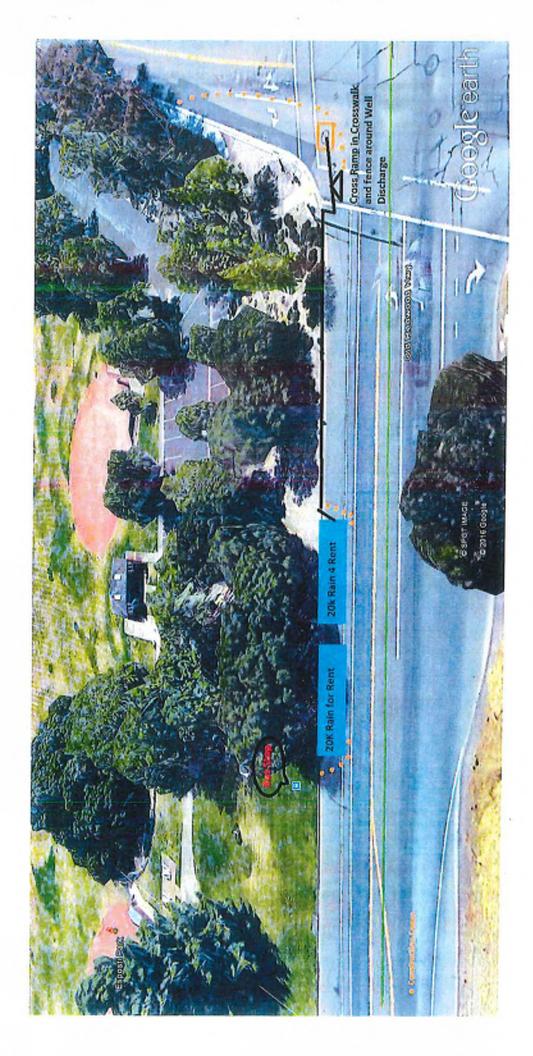
TERMS, CONDITIONS & RESTRICTIONS:

This Encroachment Permit is to be strictly adhered to and no work other than that specifically mentioned in the Scope of Work above is hereby authorized. If the Town Engineer determines persons performing encroachment work are in non-compliance with the provisions of this permit, the Town Engineer may revoke this permit.

Subject to all the terms, conditions & restrictions written hereon or attached hereto, permission is hereby granted for Permittee to:

- Specific Project
- •

General


- Follow all of the latest issue of the Town of Windsor Design and Construction Standards. Visit the Town's web site for the latest copy of the Design and Construction Standards
- Follow the approved Traffic Control Plan, all traffic control shall comply with the Town of Windsor Construction Traffic Control Procedures on Town Streets Manual.
- 3. Perform work stated in the Scope of Work and Return the work site as required by the Public Works (PW) Inspector.
- 4. All work shall be inspected, failure by the contractor to call for inspection may delay/stop the project.
- 5. If concrete work is involved, then all forms for concrete work shall be inspected prior to pour.
- 6. The Public Works Inspector to be notified 24 hours prior to start of work. Inspector's phone number is 707-838-1230.
- The Primary Contractor shall include all Subcontractors as insureds under the Primary Contractors policies, or the Primary Contractor shall furnish separate insurance certificates and endorsements for each Subcontractor. All coverages for subcontractors shall be subject to all of the requirements stated herein.
- Independent of this Encroachment Permit, if the subcontractors are performing work permitted under this Encroachment Permit the said Subcontractors shall obtain their own respective Encroachment Permits.
- 9. Notify the Public Works Inspector upon completion of work.
- 10. Water tie-ins are not permitted on Friday or days preceding a holiday.
- Compaction Reports: The applicant shall retain a licensed Geotechnical Engineer to perform compaction tests. The compaction test results shall be submitted to Town Public Works department prior to final trench paving or restoration.
- 12. Contractor's may not turn water valves. Contact the PW Inspector if there are water valves to be adjusted.
- All USA markings are to be water scrubbed off of concrete sidewalks and drives prior to calling the PW Inspector upon completion of work.

See reverse sid	e for any additional 1	Terms, Conditions or Restrictions		
DATE: 4-7-16	APPROVED: _	Town of Windsor Signature		
		MONA IBRAHM, ENG. TECH		
		Print Name and Title		

A COPY OF THIS ENCROACHMENT PERMIT SHALL BE ON THE JOB SITE

Inspections: The Public Works Inspector can be reached at: 707-838-1230, leave message if phone not answered Monday through Friday: 7:30 am through 4:30 pm

Field Inspection Hours: Monday through Friday 8:00 am -4:00 pm

Town of Windsor Engineering Division 8400 Windsor Road, Bldg 100 P.O. Box 100 Windsor, CA 95492-0100 (707) 838-5340, Fax (707) 838-5300

ENCROACHMENT PERMIT STANDARD CONDITIONS

Construction within the Town of Windsor Public Right-of-Way: Streets, Properties, and Easements

A. Definitions:

- Encroachment: The term 'Encroachment' is used in this permit as defined in §1450, Sub.(b) and §1460 of the Streets & Highways Code and Section 5885(c)(1) of the Public Utilities Code of the State of California, Town of Windsor Code Title XV §4-105-d. This permit is issued in accordance with and subject to the provisions of the Town of Windsor Municipal Code, Title X, Chapter 2 article 1 and 2.
- 2. **Town Engineer:** The person holding the position of "Town Engineer" for the Town of Windsor. The Town Engineer may assign duly authorized representatives to discharge the responsibilities of the Town Engineer. The duly authorized representatives may include inspectors, maintenance staff, engineers, technicians or otherwise, to be known in this document as Town staff.

B. Ownership of Lands under Town of Windsor Public Rights-of-Ways:

- 1. **Easements:** In some instances, the Town does not own the land in which its right-of-ways traverse, the Town's interest being limited to the easement only. Therefore, this permit covers surface operations at all locations where the Town has no subsurface rights and in such cases does not purport to authorize any excavation, laying of pipe lines, setting of poles, or other operations below the surface of the easement. In such cases, it is the responsibility of the Permittee to obtain the consent of the subsurface owner(s) before undertaking any of the below-surface operations.
- 2. In Fee (Simple): The Town of Windsor owns the underlying land.
- C. General
 - 1. Acceptance of Provisions: It is understood and agreed by the Permittee that the performance of any work under this permit shall constitute an acceptance of these provisions.
 - 2. Start of Work: This permit is void unless the proper notification is given 24 hours prior to starting work. Notification shall be by calling the Town of Windsor Public Works Inspector @ 707-838-1230.
 - 3. **Permit Documentation on Site:** The following documents are required to be kept at the work site(s) at all times and must be shown to Town staff upon request.
 - a. Encroachment Permit, Encroachment Permit "Terms, Conditions and Restrictions" and the Encroachment Permit Standard Conditions,
 - b. Traffic Control Plan,
 - c. Project Storm Water Pollution Prevention Plan (SWPPP) & Rain Event Action Plan (REAP), as applicable, and
 - d. Town approved project plans.
 - 4. **Superintendence:** The Permittee shall have an authorized representative at the project site at all times, in accordance with the latest adopted State of California Department of Transportation Standard Specifications.
 - 5. **Character of Workers**: Contractors and workers employed by the Permittee shall be subject to "Character of Workers" as required in the latest adopted State of California Department of Transportation Standard Specifications.

- 6. **Control of Work:** All work performed and all materials furnished under this permit shall be subject to the inspection and approval by the Town Engineer or duly authorized representatives. Such inspection and approval of work and materials shall not relieve the Permittee of any of their obligations to complete the work as specified using materials as specified.
- 7. Access to Work Area: Town Staff shall have access to the work area at all times in order to ascertain that the methods, materials, and workmanship are in accordance with the requirements and intent of this Encroachment Permit.
- 8. Standards: Work shall comply with the latest edition of the Town of Windsor Design and Construction Standards, the latest edition of Standard Specifications of the State of California Department of Transportation and with the Terms, Conditions and Restrictions attached to the Encroachment Permit. Terms, Conditions and Restrictions that are part of the contract package for Capital Improvement Projects or Land Development Projects take precedence.
- 9. **Inspections:** It will be necessary to obtain approval from Town staff for the work completed at each of the following stages below. Approval must be obtained prior to commencing work on subsequent stages. Town staff may require additional approvals beyond what is listed below. For any work, including excavations, undertaken without proper inspections, Town staff may request the work to be removed, repeated, opened or altered so proper inspections can be performed. The cost of the added work shall be the responsibility of the Permittee.
 - Stage 1 Compaction and preparation of embankments, excavations and subgrade.
 - Stage 2 Exeavation
 - a. Construction of forms for all concrete structures, including curbs and gutters.
 - b. For storm drains, culverts, and utilities
 - Stage 3 Placing
 - a. Concrete in structures.
 - b. Bedding materials, and bedding material over pipes.
 - c. Water pipes, recycled water pipes, sewer lines, storm drains and culvert pipes.
 - Stage 4 Backfilling for structures, pipes, and utilities.
 - Stage 5 Construction of roadside ditches and other drainage ways.
 - Stage 6 Base
 - a. Placing and compacting of base material.
 - b. If more than one course or type of base or subbase is to be used, approval shall be necessary for each course and/or type.
 - Stage 7 Placing of pavement or surfacing.
 - Stage 8 Final clean-up.
- 10. **Rejecting Work:** The Permittee, or authorized agent, shall be in charge of all phases of work. The Permittee will comply with the request to repair, replace or remove defective work that is rejected by Town staff at the Permittee's expense.
- 11. Storage of Material: No materials shall be stored in the street or within eight (8) feet from the edge of the traveled way, unless allowed by Town staff. Materials in the right-of-way may be removed by Town staff at the Permittee's expense.
- 12. **Maintenance:** The Permittee agrees to exercise reasonable care to maintain the public right-of-way in the area of work. Any damage to public right-of-way; including: street, curb, gutter, sidewalk, landscaping, irrigation, etc caused by work as permitted under the Encroachment Permit shall be repaired, replaced or removed to the satisfaction of the Town Staff at the Permittee's expense.

Page 2 of 6

I:\80 - Public Works\Admin\Eng Div\Policies & Procedures\LD Procedures\gDraft Packet handouts\Handouts for Encroachment Permits\Public Encroachment Permit Handout Packet\Exh B - Standard Conditions Rev 1 02-18-15.docx 13. Damage to Public Right-of-Way due to work performed or failure to perform work under the Encroachment Permit: The Permittee is liable for all property damage to the Town public right-of-way which may arise out of work performed as permitted under the Encroachment Permit, or which may arise out of failure, on the Permittee's part, to perform their obligations under this Encroachment Permit.

If the Permittee does not repair, replace or remove damage to the Town's public right-of-way because of work performed or for failure to perform work under the Encroachment Permit, as directed to do so by the Town Inspector and under the specified time period the Town Inspector has requested, then the Town may perform the required repair, replacement or removal of the damaged or incompleted work at the cost incurred by the Town including 100 percent of the administrative and overhead costs associated with such work. This cost shall be paid by the Permittee within 30 days of Permittee's receipt of the invoice for said repair, replacement or removal of damaged or incomplete work to Town property.

- 14. **Revocation of Encroachment Permit:** This Encroachment Permit may be immediately revoked by Town staff for reasons that are in the best interest of the Town for violation of permit conditions or for the creation of a nuisance. Upon notice given of such revocation, the applicant shall immediately cease all operations and restore Town right-of-way as directed by Town staff. After notification, the Town of Windsor may take full possession of the area. The permittee shall pay the cost incurred by the Town, including 100 percent of administrative and overhead costs, associated in restoration, repair and/or removal of materials to return the public right-of-way to original condition as approved by Town staff. This cost shall be paid by the Permittee within 30 days of Permittee's receipt for the invoice of said work.
- 15. **Repair of Town Facilities:** Resources must be available on the project site to repair any breaks or damage that may occur to existing Town utility facilities (sewer, water, recycled water and storm drains) during the term of this project.
- 16. Clean Up Public Right-of-Way: Upon completion of the work, debris and material shall be entirely removed and the public right-of-way cleaned and shall be left in as a presentable condition as before work started. The Town Inspector shall approve clean up before accepting the work as complete.
- 17. **Conflicting Construction:** When construction permitted under this Encroachment Permit falls within the limits of a Town of Windsor construction project, the Town of Windsor construction project has precedence. Work on this encroachment shall be coordinated with the Town of Windsor construction project so as not to create any conflict with the said project or this permit will be revoked.
- 18. Disposal of Excavated Materials: A haul route may be required by Town staff for disposal of excavated materials. If the disposal site is within the Town Boundary then a disposal site agreement shall be approved by Town staff. If the disposal is outside of Town Boundary then only a haul route may be required by Town staff.
- D. Traffic Control
 - 1. **Traffic Control:** Permittee shall furnish and install all traffic and warning signs, barricades, etc., in accordance with the latest edition of the "Town of Windsor: Construction Traffic Control Procedures on Town Streets" manual.
 - 2. Signing: No work shall commence until traffic control signing has been installed in accordance with the approved traffic control plan.
 - 3. Sign Encroachment Permits: Permittee shall obtain any State or County Encroachment Permits, and/or public utility or private property permission for the placement of signs, as applicable.
 - 4. Detour Plan: Detour plan(s) shall be submitted to the Town staff for review and approval. No

Encroachment Permit Standard Conditions

Page 3 of 6

I:\80 - Public Works\Admin\Eng Div\Policies & Procedures\LD Procedures\gDraft Packet handouts\Handouts for Encroachment Permits\Public Encroachment Permit Handout Packet\Exh B - Standard Conditions Rev 1 02-18-15.docx detours shall be conducted without prior written approval from the Town.

- 5. **Sign Posting:** All signs shall be post mounted unless Town staff approves otherwise. Attaching signs to existing Town signs, posts, light poles, or traffic signals is not permitted.
- 6. Additional Signs: Town staff may require the Permittee to install additional signs as required for public safety.
- 7. Existing Public Signs: Relocation or removal of existing public signs shall not occur until approval has been obtained from the Town staff.
- 8. **Special Conditions:** Special Conditions may be imposed at specific locations during peak hour traffic as noted on the Encroachment Permit.

E. Boring, Excavation, Backfill and Pavement

- 1. **Pavement Cuts:** Pavement cuts shall be performed per STD 115 of the Town of Windsor Design and Construction Standards latest edition.
- 2. **Trenchless technology (boring):** Town staff shall require the use of boring if it is in the best interest of the Town, it is technically, commercially, and economically feasible; and it is not in violation of federal or state regulations or industry safety standards.
 - a. Prior to construction, all existing underground public facilities within five feet of the boring shall be physically located (pot holed).
 - b. Construction shall be made in such a manner that will minimize interference with vehicular traffic. Unless otherwise approved by Town staff, the location of the boring pits shall be a minimum of three feet from the roadway to prevent undermining of the curb, gutter, or shoulder section and the pit shall be dug to a depth sufficient to maintain a minimum boring depth of 42 inches below the traffic surface. Jetting types of boring equipment are not allowed.
 - c. Bore pits or trenches shall be secured adequately to protect the public while left open. All overcutting shall be remedied by pressure grouting the entire length of the installation.
 - d. The pits or trenches excavated to facilitate boring shall be backfilled and compacted immediately after work is completed.
 - e. The contractor shall have the ability to locate the bore head upon request by Town staff.
- 3. **Pothole Restoration:** Potholes to be sawcut around the entire failing area, excavated, and base repaired using fresh base. Then proper placement of the asphalt. Base and Asphalt per Town of Windsor design specifications.
- 4. **Crossing Roadway:** Service and other small diameter pipes shall be jacked or otherwise forced underneath pavement without disturbing the pavement. Pavement or roadway shall not be cut unless specifically permitted by Town staff. Service pipes will not be permitted inside of any culvert pipes used as drainage structures.
- 5. **Treneh Backfill:** Trench backfill and backfill materials shall conform per STD 115 of the Town of Windsor Design and Construction Standards latest edition.
- 6. **Temporary Patching:** The Contractor shall continually maintain the patch, at the contractor's expense, as directed by Town Staff, until the final pavement is placed. Temporary paving shall be completely removed prior to final paving.
 - a. Unless installing permanent paving, temporary paving shall be placed at the end of each work day. Temporary pavement shall be 1½-inch minimum thickness and shall be replaced within ten working days with permanent pavement.
 - b. Open trench must be backfilled and capped with at least 2" of cold mix asphalt or metal plated according to Town specifications during non-working hours. Metal plates are required to have

Page 4 of 6

cold mix asphalt ramps at all edges and must be maintained.

- c. Temporary patching of trench is required on lateral cuts in surfaced streets immediately after backfilling. After completion of the refilling and compacting of the backfill material in the excavation as specified and the removal of the obstruction, the permittee shall promptly replace with temporary or permanent patching material or repair any portion of the road surface removed or damaged by the excavation, obstruction or construction operations to the satisfaction of Town staff. Temporary patching material may be left in place for up to 10 working days.
- d. Hot patch is required at high traffic areas, such as intersections, or in harsh weather. Town staff determines such.
- 7. Final Paving: The Contractor shall apply the final paving no later than ten (10) working days after traffic is allowed to pass over the work area. Failure to do so will require the Town Forces to perform the paving work at the cost incurred by the Town including 100 percent of the administrative and overhead costs associated with such work. This paving cost shall be paid by Permittee within thirty (30) days of Permittee's receipt of invoice of such paving costs. Permittee shall restore the roadway to its preconstruction condition unless otherwise directed by Town staff.

F. Public Safety

In addition to any other measures taken by the Contractor pursuant to the latest adopted provisions of the Standard Specifications of the State of California Department of Transportation regarding "Public Safety" the Contractor shall install temporary railing (Type K) between any lane carrying public traffic and any excavation, obstacle, or storage area when one of the following conditions exist.

- 1. Excavations: Any excavation with the near edge which is 12 feet or less from the edge of the lane, except:
 - a. For excavations covered with steel trench plates or concrete covers in accordance with the latest adopted provisions of the Standard Specifications of the State of California Department of Transportation, to prevent accidental entry by traffic or the public.
 - b. For excavations in side slopes, where the slope is less than 4:1.
 - c. For excavations protected by an existing barrier or railing.
- 2. **Temporarily Unprotected Permanent Obstacles:** Whenever the work includes the installation of a fixed obstacle together with a protective system, such as a sign structure together with protective railing, and the Contractor elects to install the obstacle prior to installing the protective system; or whenever the Contractor, for his convenience and with permission of the Town Engineer, removes a portion of an existing protective railing at an obstacle and does not replace such railing complete in place during the same day.
- 3. Storage Areas: Whenever material or equipment is stored within 12 feet of the lane and such storage is not otherwise prohibited by the specifications.

G. ADA Requirements

1. **Pedestrian Traffic and the ADA:** Temporary paving in areas subject to pedestrian traffic shall be compliant with the latest ADA regulations and shall be constructed with non-slip surfaces.

The Americans with Disabilities Act (ADA) is a civil rights law which mandates equal opportunity for individuals with disabilities. The Title II of the ADA prohibits discrimination in access to public facilities, this includes, but not limited to, pedestrian access on sidewalks and streets, including crosswalks, curb ramps, parking and other components of the right of way in the accessible route of travel.

All work within the public right of way must comply with the requirements of the Americans with Disabilities Act (ADA). If the work in the public right of way affects pedestrian access, the permitee

Encroachment Permit Standard Conditions

Page S of 6

I:\80 - Public Works\Admin\Eng Div\Policies & Procedures\LD Procedures\gDraft Packet handouts\Handouts for Encroachment Permits\Public Encroachment Permit Handout Packet\Exh B - Standard Conditions Rev 1 02-18-15.docx of the Encroachment Permit is required to provide a compliant accessible route of travel including proper signage at the pedestrian access. The temporary accessible route of travel shall be inspected and approved by the Town of Windsor's ADA coordinator prior to work commencing.

H. Drainage

- Maintenance of Drainage: Work performed under the Encroachment Permit shall not interfere
 with the established drainage. The Contractor shall maintain drainage through the work area. Such
 work shall include but not be limited to keeping all culverts and inlets clean and open. Natural
 drainage entering the work site shall not be obstructed in any way. The Contractor shall take any and
 all measures necessary to prevent the flow of silt and debris from leaving the work site. Any silt and
 debris accumulation in drainage facilities off the work site due to the construction shall be removed
 immediately.
- Storm Water Guidelines: All construction shall conform to the requirements of the State of California, Construction Activities Storm Water General Permit 2009-0009-DWQ, effective July 1, 2010 and including subsequent amendments thereto, to Town Ordinance 2008-246, 2008-249, 2010-261 and subsequent revisions and if applicable, to the City of Santa Rosa and County of Sonoma Storm Water Low Impact Development Technical Design Manual, dated August 2011 and adopted by the Town of Windsor on December 31, 2014, including any subsequent manual updates.

I. Tree Protection

- 1. **Removal or trimming of trees:** Removal or trimming of protected trees requires Town of Windsor planning approval; refer to the Town of Windsor Code Title XVII, Zoning, Chapter 27.36 Tree Preservation and Protection.
- 2. **Tree Protection in the Work Area:** The contractor shall follow any conditions imposed on the Encroachment Permit regarding Tree Protection in the area of work.

J. Work Hours

- 1. Work Hours permitted: Unless approved otherwise, working hours shall be between 7:00 a.m. and 5:00 p.m. Monday through Friday.
- 2. Work on Weekends and Holidays: Unless approved otherwise, no work shall be performed on weekends or holidays.

Appendix F – Video and Spinner Log Reports

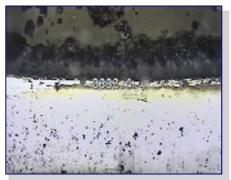
WATER WELL VIDEO REPORT

West Coast Well Logging Services

Espoti Supply Well City of Windsor

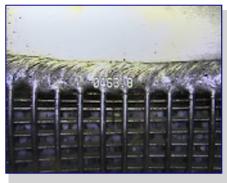
P.O.Box 2797 Rancho Cordova, CA. 95741 Phone: 916-224-3810 Fax: 916-858-8174 Web: www.wcwls.com

Client:	Weeks Drilling & Pump, Inc.	Survey Date: April 18, 2016
Address:	P.O.Box 176	Invoice No.:1287 Run:One
City:	Sebastopol, CA 95473	P.O.: Van:
County:	Sonoma	Operator: Mark F. Sharpless
Requested By:	Josh	Type Camera: CCV Color Flip Camera - Short L.H.
Сору То:		Latitude: 38.52654° Longitude: 122.77948°
Reason For Survey:	General Inspection	Section: 19 TWP: 8N Range: 8W
Location:	Shilo & Old Redwood Hwy.	
Field:	Windsor	
Other Information:		


	ORMATION	DEPTHS (SideScan)	VIDEO OBSERVATIONS		
Stainless Steel Screen	Well Depth	0.0 Ft.	Recording Starts - Zeroed on SideScan Lens		
384-423 Ft.	656 Ft.		Static Water Level (SWL)		
434-453 Ft.			Visible cement leakage at casing joint		
464-473 Ft.	S.W.L	382-383 Ft.	Dielectric Joint		
484-513 Ft.	39.5 Ft.		Perforations, Top Of Screen (384-423)		
549-569 Ft.	00.011.	433.7 Ft.	Perforations, Top Of Screen (434-453)		
620-656 Ft.		463.8 Ft.	Perforations, Top Of Screen (464-473)		
		483.9 Ft.	Perforations, Top Of Screen (484-513)		
		549.2 Ft.	Perforations, Top Of Screen (549-569)		
		620.2 Ft.	Perforations, Top Of Screen (620-659)		
		656.4 Ft.	Downview of soft fill, still in screen		
		_			
	10" I.D. Casing				
	0-656 Ft.				
Zero Datum	Type: Steel				
Top Of Casing		_			
Dia. Reference					
Measured		-			
Cooing P					
Casing B		-			
• • • • • • • • • • • • • • • • • • • •					
383.2'		383.5'			
		463.8'			
Notes:			Page 1		

WELLBORE SNAPSHOT(S)

Depth: 0 Feet


Depth: 382.4 Feet


Depth: 423 Feet

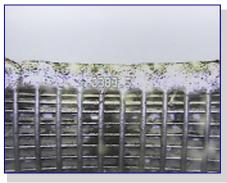
Depth: 463.8 Feet



Depth: 39.5 Feet

Depth: 383.2 Feet

Depth: 433.7 Feet


Depth: 473.2 Feet

Depth: 160.8 Feet

Depth: 383.5 Feet

Depth: 453.1 Feet

Depth: 483.9 Feet

WATER WELL VIDEO REPORT

Espoti Supply Well

City of Windsor

West Coast Well Logging Services

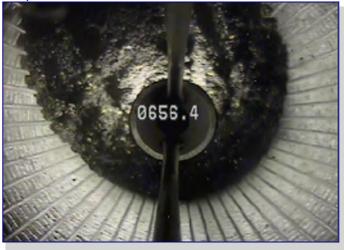

P.O.Box 2797 Rancho Cordova, CA. 95741

Phone: 916-224-3810 Fax: 916-858-8174 Web: www.wcwls.com

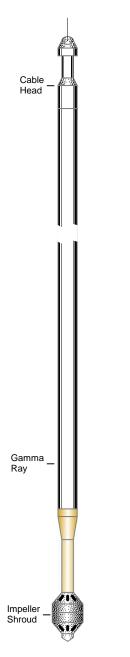
CASING INF	ORMATION	DEPTHS (SideScan)	VIDEO OBSERVATIONS
stainless Steel Screen	Well Depth		Additional snapshots
384-423 Ft.	656 Ft.		·
434-453 Ft.			
464-473 Ft.	S.W.L		
484-513 Ft.	39.5 Ft.		
549-569 Ft.			
620-656 Ft.			
	10" I.D. Casing		
	0-656 Ft.		
Zero Datum	Type: Steel		
Top Of Casing			
Dia. Reference			
Measured			
Casing E			
Mode	erate		
			656.4 ¹ 0356.4
Notes:			Page 3

WELLBORE SNAPSHOT(S)

Depth: 513.4 Feet



Depth: 620.2 Feet



Depth: 656.4 Feet

P.O.Box 2797, Rancho Cordova CA 95741 · Phone: 916-858-8148 Fax: 916-858-8174 · Web: www.wcwls.com Email: wcwls@sbcglobal.net Filing No. COMPANY Weeks Drilling & Pump Co., Inc.					
WELL Espoti Supply Well					
FIELD <u>Windsor</u>					
STATE <u>California</u> COUNTY <u>Sonoma</u>					
LOCATION: OTHER SERVICES: Shilo Rd. & Old Redwood Hwy. Video					
Job No. 1287 SEC: 19 TWP: 8N RGE: 8W LAT.: 38.52654 LONG.: 122.77948					
Permanent Datum: Ground Level Elev.: 155 Ft. Elevs.: K.B.	_Ft.				
Log Measured From: Top of Casing 0 Ft. Above Perm. Datum D.F.	Ft.				
Drilling Measured From: Ground Level G.L. 155	_Ft.				
Date Apr 18, 2016					
Type Log Spinner Run One					
Depth-Driller 685 Ft Ft Ft Ft	Ft				
Depth-Logger 656 Ft Ft Ft	Ft				
Top Logged Interval 0 Ft Ft Ft	Ft				
Btm Logged Interval 650 Ft Ft Ft	Ft				
Type Fluid In Hole Water					
Fluid Level 39.5 Ft Ft Ft	Ft				
Max Temp n/a °F °F °F	°F				
Operating Rig Time n/a °Hr °Hr °Hr	°Hr				
Van No. Location WC-1 RC					
Recorded By Sharpless					
Witnessed By K. O'Brian					
RUN BOREHOLE RECORD CASING RECORD					
NO. BIT SIZE FROM TO CASING SIZE CASING TYPE FROM TO					
1 In Ft Ft 10 In 0 Ft 685					
2 In Ft Ft In Ft 3 In Ft Ft In Ft	Ft Ft				

STATIC SPINNER LOGS TOOL

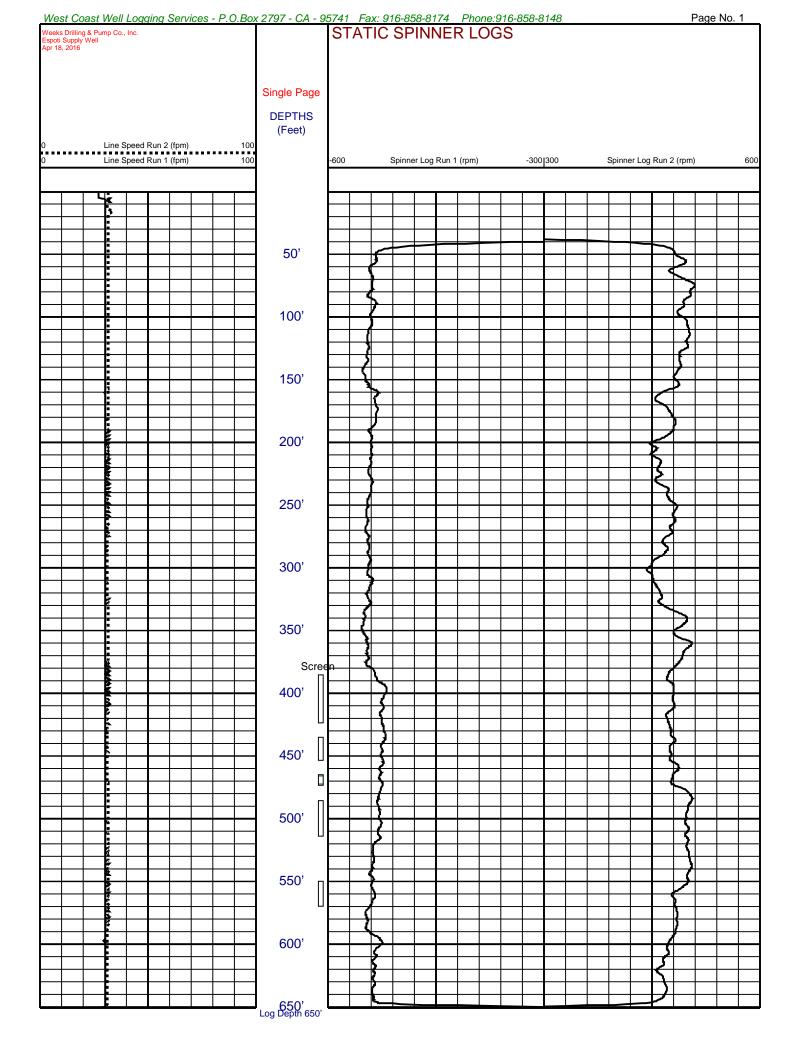
SPINNER LOGS:

Spinner logs are used to quantify flow (up or down) in a water well. In a producing water well, the spinner log is usually run downwards at a constant speed. Deflections in the curve are indicative of water entry. Proper calibrations, eliminating the effective of line speed, will quantify the flow rate from zones of interest.

SPINNER SPECIFICATIONS:

Diameter	1.77, 2.76, or 3.94 Inches
Length	5.5 Feet
Weight	16.1 Lbs.
Max. Temp	158° F
Gamma Ray	1.97 inches long x .98 inches diameter
	Scintillation crystal

MISCELLANEOUS INFORMATION


Type Of Well: Producing

Spinner Info			Screen		
FPM	Direction	Line Style	From	То	
30	Down		384 Ft.	423 Ft.	
31	Up		434 Ft.	453 Ft.	
			464 Ft.	473 Ft.	
			484 Ft.	513 Ft.	
			549 Ft.	569 Ft.	
			620 Ft.	656 Ft.	

NOTICE

All interpretations are opinions based on inferences from electrical and other measurements and we do not guarantee the accuracy or correctness of any verbal or written interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by one of our officers, agents or employees. These interpretations are also subject to our General Terms and Conditions as set out in our current Price Schedule.

REMARKS

(=HO Job 11110001

FIELD REPORT

DATE: 8/23/2016 LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA PROJECT NAME: Town of Windsor, Esposti Supply Well JOB NO: 11110001.20 EVENT: Spinner Log - Sewer check PRESENT AT SITE: WEATHER/TEMP: 65 ° at am/0:00 ° at om weeks, lent Ofever THE FOLLOWING WAS NOTED: BAN- likets on site suns motalled suction (auno intake 220 Explained to Josh that pasker in Flation J. be 225psi not 275 Samples To be collected 1, 5 60 + End (4 hows) 11:05: Town arrived for Treffic control open S130-S130A Start pump 11:20 start 11:21 Gist sample 15:21 thest 11:26 second sample 12:21 3 sample 11:39- Town closed seme lid a leaves - checked flow at 5130 where Shiloh Rid + Old Redwood Hay seners cross Flow O.K. 11:55: spinne- log Truck arrives-WestCoast 12:25 (Apprac) set up spinner 13:20 gol spinser deta print out

Page / of 2

DATE: 5/10/2016 LOCATION: : Esposti Well, Old Redwood Hwy at Shiloh 23/2016 Road, Windsor, CA 8 PROJECT NAME: Town of Windsor, Esposti Supply Well EVENT: Zone Sest - Spinner log Estimation based 1625 RPM=400500=100% 370 1 screen 38.5% 38.5 Stepm 429 1000 RPM 0% 2 surcer Dun 159 1000 RPM 5% 35 creen 9pm 1000 RPM 479 20% 4 screer 535 675 RPM 41 % 5 SCreen ORAM 575 0% 6 scren 2gpm Screen 1549pm 38.5% l

2 0% 3 0, 4 20% ک Y), <u>69 gpm</u> <u>Ogpr</u> Start Flow meter 06560 0x100 gullows End Flow meter 066620×100 gellins 96000gallons pumped page 2 of 2

PUMPING WELL

Drawdow	n Sheet	Okrien	à	8/23/201	Suggely Well
Measured Well	Owner: John	OBien n of Winn Ti Park	Well I Name	/Site:	Scygoly URH
Pumped Well	Owner: Town of Location:	Windsor	Well ID: Esposti Supply Well		
Test Details	Date pumping comm Date pumping cease		Time: Time:		Test No.
Are Measurem	ents below for the pur	nped well?	Distar	nce from pumped	weli (ft): NA
Static DTW	·····	Feet below meas	uring point		
Measuring Poir	1t	Feet above/below	v ground level		
Watch Time	Elapsed Time (min)	Calculated drawdown (ft) (DTW - Static)	Measured DTW (feet) below measuring point	Discharge (gpm) Only if pumped well	Comments or pressure measurements from transducer
11:20			56,50	400	
11:24			103.3	400	
11:34			111.0	400	
11:47			115.75	400	19
12:17			120.30	400	
13:1312	8113		124.50	900	
14:15			127.40	400	
15:18			129.20	400	
					4 hour specific
					caphaste =
					capacite = 5.5 gpm/7
,					

Vell ID: Swall UC)	Server Hell Information	Ref. datum:	* Well Depth: Mail Diam: 人の ft Screen From ft To: ft	Note Comment:		Start at 11:20		clear - slight very Emeredial	feder - very slicht fires		no sand		27.7°C NO OCAR DISAND	2ª doimin in other-yes light when	Orpho[572/4 +17 50 -23	avertan must - 40 chandlon Start	L. J.	400 gon plemping to	Scher For & hours	12:20 % 13:21					
	Sampling Information Method: direct from pump	Pump Depth 2 0	No DACKET	Ox-Red Pt. Note (±mV)	+/- 10 mV	-136	-92	-71	- 56	- 44	-20	-41	- <i>Z</i> a	ハーをす	MP+1	-29	-34								
	Sample Method:	WQ Meter Type: Flow Cell:	WLevel Meter Type:	TDS Dis.Oxygen		359.4	340.1	340.6	342.0	344.5	345.3	3-47-6	14.4	52.7	55-6	N	5255								
Parameter Record	sor		ler			523.13	799.2 3	500.1 3	501.4 3	504.6 3	5066 34	507.8 30	5.5	8	517.63	5/8.4 354	\$516.3 3.					 	 		
Parame	Job Information Town of Wind	Town of Windsor	Town of Winds	Town of Winds		pH (pH units)	+/- 0.2 C	7.29	230	27.33	7.31	7.37	2.30	7.35	2.36	738	741	7.23	7.34				 	 	
alanagement Engines fing Theregenerat	Ĵoĥ		Keni	Leno	ie Wh	25.9	27.7	27.7	27.0	26-6	26.9	26-5	27:7	26.5		26.4	3:12								
GHB	Client:	Project:	Proj. No.: Sampler:	Time (描め	1421	11:26	129	11:41	11:49	12:06	12:21	13:15	14:23	14:40	15:07	15:21								

1 of 6

DATE: 8/23/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: ° at am ° at pm
PRESENT AT SITE	
DATE: solimmin 20012312016	

Time: use 24 hour time record at 15 min intervals or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
1115	5130	10% Ocom	pump
1122	5130	459, 400,00	20% going ORH
1132	5130	5090 41000	~
		31	
Jum Start:	1:20		
4			
1013!			
	(7-		
	4		VOR HUY. 1 DIE 10
	× 6.5		sh No Flow
			at
	W.Sr.	2	Start
	Li I		
	/3		~~~
		4 	12 , 20%
······································			1 1.16)
		2	Flow oping
		ž	Low
		2	N.O.R. Hand
	- · · · · · · · · · · · · · · · · · · ·		

Page___of___

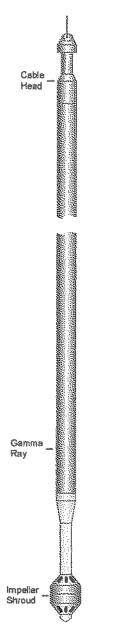
O'Brien, Kent

From:	O'Brien, Kent
Sent:	Wednesday, August 24, 2016 5:50 AM
То:	Elizabeth Cargay (ecargay@townofwindsor.com)
Cc:	Dave Vossler (dave.vossler@ghd.com); ryan.crawford@ghd.com
Subject:	8/23/2016 Esposti Supply Well discharge to sewer volume report

Elizabeth - sewer discharge summary is below:

Non-Residential One-Time Discharge Permit Permit number - TD-04152016 Effective Date - 04/15/2016 Expiration Date- 12/31/2016

Date of discharge – 8/23/2016 Point of discharge – sewer manhole S130A (Shiloh and Old Redwood Hwy) Total gallons discharged – 96,000 gallons


Kent O'Brien PG, CEG

Senior Associate | Hazen and Sawyer 201 Mission Street, Suite 500, San Francisco, CA 94105 628-242-0050 (direct) 707-478-9559 (cell) 628-242-0042 (main) 41828 (VOIP Extension) kobrien@hazenandsawyer.com | hazenandsawyer.com

3

WEST COAST WELL LOOGING SHEVICES CERMINEL & VIDEO LOCENCE						SPINNER INTERPRETATAION								
F	×.O.Bo	2797, Re	incho (Cordove CA 9574	1 · Phone: 916	-658-8148	E Fe	c: 916-858-8174	· Web: www.wowie.c	com Emei	l: wowis@st	ooglobei.net		
F	iling N	o.	COMPANY Weeks Drilling & Pump Co., Inc.											
				ELL.	Espoti									
			F	ELD	Winds									
STATE <u>California</u> COUNTY <u>Sonoma</u> LOCATION: OTHER S									HER SE	RVICES				
			C	old Redwood	i Hwy. & S	hilo Rd				S	itops			
	Job No													
1425 SEC: 19 TWP: 8N RGE: 8W LAT.: 38.52545 LONG.: 122.77953														
Permanent Datum: Ground Level Log Measured From: Top of Casing								150 Ft.	El	evs.: K.B	3.			
Log Measured From: Top of Casing Drilling Measured From: Ground Level					0	Ft. Above	Perm. Datum				Ft.			
Drillir	ig Me	asured	From	· · · · · · · · · · · · · · · · · · ·						····	G.L	. <u>150</u>	Ft.	
Date				Aug 23	, 2016									
ype	.og			Spin	ner	L								
lun				Or	6									
)epth	-Ori#e	r 		57	5 FI			Ft		F1			Ft	
	-Logg			57	_	ļ		Ft		FI	-		Ft	
		Interval		30	0 FI				Fl	Ft Ft				
		Interval		57	5 Fi		ft .			Ft	Ft Ft			
		n Hole		Wa										
	t Leve			122		ļ	Ft		F3			Fl		
Aax T				n/				۴F		*F			*F	
		ig Time			n/a "Hr		*Hr		÷				•Hr	
/an N		Locatio	n	WC-1	RC									
	ded B			Sharp										
	sad E	у		J. Me										
		וד ביסר	08	REHOLE REC		-		00100 0175	CASING I			-		
10.		IT SIZE		FROM				SING SIZE	CASING TYPE	1	OM	TO		
1			In		R	Ft	L	10 In) Ft	656		
2			in i		R	Ft		ln.			Ft		Ft	
3			'n		FI	Ft	L	In		*****	Pi		ĥ	

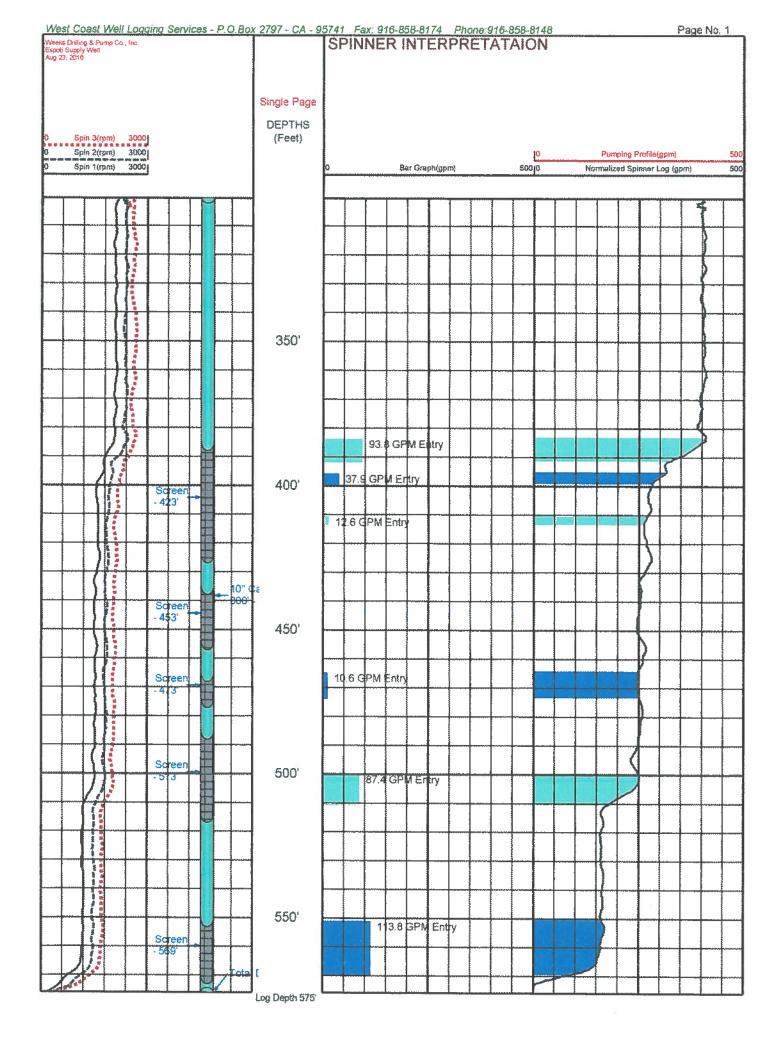
SPINNER INTERPRETATAION TOOL

SPINNER LOGS:

Spinner logs are used to quantify flow (up or down) in a water well. In a producing water well, the spinner log is usually run downwards at a constant speed. Deflections in the curve are indicative of water entry. Proper calibrations, eliminating the effective of line speed, will quantify the flow rate from zones of interest.

SPINNER SPE	ECIFICATIONS:
Diameter	1.77, 2.76, or 3.94 Inches
Length	5.5 Fest
Weight	16.1 Lbs.
Max. Temp	158° F
Gamma Ray	1.97 inches long x .98 inches diameter
	Scintillation crystal

NOTICE


All interpretations are opinions based on inferences from electrical and other measurements and we do not guarantee the accuracy or correctness of any verbal or written interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by one of our officers, agents or employees. These interpretations are also subject to our General Terms and Conditions as set out in our current Price Schedule.

REMARKS

A recreational GPS accurate to +/- 45 feet set for Datum WGS84 was used to calculate

Latitude, Longitude, and Elevation values.

Bottom of well blocked by debris

1

Corporate Laboratory 208 Mason Street Likleb, CA 95482

Central Valley Laboratory

Work Order

.....

alpha Ana Arabitati kiwatana lur	200 701-468-0401 F) 707-468-5567 707-468-0401 F) 707-468-5567 cilentservices@elpha-labs.com	9090 Unioin Park WY, #113, Elk Grove, CA 95624 916-686-5190 F) 916-686-5192	Mail CA 95624 Chain of Custody Record	cord
www.aipha-iabs.com Warss.Sromears.Souns	Bay Area Laboratory 6398 Dougherty Road, #35, Dublin, CA 94568		tab No.	of
er over all all the first a branch starting and descrets that is a	925-828-6226 F} 925-828-6309			
Namo:	Project ID:	Signature below	Signature below authorizes work under terms stated on reverse side.	
LOWR OF WINDSOF - LITINKING WATER	Source Chemical		Analysis Request	TAT
Maliing Address: 9291 Old Redwood Highway Buitding 400 Wiencere 7.4 95492	Phase: Esposti Well			24 hr
Project Contact (Hardcopy or PDF to): Elizabeth Cargosy	#Od#) ä () i
Kobrieva A a trandcauger of Bill to:	Part in the second seco			numeral Required
I and a show flore and				ž()
Field Sampler - Print Name & Signaturo		93		2 wk
Sample Identification	Averate Netter Netter Poly Classs Active Classs Classs Classs Classs Classs Classs Classs Classs Classs Classs	200.7 200.7 200.7		(standard)
Eaposti Well				
-23-11:21	11:4 X			8
2	x 1/: K x			Standard
12:21 8		א א		->
22-13:21 0 8	Les Mest x X X			48 hr.
-8-23-15:21)	A15:21			
				- Miring and a second se

Relinquished Sur	Received by	Date Time	CDPH Write On EDT Report? Yes	No (X
Relinquished by:	Received by	Date	State System Number:	
Relinquished by:	Received by:	Date Time	CA Geotracker EDF Report Yes	No &
Relinquished by	Received by:	Date	Sampling Company Log Code:	
Statistics data at the st	Davational hu	Parts Time	the Time Milanes	
An industriation of	יאפרפואנת הא	•••••	· m#emoral	

הכיין הספניביש עם בבי סי קצביחא ביני רטעה הכיר ליא בי ציי שי שני ייקצעי רטעה צבי ק נבצחו לי לי:

N.

rtaug nog benjupeg (svorgqA daj

Appendix G - May 5, 2016 Downhole Video Report

WATER WELL VIDEO REPORT

West Coast Well Logging Services

Espoti Supply Well

City of Windsor

P.O.Box 2797 Rancho Cordova, CA. 95741 Phone: 916-224-3810 Fax: 916-858-8174 Web: www.wcwls.com

Page 1

Client:	Weeks Drilling & Pump, Inc.	Survey Date:	May 4, 2016		
Address:	P.O.Box 176	Invoice No.:	1308	Run:	Two
City:	Sebastopol, CA 95473	P.O.:		Van:	WC-1
County:	Sonoma	Operator:	Mark F. Sharples	S	
Requested By:	Josh	Type Camera:	CCV Color Flip Ca	amera - S	Short L.H.
Сору То:		Latitude: 38.5	52654° Longitud	de: <u>122</u> .	77948°
Reason For Survey:	Possible damage	Section: 19	TWP: 8N Ra	ange:	8W
Location:	Espoti Park, Old Redwood Hwy. & Shilo				
Field:	Windsor				

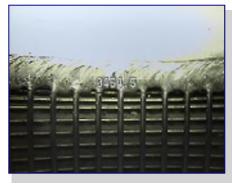
Other Information:

CASING INFO	ORMATION	DEPTHS (SideScan)	VIDEO OBSERVATIONS					
Stainless Steel Screen	Well Depth	0.0 Ft.	Recording Starts - Zeroed on SideScan Lens					
384-424 Ft.	665 Ft.	40.4 Ft.	Static Water Level (SWL)					
434-454 Ft.		374.7 Ft.	Small hole in the scale, not the casing					
465-474 Ft.	S.W.L	382-384 Ft.	Dielectric Joint					
485-514 Ft.	40.4 Ft.	383.0 Ft.	Top of Stainless steel					
550-569 Ft.		384.2 Ft	Perforations, Top Of Screen (384-424)					
621-654 Ft.		_433.6 Ft	Shipping label on casing wall					
		_434.4 Ft	Perforations, Top Of Screen (434-454)					
		464.5 Ft	Perforations, Top Of Screen (465-474)					
		<u>484.8 Ft.</u>	Perforations, Top Of Screen (485-514)					
		<u>549.9 Ft.</u>	Perforations, Top Of Screen (550-569)					
		<u>571.9 Ft.</u>	Top of bailer cable					
	10" I.D. Casing	599.4 Ft	Shipping label on casing wall					
Zara Datum	0-665 Ft	<u>620.9 Ft.</u>	Perforations, Top Of Screen					
Zero Datum	Type: Steel	654.1 Ft	Well plugged screen, camera is stopped on the top of the bailer					
Top Of Casing			End of in hole survwy					
Dia. Reference								
Measured								
Casing B	uildun							
Very H								
****	9	at	348.4 Q. 03741.4 MIDI-1					
384.2'								
		64.5'						

Notes:

WELLBORE SNAPSHOT(S)

Depth: 0 Feet


Depth: 383 Feet

Depth: 433.6 Feet

Depth: 464.5 Feet

Depth: 40.4 Feet

Depth: 384.2 Feet

Depth: 434.4 Feet

Depth: 473.9 Feet

Depth: 374.4 Feet

Depth: 423.7 Feet

Depth: 453.8 Feet

Depth: 484.6 Feet

WATER WELL VIDEO REPORT

Espoti Supply Well

West Coast Well Logging Services

City of Windsor

P.O.Box 2797 Rancho Cordova, CA. 95741 Phone: 916-224-3810 Fax: 916-858-8174 Web: www.wcwls.com

	ORMATION	DEPTHS (SideScan)		VIDEC	OBSERVATIO	NS
Stainless Steel Screen	Well Depth		Additional snapsh	nots		
384-424 Ft.	665 Ft.					
434-454 Ft.						
465-474 Ft.	S.W.L					
485-514 Ft.	40.4 Ft.					
550-569 Ft.						
621-654 Ft.						
	10" I.D. Casing 0-665 Ft.					
Zero Datum	Type: Steel					
Top Of Casing						
Dia. Reference						
Measured						
Casing E	Buildup					
Very H						
514.1'	5	49.9'		509.3		571.9'
1	599.4'	N.S. I	620.9'		654.1'	

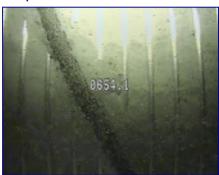
WELLBORE SNAPSHOT(S)

Depth: 514.1 Feet

Depth: 571.9 Feet

Depth: 549.9 Feet

Depth: 599.4 Feet



Depth: 620.9 Feet

LOCATION: Esposti Well, Old Redwood Hwy at Shiloh DATE: 5/4/2016 Road, Windsor, CA PROJECT NAME: Town of Windsor, Esposti Well JOB NO: 11110001.20 EVENT: Well Development WEATHER/TEMP: ° at am BRIERE 70 ° at pm PRESENT AT SITE: Dave Vossler, GHD; RYAN CRIWFORD THE FOLLOWING WAS NOTED: NEEKS CONST ONSITE SAFETY 1145 REVIEW SOOPE 3 TARGET MEETING. BOTTOM) AND SCREENED LONES. 3 SET-UP HIGH DEF. DOWNHOLE CAMPA AND GO 1215 DOWN ESW. 145 CONFIRM 430 WAS NOT A HOLE asino IN BUT FACTORY LABELS & TAPE. SAME FOR THE S98' INTERVAL. BONTOM OF HOLE 143 77 CABLE & BATLER). COMPLE SMML (14") HOLES @ 373 WEEKS UPPER SCREAMS VERY CLEW, BOTTOM (640-654 SCREEN DIRTY. TD=654. TAKE SPIN VIDED BACK BURN 3 COPIES VIDEO, LOCK-UP GITE ISW. OF UMP

350 RC/WEEKS/WEST COAST OFFEITE

Page___of___

Appendix H – Site Visit Reports

DAILY FIELD NOTES

· .	Logged by: RMDV Sheet 1 of
	GHD Project Name: 590511 REITHB Date: 4/21/16
	GHD Project Number: Project Location:
	Rig Type: Pump Type:
· · · · [Well Construction Well Contractor: WELCS
	Pumping Test Pumping Contractor: 4 40
	Site Reconnaissance
	Video Well
, l	Other
	NOTES
Sool	RI-BUD - TOULON EVER 2020 28.82
	BLUE BIED - TOW (TOC ETELID 28.20_28.82 SET TRANSA # 19828 @ 38.5'
10KG.	$-\frac{\gamma c}{1} \frac{1}{1} \frac$
	CHURCHT WER - TD = 75, 4" GREL LINER TO ORIGINAL 6
10.20	Utuat WELL - 10-15, 9 9142 UNER 10 0190 MTC 0
· . · ·	K2" ACCESS PORT "VENT"
· ·	$\frac{1}{1-2} = \frac{1}{2} \frac{1}{1-2} \frac{1}$
	ESPOSITI I RAIbATION WELL - 3/4 ACCESS PURT, but @
	177' PRUBE GETS SMCK, NEED TO RITEM OUT ME
, ,	1/8" ALLESS PORT ON NORTH-SIDE
Linlin	
17.010	DV INSTANDE F65 IN ESP.INT WHILE 75 B65
	STILL NETENS BARO IN
	· · · · · · · · · · · · · · · · · · ·

Client Job Number Sheet of Project ESPOSOT TRANSputte Ser-Whecked by Date Date - ONE MIN. INTERVINS SYNC TO RC WIT TRANSP TYPE TRAUSD. TIME attic - 12 DATE STARTED DEPTH INTERIM wi gan 4/21 CHURCH Nove F30 21582 1m 28.82 (TOC ETRIT) BLUEBOUD 9An 4/21 1 min 38.50 FIS 7150 pc 75 (TOC) Exosti IRR gany/21 Got in mar gan 4/22 F65 1 MIN BAROMETOR am 4/21 Im.n GULFICE EI

FIELD REPORT DATE: WEEK OF 25th APRIL LOCATION: PROJECT NAME: EWS REHAR JOB NO: WEATHER/TEMP: ° at am EVENT: ° at pm PRESENT AT SITE: THE FOLLOWING WAS NOTED: 4/27 1100 RC ONSITE TO DISCUSS PURGING/ BAILIAG 3 TRUSHULTR OPTIONS W/ WHERS 2 TOWN. NO SAMPLE TODY OF EWS. WEET GIDE SELLER @ CONDE 15 'TOO FAR FOR MONITORING GEWOR FLUX FROM PUMP NEST. SON @ MOBILE HOME SMYS 4/28 BETTOR FOR TENSAUCHE INSTAL. 4/28 1010 RO @ MOBILE PARK MUST W/ LON BOCCI MOBILE PARK WELL DTW = 22. 61 (TOC SET TRUSPUER 20188 (F30) @ 45 TOC ONGITE to Discuss of MATT (ULLKS), Could EUS SAMPLE, WHER TO GET WADDLES FOR AN INFILTRATION BASIN FOR BAILON SEPAMENT Page

DATE: LOCATION: : Esposti Well, Old Redwood Hwy at Shiloh 4/28/2016 Road, Windsor, CA PROJECT NAME: Town of Windsor, Esposti Well EVENT: Well Development - WEEKS TO BRING WADDLES & CONFIRM Cont. RER TANK PISCHARGE PUMP WILL DO > 500 GPM TO SEWER, 1 1230 - Re OFFAITE TO MEET LAB COURIER FOR SAMPLE

Page of

FIEs	DREFORT
DATE: 5-2-2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20
EVENT: Well Development	WEATHER/TEMP: 55° at am BRW2C 75° at pm
PRESENT AT SITE: Dave Vossler, GHD;	
THE FOLLOWING WAS NOTED:	
1045 - RC ONSITE STR	NOT BAULO W/ 8" × 10'
SUCTION BAILLIR. P	WILING REALLY GOOD.
	, NEXT ~ 8' GRIVER PACK
1130 EC ONSITE. Discus	15. Olyva Prek 2. WComme
PUMP TEST (24-hou	W EC OFFRITE ~1150
1200 BALLAR STUCK, 65	T WIRE GRIP TOOL TO USE
BOTH WINCHES TO	TEESE UP BAILER. WIRE TO
BALLAR BROKE. CALL	C TEAM & EC.
1245 Re OFFSITE. WEZ	US TO MOBILIZE CAMPA
MEBS BACK OW @	
WEEKS	
1445 Re ONSITE GET. US	YMORA. 5 JUNER Down Hore
SURVERS WOR SHINY ON	WHE DOWN (ALBEIT TURDID).
GOT CAMBRA TO 648 1	WHE DOWN (ALDENT TURDID). + 16" TOC ~ 649.25 = TD
1600 Re/WEEKS OFFFITE	Pageof

LOCATION: Esposti Well, Old Redwood Hwy at Shiloh DATE: 5/4/2016 Road, Windsor, CA PROJECT NAME: Town of Windsor, Esposti Well JOB NO: 11110001.20 EVENT: Well Development WEATHER/TEMP: ° at am BRIERE 70 ° at pm PRESENT AT SITE: Dave Vossler, GHD; RYAN CRIWFORD THE FOLLOWING WAS NOTED: NEEKS CONST ONSITE SAFETY 1145 REVIEW SOOPE 3 TARGET MEETING. BOTTOM) AND SCREENED LONES. 3 SET-UP HIGH DEF. DOWNHOLE CAMPA AND GO 1215 DOWN ESW. 145 CONFIRM 430 WAS NOT A HOLE asino IN BUT FACTORY LABELS & TAPE. SAME FOR THE S98' INTERVAL. BONTOM OF HOLE 143 77 CABLE & BATLER). COMPLE SMML (14") HOLES @ 373 WEEKS UPPER SCREAMS VERY CLEW, BOTTOM (640-654 SCREEN DIRTY. TD=654. TAKE SPIN VIDED BACK BURN 3 COPIES VIDEO, LOCK-UP GITE ISW. OF UMP

350 RC/WEEKS/WEST COAST OFFEITE

Page___of___

DATE: LOCATION: PROJECT NAME: 5905Ti WELL REHAB. WINDSOR JOB NO: 111100001 WEATHER/TEMP: 64° at am DIRIZZUE EVENT: TRANSDUCER INSTALL /CHK 4° at pm 3 WIND weeks PRESENT AT SITE: THE FOLLOWING WAS NOTED: 1145 - RC ONSIDE. DISCUSS SIDE SAFETYU MEASURE OUT 270 OF DIRECT READ (IN-SITU CHBLE, PROBRIM TROLL 700 AND PLACE W ESPOSTI SUPPLY WAL TRANSDUCHR DEPATH (TOC) = 270 DTW = 42.70 UNIT SAYS 237.30 HEAD 228.30+42.70 = 270' V 1745 - ESPORTI IRRIGATION WELL DTW = 33.60' (PORT 90 33.60+42.37 = 75.97 DEARY WIT SAYS HEAD = 42.37 1315 - MOBILE HOME GATARS WERC DTW= 19.78 UNITSAYS HEAD = 25.22 90 19.78 + 25.22 = 45 PENTH OF 1410 - WEEKS SETTING PUMP & FLOW METER TOPAY RE OFF SITE

718 Third Street, Eureka, CA 95501-0504 (707) 443-8326

		The same strength of the same		
By	Date	Client	Sheet No.	of
		11000		
Cubiact	[19U]	VIDEO	Job No	

TARGET DEPTHS WELD @ 160 - SLOPPY, MIGHT BE A CRICK OR? 350-360+ HIGHLY ENGLUSTED 510 - 530 Scoul/ TOUL MARKES 430-437 HOLE? @ COUP 55W TANSAUGA PLACEMENT 5/6/16 @ 1230 ALT @ 270 TOC DTW = 42.70 IN-SITU TROLL FOO DIRELT READ CABLE & TRIAL RUN / POUNCOAD GOOD 9445 237.30' HEAD (> 270,0 - 237,3 - 42.7 = DTW V ESPORTI IIn agrice War SOLINGST "LEVER" (VIREA READ) = 42.37 SET @ 75 DOC, DTW = 34.60 (FRAM PORT) 34.60 + 42.37 76.97 = TOTAL DIRECT READ CHANGE LELOTH dont->

WINZLER & KELLY

718 Third Street, Eureka, CA 95501-0504 (707) 443-8326

Ву [Date	Client	_ Sheet No of
Subject ESI	N		Job No
Cont.	TRANSIN	ucon Review	
Morpic	E Home	EGRADES WELL,	
5/6/16	1350	REN TIME "LEVEL" = 25.2.	2
		DTW = 20.05, TRANSD. SET @	0 45 ADC 20'V
		PUMP KICKEDON -> FLATLIM	= @ lun"= 2.8-2.
		5 MIN OFF. BACK TO 25.22	12 2 min. V

DATE: 5/9/2016 LOCATION: ESPORT PARK, WINDSOK PROJECT NAME: ESPOST: REHAB. EVENT: SEWER DISCHARGE Souce DECHARGE MOUTORING SITE SAFETY 4/75WN LOSE, SORAN 6855-175W DTW = 40.55 TOC DQ10-TURNON ESW TO CONFIRM SP. C.P. 4 @ 0940 START PUMING 200 6PM TO SIZO * @ 0945 START DUMPING FROM RER TANKS, BUT FILTORS CLOGGED (?) AND ONLY DOES LOOGPAL CLEAN ONE BAGS-FILTERS V GOOD FOR HOUDEFLON 1105-START DISCHARGING @ 200 GPM TO SI30 DTW @ 1235 = 104.22 HEAD = 270 LOST COMMUNICATION W/ IN-91Th 700 @ 1235 1255 - DISCHARGING @ ZOU UPM FRON FUTOR PUMP 1330-ESW DTW = 106.68, 441340 DTW = 106.69 1345- ESU PUMP OFF - NO CHPACITY. 400 6PM 0910-1345 1425 - START DISCHARGE @ 400 6PM 1515- 9108 MONITORING 2 BNOW DISCHARDING @ 2006PM 48.40 - DTW 2341 PM 221.42 head 1600 - STOP GURGE/PURGE - TWKS FULL 1620 - RC/WEEKS OFFSITE * FINAL NOTES PUMPED ESW @ 400 6PM FOR 4. SHONES 2. DRAWDOWN BEGAN TO FLATTEN OUT @ 65. TOTAL DRUDOWN WAS 66.14.

1.1

FIELD REPORT

DATE: 5/9/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO- 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: Lloudy at am 1000 Surgery at am 1000
PRESENT AT SITE: Jourdan (Townorwi	ndsor)
DATE: dd/mm/yr 05/09/10	

rec	use 24 hour time cord at 15 min als or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
	136	5375	0 15%	Initail
10	00	5375	20%	Initail 5% noreese uptor
	20	5374	15%	
	5	5375	15%	
<u> </u>		5374	15%	
	13	5375	15%	
11-	2	5374	30%	
11		5375	30%	
	40	5374	30%	
	43	5375	30%	
	.38	5 333	2.5%	
	52	5374	30%	
	05	5374	30%	
13		5374	30%	
<u> </u>		5374	30%	
	41	5374	30%	
4	23	5374	30%	
	30	5374	35-40%	400 gpm
	40	5374	40-45% 45%	400 gpm 400 gpm
	53	5374	45%	
15	06	5374	30 %	
-				
	•			
<u> </u>				
<u> </u>				
<u> </u>	<u></u>			
L				

Page _____

FIELD REPORT

DATE: 5/9/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Espasti Well	JOB NO: 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: 930 at am Overca-+ 60000 at pm
PRESENT AT SITE: Weeks, Towr(3), G	HD(1)
DATE: dd/mm/yr 5/9/16	

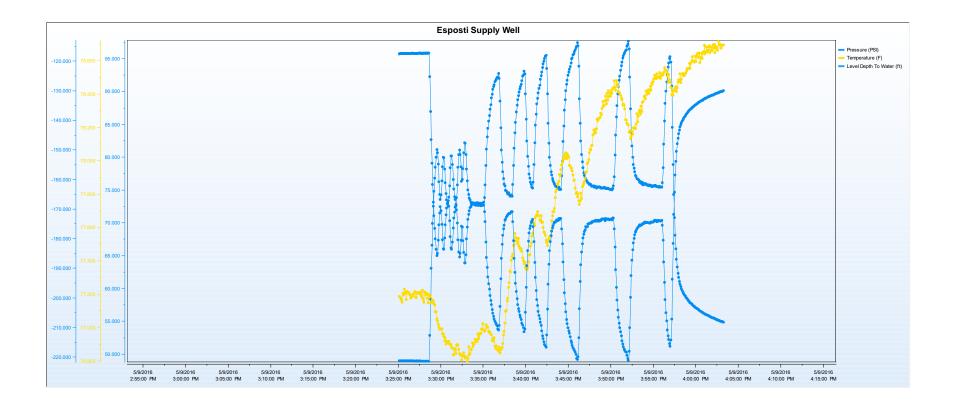
Fime: use 24 hour time record at 15 min intervals or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
0933	5374	~15%	Eards open flow
0940-0942			Sid & Elow Coming in A
09.54		~15-26% appart	in come in flow - for
1000		~15-20% apprent	Fairly open flow Side flow coming in As in one one in flow - Re Same
			·······
	· · · · · · · · · · · · · · · · · · ·		
	······		
	· · · · · · · · · · · · · · · · · · ·		
	····		
19. E.		22	······
	· · · · · ·		
	·····		
	·		·
	·		·
	<u></u>		

DATE: 5/9/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposli Well	JOB NO: 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: * at am * at pm
PRESENT AT SITE: WeeKS GHD	
DATE: dd/mm/yr 5 1 9 1 16	

Time: use 24 hour time Manhole Observed flow as a % record at 15 min Other observations number/description of full pipe intervals or more freq. 5376 15% 09:44 AM \$ 376 09:53 85% AM 10% in crease 1000 AM 11 1/ at 100 cer Same 11 11 1100 AM 15 OPPUL -LOW 200 11 11 115 11415 GPM 20% 5% increase AM AM 11 11 Same 1122 17 5% in cree in flow 11 11 119445 25 AM 12.69 11 11 An. 25/1 10 % increasin flow Same (11) 12:49 PM 5 h MCCEARDM 300 (111 1310 8m 3*07* SAME 1111 1325 In Same 0% Same 1339 PM 11 <u>eľ</u> in crease. 14 359 ルなら PM 11 csease int 1440 11 15 2 Samo 'Y M 11 PM 11 11 <u>359</u> 11 11/55 1-1-1 11 Same 11 11 5% 2m 509, 1510 pecsese of fl

Page / of L

Special notes regarding: traffic during test, trucks, buses. Pedestrians, kids in the area, homeless. Is location appropriate for night monitoring. Photograph location and inside of manhole. Consider appropriateness of manhole as a permanent monitoring station with automatic measuring for final system.


on <u>S19116</u> Light traffic on shiloh Kd at <u>S376</u> from <u>f:30</u> Hm to 1:40 pm heavier traffic after <u>3:00 pm</u> & one or two pedestrony Walking bye. Page Zof Z

:

Lalpha	Corporate Laboratory 208 Mason Sirret, Ukiah, CA 95482 707-488-0401 Fj 707-458-5267 clientservices@alpha-labs.com	Central Valter Laboratory 9090 Unloin Park Wy., #113, #18.Grove, CA 95624 916-589-5190 F) 916-585-5192	Central Valley Laboratory Park Wy., #113, Elk Grove 6-686-5190 F) 916-686-511	ory ove, CA <u>95624</u> -5192	Chain		k Or usto	der dy F	Work Order of Custody Record	
Nipre Vansynder Lexonatoriae Bw. www.kilphe-lads.com Waters, Sediments, Solids	Bay Area Lakorstory 6398 Dougherty Road, #35, Dublin, CA 94568 925-828-6226 F) 925-628-6309)		Lab No.			۵.	Paga of	1
Name:	Project ID:		Signature belo	w authorizes wor	Signature below authorizes work under terms stated on reverse side	ted on reverse	e side.			Π
Town of Windsor - Drinking Water	Esposti Potable Well	ell		Analysis	iis Request	uest			TAT	
Mailing Address: 9291 Old Redwood Highway Building 400	Phase:								44) (
Windsor, CA 95492				(pə	ON '				8	4sm
Fraject Contact (Hardcopy of PUF to): Elizabeth Cargay	PO#			vlozei				(1-;)	()	1303 P
ecargayewanonwinusor.com ken OBrien kent.obrien@ghd.com	Buil to: month end billing		(pənjo (pənjo)	ג' א _פ (ם	l 26 ejitli Sudes TKI	leioi - m	ÚM/U		Molea	uingalites
Fleid Sampler - Print Name & Signature	ontainer	And Matrix Matrix As (Diss Diss Matrix	Sid) nM Dr (Dissi Dr (Dissi Dr6 (Dis	, рМ , вС Му,	1		_	oute av		maga del
	19 19 19 19 19 19 19 19 19 19 19 19 19 1	8.00) 8.00 9 8.00	_	uifate	ilica 10.80 1020	t MA:	4 O I O	÷	н — —
ntification	tte Time 전 전 전 전 제 H 11 전 전	0Z 7	51 57 57	R A	s	z	0	9) ((6
-3-4-10:50	\rightarrow	۲						t		X.
5-2W-5-7-5,55	6 1531		y X				╈	+	1~ 600	
								+		
						_	_			
					L**	**Title 22 Scan	22	с С	U	
				64432 F	64432 Primary Inorganics, 64432.1 NO2/NO3, 64449 A&B	nics, 6443;	2.1 NO2	2/NO3, 6	4449 A&B	
, , ,		 		Asbesto	Asbestos, Perchlorate, Gross Alpha, 504.1, 507, 508, 515.1,	e, Gross Al	oha, 50	4.1, 507	508, 515.1,	
				524.2, 5	524.2, 531.1, 548.1, 549.2	549.2				
Reinquist Extra -	Received by: 11 All 11 19 12 All Con-	e Date	Time 14/60	CDPH Writ	CDPH Write On EDT Report?	eport?	*	Yes (N PR	0
Relinquished by:	Received by:	Date	Time	State Sys	State System Number:	l E				
Relinquished by:	Received by:	Date	Time	CA Geo fra	CA Geo track an EDF Report	port	W.	Ves (N an	0
Relinquished by:	Received by:	Date	Time	Sampling 6 Global ID:	Sampling Company Log Gode Glabal ID:) Goder Lint la (B	de' Lip u (Enal Atimu);	#	1 31-3	
Relinquished by:	Received by:	Date	Time	Travel and Sile Time:	te Time: Miloage:	;96	Misc, S	Misc, Supplies:		
		_			-				1.14	1

20

ł

° at am ° at pm

THE FOLLOWING WAS NOTED:

7:51 - set up generaliar Text Town with days plan 0111=42, 01B=655 water column =613 casing volume 6/3Fectin 10" casing = 334 Ft3 = 2, 479 Scillons 3 Easing volumes = 7437- sellons - 7.5 minutes al 1,000 spin 18.6 minufes of 400 gpm Tanks all of 14; 60,000 gallons capacity 8:09 sever discher on at 200 gpm 8.13 (cppm) start pumping at 400 spm - water clear 8:17 - cell phone the to at jar 8:41 - cell phone philo of Jar 8:42 - sy Ten hard shut off - Amperge problem - pump kick at 1,000 gpm 9:07 restart of 800 spm 9:09 under Test 9:15 white Test 9:16 (approx) shut hun automptic at 800 gpm and DTW at 164 9:34 server discharge continuity 2190 gpm 6364 on To Telzen 9:48 restart ramp of To Fou Test immedially at reaching 800 pm Page_ of - STOT DIW NOT measured 58.5 15TOC 9,54

ROJECT NAME: Town of Windsor, Esposit Well EVENT. 10:01 Jung auto Suldian of 168 FT 1102 800 gov 0:04 wate Tell - Iab sample culled (in 1-22 lack yold lacue - storg shill drive auto exect 11.22 lack yold lacue - storg shill drive auto exect 11.22 lack yold lacue - storg shill drive by 11.11) weeks. To stay on side and Travible shout June	ATE: 5/10/2016	LOCATION: : Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
10:01 pump auto Suldon of 168 FT BTOL Sor got 0:09 wate Pest - 16b sample collection. 11:22 lackup to lecue - planp shul down atto-exact Time not recorded - Locked inisition westendosure (combo 1111) weeks to stay on site and Tranble shoot	OJECT NAME: Town of Windsor, Esposti Well	EVENT:
12:09 Wate Pest - 166 sample collection. 11:22 Parkupto lecue - plemp shut down and - exact Time not recorded. Locked inischion wellendisuse (combo 1111) Weeks to stay on site and Tranble shoot		
12:09 Wate Pest - 166 sample collection. 11:22 Parkupto lecue - plemp shut down and - exact Time not recorded. Locked inischion westendisuse (combo 1111) Weeks to stay on site and Tranble shoot	10:01 pump auto Sulder	mai 168 FT BTOL 800 gp
1.22 Packupto lecue - planp shut down auto-exact Time not recorded - Locked inighton westendosude (combo 1111) weeks to stay on site and Trauble shoot	0:09 wate rest - lab so	imple callection
Locked inselin westendisure (combo 11.11) weeks to stay on site and Trauble shoot		
wheeks To stay on site and Trouble shout	Time not record	st -
weeks To stay on site and Trouble shout	Locked inisation	vallendosule (combo 1111)
		· · ·
	·····	

	······································	******
	······································	
	······································	
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	······
	· · · · · · · · · · · · · · · · · · ·	
		······
		· · · · · · · · · · · · · · · · · · ·

WELL SAMPLING DATA SHEET

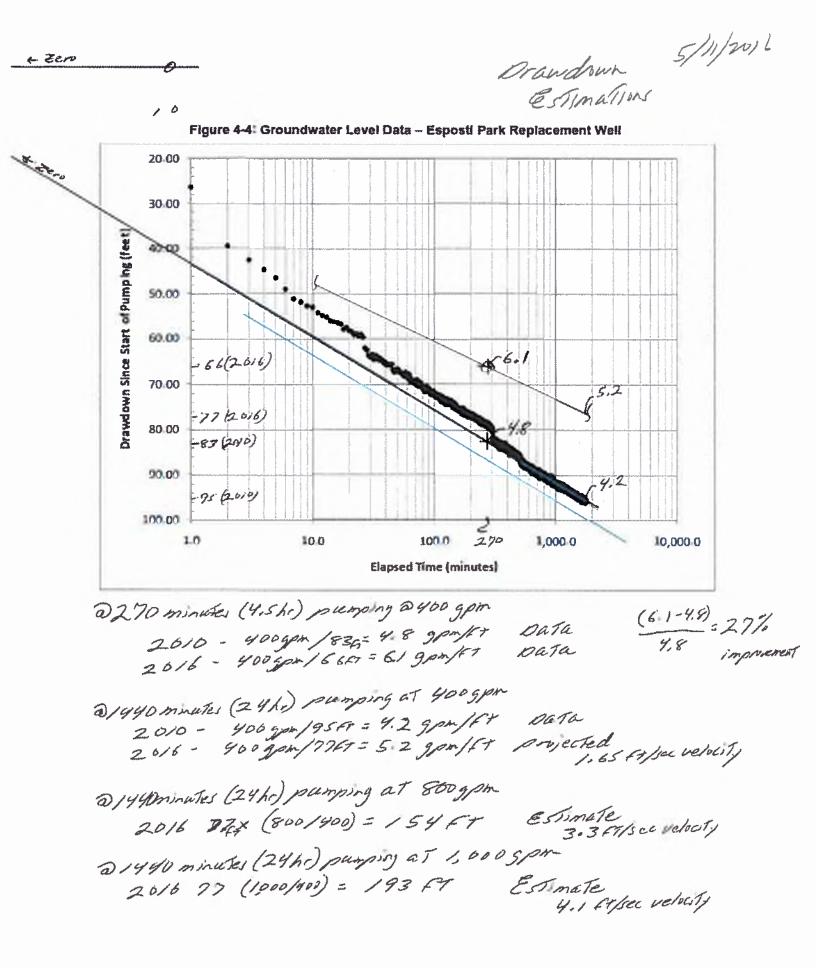
PROJECT N	AME: <u>Egn</u> JMBER: <u>////</u> SNATION: <u>Egn</u>		re]]	PROJECT SAMPLER: SAMPLE N		1/2016 1 0/3020	
CONDITION O	F WELL HEAD / VA	ULT / CAP & LOCK:					
A. TOP OF	CASING ELEVATIO	DN:					
	TO GROUNDWATE						
C. DEPTH	OF WELL:	MEASURED):				
D. HEIGHT	OF WATER COLU	MN (C-B):					
E. GROUN	DWATER ELEVATIO	ON (A-B):					
CASTING DIA	METER: 2"		3"	2	4"	OTHER _	10''
Volun Volun		163 gal/ft		STAINL	T THICKNESS ESS BAILER:		-
	_	NO. OF WELL VOLUMES		METER USE	10	ALIBRATED?	TURBIDITY (Visual)
08:17	900Ts10		6.67	22-7		64 MUS	Imod F.son
8:32	400 10/0	to surge	7.02	23,3	824	-10 4	with I mod 14.5
8:41	11	-)	7.44	22.9	560.2	-17 [.1	usi/mod/F.S.
					105		
9:09	800 pm		7.51	23.5	55 \$. 2/368	- 40 L.M	Sty modersa
9.15	guo com		7.55	24.0	553/369	-52 UL.)	1457/Lits/F.S.
9,49	800 pm	check: 1	7.61	22.7	551/369	-59 ULM	11/11/11/F.San
	rement nel	sen Imin only	7.50	22.4	548/367	-58	
9:56	songpn	ETErIMM ,	7.53	23-8	549/366	-47 VEMUS	light & sand
10:06	swigh	restat-staple	7.63	23.6	552/367	-47 MU	Which Fre.
10:09	800 con	Lab Sample	7.63	24.3	550/367	-65 VL	10.6.19 12
RECHARGE R	ATE (qualitative):						
SAMPLER TY		N BAILER	ACRYL	IC BAILER	DISP	OSABLE BAILER	<u></u>
SAMPLES CO	LLECTED:	PRESER	VED VOA'S _ VED LITERS _ASTIC OR G		UNPRESE	RVED VOA'S RVED LITERS	

FIELD FILTERED: _____

UNFILTERED:

COMMENTS: _____

1.08					11-	19 10 1 7	adju Bee	Ĵ ste	addigigin	1	- 10	শ		The Fix	-r	_	- T	-	-		-		_				1			
Work Order Chain of Custody Record	o J		TAT	outer						9	0	itterant		Filter						–		64432 Primary Inorganics, 64432.1 NO2/NO3, 64449 A&B	Asbestos, Perchlorate, Gross Alpha, 504.1, 507, 508, 515.1,		Ol No			No N	a the new	
, Re	Page	Γ		-		(tsi_	l wola) neo2 2		_			Ő						Scan		3, 644	507, 50		\bigcirc			\bigcirc	5	es:
Work Order of Custody I							ON		, BTEX,	_	-	┥		┦	-	+	-	+	-	S		2/NO	34.1, 5		Yes (Yes (1	Misc. Supplies:
k O Liste		side.							7	L MA	70									22		1 NO	ha, 5(<u>س</u> ور	dec Del o (Email Action)	Misc.
วับ		Signature below authorizes work under lerms stated on reverse side.	يه	.			10101	- 111	hate bibbi	_	_	\downarrow		\rightarrow	\downarrow	+		_				54432	ss Alp				1		e o Cen	8
≤ to		ed on I	Reguest	\vdash			letot	- w	uibeneV	60 80			\neg	+	-	+	+	-	-	**Title		lics, 6	, Gros	49.2	CDPH Write On EDT Report?			(Line	Sampling Company log Code: Global ID: nor	i i
ain		ms stat	edt	3)	ON	'zon 'i	as TKA	pnja	ini) negon	_	-	-	-	+		+	\neg	+		⊬	•	orgar	orale	524.2, 531.1, 548.1, 549.2	T Re	State System Number:		CA Geotracker EBP Report	Bor	Mileage:
с Ч	Lab No.	der ten								etett	_									*		ary In	erchi	1, 548	E	NIIN		8	pany	1.
*7	Ë	/ork un	Analvsis	-		1	1 26 9	inti	N 'N SE	_	_	+		\dashv	_	\dashv		_	_			Prin	tos, F	531.	te O	sterm		acke	Com	Travel and Site Time:
A 9562		rizes v	alv							nile> 		+		+		+	+	+	-			64432	Asbes	524.2,	HW	25. 6	5	Beatr	Sampling Global ID:	and
5192 5192		v autho	An		(pa	evlosei	0) eV	'н	, 6M , 6O										1	Τ		9	_	43	CDP	Stat		CA 6	Sam Gloð	Trave
borati Elk Gn (6-686-		e beiov							cr6 (Dis					\square		\square									0	Γ				
Mer Li #113, 0 FJ 93		gnatun		-				_	sei <mark>()</mark> nM Cr (Diss		_	x		+	オ	+	+		+						Time 1400	Time		Time	Time	Time
4ræf V. K Wy., 16-519(ũ							ssid) e	_		귔			<u> </u> x	+	┤	-		+					Ë,	Ē		ļĒ 	Ē	<u>F</u>
Central Valley Laboratory 5090 Unioin Park Wy., #113, Elk Greve, CA 95624 916-686-5190 F) 916-686-5192						-	(pe	NO	ssi () sA	8.0	0Z :	5			$\frac{1}{2}$										Sate	e		g	g	ģ
50 Uni									Matrix		ios	-	_		\dashv	+	\rightarrow		+	+			_	_	<u> で</u> く	Date		Date	Date	Date
25			ell								Nor BW	স		_	r X			+	+											
	99 99		otable Well					ing	Preservative	- 19	410	1				1		1	+	+					1	Ž				
5482 67 om	CA 945 03		able					na piling	Lese	4CI 03	'HN NH			\exists						\pm))	2				
etory , CA 9! 168-52! fabs.c	tory ublin, (828–63		Pot					enc	L L	0752	'BN			-+	-	+	+	+	+	╋			_		5	ł				
Labor Ukian 707.1 2atpha-	#35, D #35, D		Esposti P				:	montne	ainer	aa pet	шA вIЭ				_			1	+	-					Ń]	
oorate Street G401 F /ices@	Area Road, 5226		spo					Ĕ	Container		lo9	2		\downarrow	×					+					201		•	L.		L*
Corporate Leboratory 208 Mason Street, Ditah, CA 95482 707-468-0401 F) 707-488-5267 cilentservices@athha-tabs.com	Bay Area (Laboratory 6398 Cougharty Road, #35, Dubin, CA 94568 925-828-6226 F) 925-828-6309	Project ID:	ш	ii ii	19	PO#						6	_	+	ş	+	╡	+	+	┼					Received by	Received by:		Received by:	Received by:	Received by:
208 208 21	98 Dou 92	Ť		Phase:	_	ď	Bill to:	•	Sample Collection		Time	60:01	_	\square	50:01										Reca			Rece	Rece	Rece
	63		L						C Sal		Date	5/10			ally															
Calaba and second second second	www.aipha-labs.com Waters, Sediments, Source	Name:	Town of Windsor - Drinking Water	Mailing Address: 9291 Old Redwood Highway Building 400	Windsor, CA 95492	Project Contact (Handcopy or PDF to): Elizabeth Cangay	kent obrien Oard		Fleid Sampler - Print Name & Signature	Sample	cation	ESW-5-10-10:09			ESW-5-10-10:09 15121		2						(il a	Refinquisment by	Relinquished by:		Relinquished by:	Relinquished by:	Reinquished by:


FIELD REPORT

DATE: 5/10/2016 5/11/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20
EVENT: Well development by pumping and flow testing	WEATHER/TEMP: ° at am ° at pm

THE FOLLOWING WAS NOTED:

9:00 -meet E. Carguy, Jin Smith stuct of site discuss results of last 2 days 800 gpm is Tapel - Tuday is rest For direct discharge and fest sever Mar on Aquiter Fest Monday rightion to be shall for an Thursday 11:18 Pump From 800 5pt Stat purping 10 Am - some low a stight flow 400-ser 800 constant at 10:35 (Approv) sample at 10:44 Jordan - 707 486 1561 are - 707 217 8239 Facke Joshua - 1916 - 532 - 6654 STOTA Sever 6 Tow Test see sheat A 16:08 irrigetim Well Turned on For Short period of Time - Need To isright Fredd

Page of

Kent O'Brien 707-478-9559 cell and text

Sheet A

FIELD REPORT

DATE: 5/11/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: ° at am ° at pm
PRESENT AT SITE:	

DATE: dd/mm/yr _1_1_ Flow

Time: use 24 hour time record at 15 min intervals or more freq.	Manbole number/description	Observed flow as a % of full pipe	Other observations
			, sample 10:44
13:13	900 gpm	OTW Not Mecsim	1
13:32	SOB Spm	- 95 FT BTOL	
13:44	600 spm	VIB FYBTOC	
17:23	700 Spm	-139.75BTOC	
141.50	800 COM C	\$16ZB10L	
15:06	900 gpm	-185 BTOC	
12 62 1			
15:20	900 gpm	208.93 BTOL	
15:25	SUUUSpr	209,9 Broc	
15:30	SUU COM	210,75 STOC	
15:35	960 gom	211.75 1500	sample 15:38
15:40	Gou Gym	212.30 3706	
15:45	960	213,3 BTOU	
15:50	900	213.836500	2
15:55	900	214.91	Quell head for meter 29808500 gallo
16:00	900	215.0	29808500 Gallo
16:05	944 880	215.41	
16:10	900 880	215092 30	hange in sumprate
15:15	910	219.30 -	
16:20	910	220.6	
16:25	910	221,3	
16;30	910	221,75	
16:35	890 (reduction)	222.3	
16:40	890	222.6	
16:45	890 Jumpillex	223.0	
16:50	890	223.3	off

Page___of____

	· · · · · · · · · · · · · · · · · · ·	Section 1	· . · · .				82
	ME: <u>Espo</u>			PROJECT	DATE: 5/14	12016:	· · ·
	MBER: _///	······································		SAMPLER:		<u> </u>	
WELL DESIGI	NATION: <u>Es</u>	2 :: 1 :: Sugft.]		SAMPLE N			
CONDITION OF	WELL HEAD / VA	ULT / CAP & LOCK:					
· · · · ·	CASING ELEVATIO	· · · · · · · · ·		· · ·			
	O GROUNDWATE	· _ ·					
		MEASUREI). D:				
	OF WATER COLUN						
E. GROUND	WATER ELEVATIO	DN (A-B):					:
CASTING DIAM	ETER: 2"	· · · · · · · · ·	3*	 2	4"	OTHER	
	WELL VOLUME: D	XV=					
: Volume	e (V) of 2" well - 0.1	63 gal/ft		·····			<u>.</u>
Volume	(V) of 4" well – 0.6	i53 gal/ft					• • •
DOR:	SH	IEEN:	FLOAT	ING PRODUC	T THICKNESS		
PUMP TYPE:	· · ·			. OTAINHI	ESS BAILED		:
- QIME I TPC	······································		· ·	· JIAINLI			
- Griver - I T Car			· · · · · · · · · · · · · · · · ·	OTHER			
			<u> </u>	UTHER			· · · ·
DECON PROCE	DURE: LIQUINOX		<u> </u>	UTHER			· · · · ·
	DURE: LIQUINOX		BLEA(UTHER	ERWATER SC	OURCE	
DECON PROCE	DURE: LIQUINOX		BLEA(ERWATER SC	DURCE	TURBIDITY (Visual)
	DURE: LIQUINOX GALLONS	VALCONOX TAI	BLEA(ERWATER SC	CALIBRATED?	
	DURE: LIQUINOX GALLONS	NO. OF WELL VOLUMES	pH 6.58 7.32		ERWATER SC D:CONDUCTIVITY (µMHOS/CM)/100	CALIBRATED?	(Visual)
	DURE: LIQUINOX GALLONS	NO. OF WELL VOLUMES	PBLEA(METER USE	ERWATER SC D:CONDUCTIVITY (µMHOS/CM)/100	CALIBRATED?	(Visual)
DECON PROCE PUMP DEPTH:_ /// TIME /////// ////////////////////////////	DURE: LIQUINOX GALLONS	NO. OF WELL VOLUMES	pH 6.58 7.32	METER USE TEMPE 23.9 24.7	ERWATER SC D:CONDUCTIVITY (µMHOS/CM)/10 559/205 59/365/20	ALIBRATED? ORP (mV) 2.5	(Visual) Clear Clear
DECON PROCE PUMP DEPTH:_ /// TIME ////// ////// //////////////////////	GALLONS PURGED	NO. OF WELL VOLUMES	р.— ВLEA(рН 6.58 7.32 7.50	OTHER CHOTH METER USE TEMPE 2.3.9 2.4.7 2.4.9	ERWATER SC D: CONDUCTIVITY $(\mu MHOS/CM)/10$ $559\mu S$ 599/365 599/365 599/365	DURCE CALIBRATED? ORP (mV) 2.5 (mV) 2.5 (mV) - 2.5 - 2.5	(Visual) Clear Clear clear
DECON PROCE PUMP DEPTH:_ /// TIME ////// ////// //////////////////////	DURE: LIQUINOX GALLONS	NO. OF WELL VOLUMES	р.— ВLEA(рН 6.58 7.32 7.50	OTHER CHOTH METER USE TEMPE 2.3.9 2.4.7 2.4.9	ERWATER SC D:C CONDUCTIVITY (µMHOS/CM)/10) 559/255 59/365 590/365	ALIBRATED? ORP (mV) 2.5 4 - 5 - 2.7	(Visual) Clear Clear clear
DECON PROCE PUMP DEPTH: U TIME /0:44 /0:44 /0:56 //:10	GALLONS PURGED	NO. OF WELL VOLUMES	PBLEAC pH 6.58 7.32 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	OTHER CHOTH METER USE TEMP 23.9 24.7 29.7 25.1 27 26.5	ERWATER SC D:CONDUCTIVITY $(\mu MHOS/CM)/100$ 559/205 59/365 59/365 59/365	DURCE CALIBRATED? ORP (mV) 2.5 (mV) 2.5 (mV) - 2.5 - 2.5	(Visual) Clear Clear Clear Kar St Kar St St
DECON PROCE PUMP DEPTH: DUTIME 10:49 10:55 10:55 11:10 19:19 19:18 15:22	GALLONS PURGED	NO. OF WELL VOLUMES	PBLEAG PH 6.58 7.32 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	OTHER CHOTH METER USE TEMP 2.3.9 2.4.7 2.4.7 2.4.7 2.5.1	ERWATER SC D:CONDUCTIVITY $(\mu MHOS/CM)/10$ $559\mu S$ 599/365 599/365 599/365 599/365 599/365	DURCE CALIBRATED? ORP (mV) 2.5 -2.5 -2.5 -2.5 -2.5 -2.8 -2.8 -11	(Visual) Clear Clear Clear HD Sc HD Sc HD Sc HD Sc HD Sc HD Sc HD Sc HD Sc HD Sc HD Sc HD Sc HD Sc HD HD HD HD HD HD HD HD HD HD
DECON PROCE PUMP DEPTH: DUTIME /D:4/4 /D:4/4 /D:4/4 /D:4/4 /D:5 //:10 /4:14 /9:18 /9:18 /9:18 /9:22	GALLONS PURGED Munipinio GALLONS PURGED Munipinio GO GO GO GO GO GO GO GO GO GO GO GO GO	NO. OF WELL VOLUMES	PBLEAC pH 6.58 7.32 7.50	CHOTHER METER USE TEMPE 23.9 24.7 24.7 24.7 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1	ERWATER SC D:CONDUCTIVITY/ $(\mu MHOS/CM)/100$ $559\mu S$ 590/365 500/9/902	DURCE ALIBRATED? ORP (mV) 2.5 4 - 5 -2.5 $\overline{}$ $\overline{}$ $\overline{}$ $\phantom{0$	(Visual) Clear Clear Clear Clear NO NO Sa Sa Sa Slight Clear
DECON PROCE PUMP DEPTH: D:44 70:44 70:44 70:56 71:10 79:14 79:14 79:14 79:18 79:22 75:25 75:38	GALLONS PURGED ////////////////////////////////////	NO. OF WELL VOLUMES	P	METER USE TEMP 23.9 24.7 24.7 25.1 25.1 25.1 26.5 26.6 25.9	ERWATER SC D:CONDUCTIVITY/ $(\mu MHOS/CM)/100$ $559\mu S$ 590/365 590/365 590/365 590/365 599/365 599/365 595/365 595/360 599/360	DURCE ALIBRATED? ORP (mV) 2.5 4 - 5 -2.5 -2.5 -2.5 -2.8 -11 -3.5 -3.5	(Visual) Clear Clear Clear Kar St Kar St St
DECON PROCE PUMP DEPTH: 10:49 10:49 10:55 10:55 10:55 10:22 15:25 15:25 15:38 15:51	GALLONS PURGED Munipinio GALLONS PURGED Munipinio GO GO GO GO GO GO GO GO GO GO GO GO GO	NO. OF WELL VOLUMES	P-BLEAG PH 6.58 7.32 7.50 7.40 7.40 7.40 7.42 7.44	DTHER METER USE TEMP 23.9 24.7 24.7 24.7 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.2 26.5 26.5 26.5 25.9 25.9	ERWATER SC D:CONDUCTIVITY $(\mu MHOS/CM)/100$ $559/\mu S$ $59/9/365\mu$ 590/365 599/365 599/365 599/365 595/365 595/360 599/360 599/360	DURCE ALIBRATED? ORP (mV) 2.5 -2.5 -2.5 -2.5 -2.8 -3.5 -3.5 -2.8	(Visual) Clear Clear Clear Clear NO Clear Slight Clear Clear Clear Clear Slight Clear Clear Slight Slight
DECON PROCE PUMP DEPTH: D:44 70:44 70:44 70:56 71:10 79:14 79:14 79:14 79:18 79:22 75:25 75:38	GALLONS PURGED ////////////////////////////////////	NO. OF WELL VOLUMES	P	METER USE TEMP 23.9 24.7 24.7 25.1 25.1 25.1 26.5 26.6 25.9	ERWATER SC D:CONDUCTIVITY/ $(\mu MHOS/CM)/100$ $559\mu S$ 590/365 590/365 590/365 590/365 599/365 599/365 595/365 595/360 599/360	DURCE ALIBRATED? ORP (mV) 2.5 4 - 5 -2.5 -2.5 -2.5 -2.8 -11 -3.5 -3.5	(Visual) Clear Clear Clear Ho Sa Clear
DECON PROCE PUMP DEPTH: D:44 70:55 71:10 74:14 75:22 75:25 75:555 75:555 75:555 75:555 75:555 75:555 75:555 75:555 75:555 75:555 75:555 7	GALLONS PURGED ////////////////////////////////////	NO. OF WELL VOLUMES	P-BLEAG PH 6.58 7.32 7.50 7.40 7.40 7.40 7.42 7.44	DTHER METER USE TEMP 23.9 24.7 24.7 24.7 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.2 26.5 26.5 26.5 25.9 25.9	ERWATER SC D:CONDUCTIVITY $(\mu MHOS/CM)/100$ $559/\mu S$ $59/9/365\mu$ 590/365 599/365 599/365 599/365 595/365 595/360 599/360 599/360	DURCE ALIBRATED? ORP (mV) 2.5 -2.5 -2.5 -2.5 -2.8 -3.5 -3.5 -2.8	(Visual) Clear Clear Clear Clear South South Clouty F-Sand Slight Clear Slight Clear Fine c bubbles
DECON PROCE PUMP DEPTH: D:44 70:55 71:10 74:14 75:22 75:25 75:555 75:555 75:555 75:555 75:555 75:555 75:555 75:555 75:555 75:555 75:555 7	GALLONS PURGED ////////////////////////////////////	NO. OF WELL VOLUMES	PH 6.58 7.32 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	METER USE METER USE TEMPE 23.9 24.7 24.9 25.1 25.1 25.1 26.5 26.5 26.5 26.5 26.5	ERWATER SC D:CONDUCTIVITY/ (μ MHOS/CM)/10 559μ S 599/365 599/365 599/365 599/365 599/365 599/365 599/365 599/360 599/360 599/360 599/360	DURCE ALIBRATED? ORP (mV) 2.5 4 - 5 -2.5 -2.5 -2.5 -2.8 -11 -3.5 -3.5 -2.8	(Visual) Clear Clear Clear Ho Clear Ho Sa Clear C
DECON PROCE PUMP DEPTH: DECON PROCE PUMP DEPTH: DECIMP DEPTH: DECHARGE RA SAMPLER TYPE	GALLONS PURGED GALLONS PURGED GO GO GO GO GO GO GO GO GO GO GO GO GO	NO. OF WELL VALCONOX TAP NO. OF WELL VOLUMES ST & ON SAM Sample Sample	PH 6.58 7.32 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	DTHER METER USE TEMP 23.9 24.7 24.7 24.7 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.2 26.5 26.5 26.5 25.9 25.9	ERWATER SC D:CONDUCTIVITY/ (μ MHOS/CM)/10 559 μ S 599/365 599/365 599/365 599/365 609/902 551/365 599/360 599/360 599/360 599/360 599/360 599/360 599/360 599/360	DURCE ALIBRATED? ORP (mV) 25 -25	(Visual) Clear Clear Clear Ho Clear Ho Sa Clear C
DECON PROCE PUMP DEPTH: DECON PROCE PUMP DEPTH: D:44 75:44 75:56 75:56 75:57 75:57 75:57 76:03 RECHARGE RA	GALLONS PURGED GALLONS PURGED GO GO GO GO GO GO GO GO GO GO GO GO GO	NO. OF WELL VOLUMES	PH 6.58 7.32 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	CHOTHER METER USE TEMPE 23.9 24.7 24.7 24.9 25.1 25.1 25.1 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5	ERWATER SC D: CONDUCTIVITY/ (μ MHOS/CM)/10 559 μ S 599/365 599/365 599/365 599/365 609/902 551/365 599/360 599/365 000000000000000000000000000000000000	DURCE ALIBRATED? ORP (mV) 2.5 4 - 5 -2.5 -2.5 -2.5 -2.8 -11 -3.5 -3.5 -2.8	(Visual) Clear Clear Clear Clear No Sa Clear Sard Slight Clas Clear Fine c Clear Slight Clas Clear Clear Sard Sard

		WELL	SAMPLIN	G DATA S	HEET	2	- 1/2
PROJECT NU	MBER: ///	<u>Si Suppl</u> jus 1000 ewiti Supplj	,]] ?/	SAMPLER	DATE: <u></u> 	OBden	
CONDITION OF	WELL HEAD / VA	ULT / CAP & LOCK:					
B. DEPTH T C. DEPTH C D. HEIGHT (E. GROUND CASTING DIAM CALCULATED V Volume	DF WATER COLU WATER ELEVATI ETER: 2"	ER (initial): MEASURED MN (C-B): ON (A-B): ON (A-B): COX V = 163 gal/ft	3*	2	4"	OTHER _	
		HEEN:					
PUMP TYPE: _				STAINL	ESS BAILER:		
DECON PROCE	DURE: LIQUINO	X/ALCONOX TAP	BLEAC	снотн	ERWATER SO	JRCE	
PUMP DEPTH:_							
TIME	GALLONS	NO. OF WELL VOLUMES	pH	TEMP	D: C CONDUCTIVITY (µMHOS/CM)	ALIBRATED? ORP (mV)	TURBIDITY (Visual)
16:15	910	increase flow	7.52	25.0	842415/560 pm	-27 11.	
16:23	910		7.46	21.2	544/360	-32	
16:32	910		7.52	25.9	544/360	- 39 - 30	
16:38	890		7.50	25.8	543/359	-30	
16:45	690		7.40	25.8	542/359	-34	
					· · · · · · · · · · · · · · · · · · ·		- · · · · · · · · · · · · · · · · · · ·
		: 	<u> </u>				······
			<u> </u>				
RECHARGE RA	TE (qualitative):	1			,		
SAMPLER TYPE		ON BAILER	ACRYLI	CBAILER	DISPO	SABLE BAILER	
SAMPLES COLI		PRESERV	ED VOA'S		UNPRESE	RVED VOA'S	-
		FIELD FIL	TERED:	-	UNFILTER		

COMMENTS:

FIELD REPORT

DATE: 5/11/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: ° at am ° at pm
PRESENT AT SITE: WEEKS	JOSE BANNELOS
DATE: dd/mm/yr <u>J</u> 1 <u>//</u> 1 <u>J/</u>	

Time: use 24 hour time record at 15 min intervals or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
	c 271	10%	i co Ma
1313	2219	35%	increase Flou
1315	5316	······································	20% increase int
1325	2516	Same	Same in Flo
1332	5316	35%	Same in Flou
1244	5376	409	5% 'accease in a
1359	5376	Same 40%	Same 11 1
14/4	5316		Same 11 11
1424	5376	46 2	5% in creaseint
14 11	<u> </u>	11	AT 700 water starts t
	11	11	tila King into Lecter
11	11	1/	the Southside but
1439	5376	45% Same	Same at 700 6lm
1450	5376	50%	59. in crease in Ala
1458	\$ 376	552	St. meserse in fla
1306	5376	60%	5% increse for
1321	5376	Same 60%	Same 11
1535	5376	Samp 602	Same 11
1550	5376	Same 602	Same 11 11
1525	checked SPI30B		ak cood
2000 160S	STE	Same 609	Same 1111
1620	5376	5ame 609.	Same IIIIa
1635	\$376	Same 602	Same 11 11
16 53	5376	40 9	Diop 2095
	-		

Page___of___

		5/11/2016
		······································
· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	

Special notes regarding: traffic during test, trucks, buses. Pedestrians, kids in the area, homeless. Is location appropriate for night monitoring. Photograph location and inside of manhole. Consider appropriateness of manhole as a permanent monitoring station with automatic measuring for final system.

on S/11/16 A little more people walking than Sllofib. flow it's nice and Clear & Heavy track, man hole is on the bike long Page_ oſ

Kent O'Brien 707-478-9559 cell and text

FIELD REPORT

DATE: 5/11/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: ° at am 1:\3 ° at pm ຽບກວນ
PRESENT AT SITE: Jourdan (Town o	FWINdsor)

DATE: Malminutyr 5 / 11 / 11

Time: use 24 hour time record at 15 min intervals or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
1310	5374 (Shiloh)	10%	Inital inspection
1320	5374	40%	Inital inspection clear water 1400gr
1328	5374	40%	C SALAR AND STREET
1338	5374	40-45%	at 500 spm at 600 ypm
1349	5374	45-5090	at 600 yom
1356	5374	50%	<u>J</u>
1403	5343 [Hem	bree) 50%	Looks good
413	5327 (conde)	25-30%	plenty of capacity
1429	5374	50-55%	lat 200 minut
1440	5374	50-55%	at 700 gam
1455	5374	50-60%	at 700 gpm at 800 gpm
1504	5374	60%	at 900 gpm
1511	5374	60-65%	at 900 gpm
1522	Sol 5343 (Hembree)	500/10	at 900 apm
1526		40-50%	at 900 gpm
1536	5374	60-65%	at 900 gpm
1556	5374	60-652	
1617	5374	60-65%	
1625	<u>5374</u> 5374	40 %	
1654	5374	40 %	Endofrun
		N	
		1	

Page___of____

					rfau F	d For	animpasi je	btow	qA da	A COM	Try ad (Bits)	9									1	ŀ					6		T
work Urger Chain of Custody Record	ĕ		TAT	14 M	8)≩	0 1]]	0	2 wk	(atandard)	67210	Filtent									64432 Primary Inorganics, 64432 1 NO2/NO3 64449 A&R	Achastas Perchinate Conce Anha 500 1 507 508 515 1		No		-	U or		
Sec	Page	Η			THE	(15)7	wolea.	.) U	eog a	ss əm	L									vcan	6449	a di	2	~			6		
work Urder of Custody I							· · · · · · · · · ·	21	1S S	A 010	9									Ŭ	2	202)	1	N		Misc. Supplies:
Ξğ				ļ			OM/Q	Υ.												<i>ו</i> ן	100	2		Yac	-		Yes	danti	c. Suj
E S		Signature below suthorizes work under terms stated on reverse side.								Igeoria F MAC	-	-							Ċ	77	10	e qu				-		ide: EDF to titrati Addre ut	Mis
Σ Ω		I LEVEL	ţ	:			istot - n	unip				-							1	Φ	6443			6		I		10 H	1.0.0
> o		sted or	Пе							eoilica	+								111		oics.	Ċ	600		i.		port	Cod	12
lair		ans ste	Reauest	(6	ON 'Z	'ON '1	ades TKA	(uc)	иарол	iiN (eto	L								+	IIIIe	60300	Sorate	524 2 531 1 548 1 549 2	CDPH Write On FDT Report?		Slate System Number:	CA Geotracker EDF Report	Sampling Company Log Code: Global ID: EDE	Mileage:
- б	Lab No	der ler		1						eletiua									*		avla	- Hora]	Nur	G	pany	
_	Lab	а Ха	Analvsis			N	l 26 9/m	!N 'I			- <u>I</u>	-				_		_			Prin		231	0	}	item	icker	Com	Travel and Site Time:
Central Valley Laboratory 9090 Unioin Park Wy., #113, Elk Grove, CA 95624 918-686-5190 F} 918-688-5192		1Z85 W	alv					<u> </u>		/lkalim /lkalim	-i	╀									4432	chael	04.9	Ň		Sys	eotra		and S
185 CF		Buthor	A n		(рөл	lassi	0) en 'Y	('ōy				╆┉						\neg			10	4		i da	i	Slate	N G	Sampling Global ID	ravel
01210 15 1		belaw			· · · · ·		(pənjos	ssiQ) 940	9.811		\square					+		+	+-		╞	+						<u></u>
7 (11), El 113, El 7) 918		uature								8.002														- E - N	2				
ustrica verey Leuciarcay Win Park Wy., #113. Elk Grove, C 918-586-5190 F] 918-688-5192		Sigr					(рәлр				-t	2						_			ļ			Time	-	Time	Time	Time	Time
Centra Park J 8-586-				-						8.002 / 8.002		Ř		_							+-	<u> </u>	-		4				
Uniolo B11		┝╍╍┸		<u> </u>		····	10.0140				×	٦				+	+	-+	-	+	+	╞	-	Date	5	Data	Dale	Date	Date
0606			_					Matrix		Valer IIOI									_	1				1					1
			Well					F		euoj	v X	X											1	1.					
	1568						month end billing	Preservative	┢)#/#\ tH¢C{		<u> </u>	$\left \right $	-		\rightarrow		-+		┿	+	┢	+	-	dim				
95482 267 com	CA 9- 309		Esposti Potable				q p	rese	E	INO3				_		_		4			-	-			(a				ł
458-5 458-5	atory Dublin, 828-6		Po				l la																	•	3				
, Ukial 707. 9 John	Labor #35, 1 #35, 1		sti				out	ajnar		9 932 19011		<u> </u> .		_	_		-							- 1	て				
Sireel 0401 F 0401 F úces@	Bay Area Laboralory enty Rosd, #35, Dublir 328-6226 F) 926-828-		spc				Ē	Container		ojλ (CUB) ∧CY	min	X						1						<u> </u>					
206 Mason Sireel, Ukieh, CA 95482 707-468-0401 F) /07-468-5267 clientservices@alpha-labs.com	Bay gherty 5-828-i	Project ID:	ш	¥.		HO HO	*	Ē	· · · · ·			20			-+	+	+	+		-	╈	+	┿	A.	10	Received by.	Received by:	Received by:	Received by:
208 70 Cite	834 Arra Lahoralory 6398 Dougherty Road, #35, Dublin, CA 94568 925-828-6226 F) 925-828-6309	Proje		Phase:		<u>ă</u>	8111 to:		Sample oliectior	Time	16.42	15.39												Received	Υ	Racat	Rocer	Recei	Recen
	639							ŀ	Sample Collection	Date	11/5	2/1											T						
alpha Apin Anspired Laboratories Inc.	www.aipha-labs.com Waters, Sedments, Solids	Name:	I own of Windsor - Unnking Water	Mailing Address: 3291 Old Rodwood Higtway Building 400	Wirdsor, CA 95492 Project Contect (Hardcopy or PDF to);	Elizabelh Cargay ecar ga y@townofwindsor.com	kent cränen kent. obrien@ghd.com	Fjeld Samples - Print Neine & Signeture		Sample identification	- 16:42	1-15:35											6	Reiterquistrouter	1 all	Relinquished by:	Relarquistred by:	Reinquished by:	Retinquished by;

B

Job Number Sheet ----Client Sheets by Subject ESU PUMP POST TD Dawn Utreskept fortach -10 Project Date 5/12/16 5/13/16 -1130 MOBILE HOME ETATES GOOD, WELL PURPIC pour lanan DATA. -1145 RO OFFSITE RE OVAITE CESTORTI HER - 1150 Collect E.I. W MATA, RESTART TO COLLECT ONLY 25020 NEMORY, STTA GOOD V LEF+ RC @ EDW DTW= 44.09 (TOC) -1215 COLLET IU-SITUL TO DATA ... NO. COLLECTOR SPPRE. RESET, CONFIRM RUMING, DOWN LOPP WHAT I GOT TODYY. N -1300 RC/EC ONTE BLUEBIED DEW= 28.56 (Dec) DATA GOOD -1350 Re/CE OFFSITE 281724564 5/13 Re OWSITE ESW ATW = 42.62 (TOC) TIE F650 SOCINGT TO BOTTOM ONE IN-STUTE -0715 GUT@ 755, DOWN LOMD 12-9174 ESW RATA -0815 COLLET BARODITA V RESET DUE TO ONLY 25% MEMORY LEFT. V -0845 LOCK-UP SITE, RC OFFSIJE

FIELD REPORT DATE LOCATION: Esposti Well, Old Redwood Hwy at Shiloh 16/2016+5/17/2016 Road, Windsor, CA PROJECT NAME: Town of Windsor, Esposti Supply Well JOB NO: 11110001.20 EVENT WEATHER/TEMP: 55 ° at am 530 800 CDM 24 OBTIEL, Matters) ° at pm PRESENT AT SITE THE FOLLOWING WAS NOTED: SizoAm arrive - weeks on site setting up (mat 65001 That -un Fo. nump wh. 92,310603 13minules ∂ 6:06 6:12 arten 6, a 55 Josh has the Ke 6 ar to the IOT Innee (res) 111140 -2 836. 696-5 amos 8385389 141-900 - KENT LEFT - CONTINUED NELL TEST & SAMPLING EVERY 30mm 1300 - TOOK WATER SAMPLE FOR GHD 1430 - SPOKE N/ DAVE L. & LINED OUT HAND OFF TON 1645 1706 - DAVE L. ARRIVED - WENT OVER WELL TEST & SAMAINE 1749 - KENT N/ GHD ARRIVED BACK ON SITE / Off sile at 10 00 mm Security on site 6:15 17may10 -1600 - SECURITY LEFT SITE DU3D - DAVE L. LEFT SITE

Page of

 4	· :	· ·	•	 	 	 · .	 •	•	•	

DATE: 5/10/2016	LOCATION: : Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Supply Well	EVENT:

. . . .

D715-MIKE & ON SITE

0810-2004 SARAGO SP-FUELED GUARDER

0850-SAMPLE BOTTLES DEDPED OFF ON SITE

0915 - MIKE G. LEFT FOL A SOUNCE CAN

0933-KENT W/ GHD ON SITE

set we Tocollect Samples

_	_	 		******	********	*****	********	******	********						•	 	******	
		•																
			•			• •	•	•				•	. ·	•	•			
			:	. '	· :		. •			•	:			. '		•		

Page_

Page__ of

k

Drawdowr	n Sheet				
Measured Well	Owner: Tsur Location:	fuirds	(<i>br</i> Weil I Name	·	1 Suppy Willin
Pumped Well	Owner: Town of Location:	Windsor	Well I Name	/Site:	sti Supply Well
Test Details	Date pumping comm Date pumping cease		12016 Time: Time:		Test No.
Are Measurem	ents below for the pur	nped well?	Distar	nce from pumped	well (ft): 🖉
Static DTW		Feet below meas	uring point		
Measuring Poir	nt	Feet above/below	ground level		
Watch Time	Elapsed Time (min)	Całculated drawdown (ft) (DTW - Static)	Measured DTW (feet) below measuring point	Discharge (gpm) Only if pumped well	Comments or pressure measurements from transducer
6:03			42.35		
6:05	0	0	42.35		
6:15	10	120.54	162.86	800	285 Ft head about,
5:25	10	131.43	173.78	800	
6:35	10	135.05	177.40	800	
61.45	10	141.74	184.09	800	
6:55	10	144.03	186.38	800	
7:05	p.	145.80	188.15	800	
7:15	10		189.67	800	
7:25	10	148.62	190,97	800	
7:31	10		192.25	0	
7:45	10	ļ	193.74	800	
11.55	10		195.10	800	
8:05			196.46	800	
830			199	800	ļ
900		ļ	201.65	800	
930			203.17	808	
1000			204.60	800	

12

ž

	Watch Time	Elapsed Time (min)	Calculated drawdown (ft) (DTW - Static)	Measured DTW (feet) below measuring point	Discharge (gpm) Only if pumped well	Comments or pressure measurements from transducer
	1030			205.38		· · · · · · · · · · · · · · · · · · ·
	1100			206.84		
	11 30			207.34		
	1200			208.35		
	1230			209.18		6
	1300			209.02		
	1330			210.18		
	1430			210.89		
	1430			211.40		
	1500			211.80		
	1530			212.24		
	1600		<u>ś.</u>	212.45		
	1630			213.18	<u>. , ,</u>	
1 - I	1700			214.23		
	1730			215.79		
6Pm-3 7Pm-	1800			216.38		
7pm -	1900			218.55		
	2000			220.26		
	2100	· · · · · · · · · · · · · · · · · · ·		221.20		
	2200	<u>.</u>		223.52		
	2300			224 163		
	24			225.85		
	000			227.10		
	0200			228,18		
	0300			228.76		
	0400	10		229.24		
	0500			229.72		
	0600			A30.58		
	0700			232.46		
	0800			233.08		

2 of 4

Watch Time	Elapsed Time (min)	Calculated drawdown (ft) (DTW - Static)	Measured DTW (feet) below measuring point	Discharge (gpm) Only if pumped well	Comments or pressure measurements from transducer
0900			233.43 233.97		
1000			233.97		
-0-					
	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·				
	1			ļ	
				<u> </u>	
			-	ļ	
		[ļ	
		· · · · · · · · · · · · · · · · · · ·			
					(a)
ļ					

(CHD) IB	nna intri Kuntting Mironatin	Parame	ter Reco	rd						Well ID:	••••
Client: Project:	т	formation own of Winds			nple Method:	Information direct fro		SWL	4 <u>2.35</u> ft <u>S/167</u> 2-16	Veli Information Check: Time:	25
Proj. No.:	•••••	11110001		Flow Cell: WLevel	Meter Type:	Pump Depth:	calibrit 5/13/mil	Ref.datum Well Depth	1: ft n From: ft	Stick Up: Well Diam.: To: ft	ft
Time ()	Temp (°C)	pH (pH units)	Elec.Cond	TDS (PPM.)	Dis:Oxygen ()	Ox-Red Pt. (± mV)	Note	Note	Comment: Colour, turbidity,	sediment load, sheen, odou	r
Stabl	e When.	*/-02C	+ /- 0:05 pH	+/- 3%	-1/- 10%	+/ - 10 mV			6.4.6.4		
5:06	17.8	6.70	568	383		-133			Clear		
5114	23.2	7.13	557	371		-69			Clear		
6:19	23.3	7.31	558	369		-78			Clear		
6:23	23.4	7.34	556	369		-70				four fill or sample	Jar Mairle
6:39	23,0	7.32	551	366		-55					
5457	22.1	7.46	549	366		-28					
7:04	23.0	2.42	5 50	365		-34					
1:15	23.3	7,38	551	365		-39					
7:20	22-8	7:59	545	362		- 54					
7:42	21.7	7:58	545	364		-35					
7:54	22.6	7:54	549	369		-41	-				
831	23-2	7.72	516.	345		-28					
900	24-2	7.70	545	360		-37	-				
938	24.00	7.65	549	363		-13					
1000	25.01	7.62	544	360		-7					
1030	26.04	7.59	540	354		-5					
1100	27.8	7.57	535	351		17					
30	27.3	7.65	535	351		10					
1200	26.7	7.40	538	352		-13					
1220	26.7	7.42	540	354		- 28					
1300	26-9	7.69	540	353		-16					

Time	Temp	рН	Elec.Cond	TDS	Dis.Oxygen	Ox-Red Pt.	Note	Note	Comment:
()	(°C)	(pH units)	()	()	()	(± mV)	ORP GGTar		Colour, turbidity, sediment load, sheen, odour
5tabl 1330	e When: 27.5	+/-0.2C	+/-0.05 pH	350	+/- 10%	+/- 10 mV	2min		
1400	26.9	7.49				-3			
			537	352					
1430	27.3	7.61	540	358		40			
1500	26.8	7.82	543	358		27			
1530	265	7.69	540	355		7			
1600	26.4	7.73	541	344		-10			
1630	26.5	7.76	540	353		-20			
1700	26.5	7.54	538	353		14			
1730	85.7	7.50	539	355		3			
1800	Kent =	•		2	Ð	*			
19:00	26.1	7.61	537	356		-10	- 13		
20.00	24.0	7.51	537	352		- 22	- 30		
2100	25.3	7:64	535	352		- <u>3</u> 11	5		
2200	25.5	7.58	537	353		-2	- 30		
2300	2511	7.67	538	353		-26	- 19		
2400	25.4	7.54	534	354		1	-10		
0100	25.4	7.47	536	353		- 23	- 27		
0200	25.0	7.62	535	354		- 32	- 35		
0300	25.3	7.76	531	351		- 3	- 46		
0400	25.3	7.73	532	355		- 19	- 31		
0500	25.3	7 71	537	356		- 27	-33		
06.00	25.5	7.57	534	353		- 22	- 30		
07:00	23.0	7.01	534	353		20	20		
0800	24.9	7.63	530	350		-1	8		
3900	25.9	7.79	532	350		- 8	-3		

L

ΔL

Time	Temp	pH	Elec.Cond	TDS	Dis.Oxygen	Öx-Red Pt.	Note	l č	St Stort Date Still 3 of 3
)	(°C)	pri (pH units)	()	()	()	(± mV)	11005		Colour, turbidity, sediment load, sheen, odour
	e When:	+/- 0.2 C	+/- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV			
000	26.2	7.64	534	353	-7				
								ĺ	
		<u> </u>			· · · · · · · · · · · · · · · · · · ·				
			·						
						·····			
3		<u> </u>			· · · · · · · · · · · · · · · · · · ·				
· ····									
								10	
						10			
	1							1	

Work Order Chain of Custody Record	Page / of /	se side.	TAT		ng no ng		ouddy yn T	(standarg)							Yes X No		Va O av	dia: Die 6 (Eriel Address):	Misc. Supplies.
	Leb No.	Signature below authorizes work under terms stated on reverse side.	Analvsis Request			9	828 by WD issofd ig ioxin D/ D nixoiC	2.85.2	x x x				Ţ-Ţ		CDPH Write On EDT Report?	State System Number.	CA Geo tracker EDF R oport	Samping Company Log Code: Global D.	Travel and Site Time Mileage.
Central Valley Laboratory 0090 Unioin Park Wy _ #113 _ Elk Grove, CA 95624 916-686-5190 F) 916-688-5192		Signature below		17		-5175	6	ommA Sulfide D) ×) × 6 × 7 ×						Time	Time	Time	Time	1 integra
Corporate Laboratory 208 Mason Streei, Uklah, CA 95482 707-488-0401 F) 707-468-5267 9 citentservices@sipha-labs.com	Bay Area Laboratory 6398 Doughery Road, #35, Duhlin, CA 94568 925-828-6226 F) 925-828-6309	Project ID:	Source Chemical	Phase: Esposti Well	PO# 200336	Bill to: month end billing	Container Preservative Matrix	ojj Astet joue Jujet 152O4 1003 1003 1003 1003 1004 100 100 100 100 100 100 100 100 10	4 U 4 0 7 X X X X X X X X X X X X X X X X X X						Received by:	Received by: Date	Received by: Date	Received try: Date	Received by: Date
Calpha Alpha Analyted Laboratorias Inc.		Name:	Town of Windsor - Drinking Water		Project Contact (Hardcopy or PDF to); Elizabeth Cargay e carray off ownofwindsor com		Field Sampler - Print Name & Signature Sample Collection	Sample Identification	2/1/5 (¢	· COO:01-61-5-					Relinquisted by	Relimfuished by:	Relinquished by:	Refinquished by:	Relinquished by:

								Ň	2 1MT.	L Standon			724-41	1					,			es S			
Record	Page		TAT ~	Ala	id For Rus € () € () () () () () () ()		0	(standard)	3		theserve in	1921	-				n	4449 A&B	508, 515.1,		O No		Ne (
Work Order Chain of Custody Record	ď	verse side.			()			udsou		_							**Title 22 Scan	432.1 NO2/NO3. 6	Alpha, 504.1, 507,		Yes X		ves 🔿	tidge: E Diff to (Emilia Activities):	Misc. Supplies;
W Chain of	Lab No.	Signature below authorizes work under terms stated on reverse side	s Reguest		N 'ZON 'N	itrite as siudes TKI fotof - m	oni) nego	ulfate uitai Nitr iiica	IS 91 IS							-	**Title	64432 Primary Inorganics. 64432.1 NO2/NO3. 64449 A&B	Asbestos, Perchlorate, Gross Alpha, 504.1, 507, 508, 515.1	524.2, 531.1, 548.1, 549.2	CDPH Write On EDT Report?	n Number:	GA Geotracker EBF Report	Sampling Gompany Log Code: Global ID: Eseri	Travel and Site Time Mileage
Central Valley Laboratory 9090 Unioin Park Wy., #113, Elk Grove, CA 95624 916-686-5190 F) 916-686-5192	3	below authorizes work t	Analvsis			1 3	, bM , s y e	kalinit hloride	CI VI				_					64432 Pri	Asbestos,	524.2, 53	CDPH Write	State System Number	CA Geotratik	Sampling Go Global ID:	Travel and Site
Central Valley Laboratory n Park Wy., #113, Etk Grove 16-688-5190 F) 916-686-511		Signature					, n e	A 8.00 7.00 7.00 8.00)Z ())Z (XXX	<u>ス</u> ジ スジ ス		X X X		•						1/1 1315	-	Time	Time	Time
	A 94568 G		Chemical	Well		billing	Preservative Matrix		os ≫ № №			, , , ,	X								leve in	Date	Date	Date	2 S S S S S S S S S S S S S S S S S S S
Corporate Laboratory 206 Mason Street, 14kah, CA 95402 707-468-0461 F) 707-468-5267 citentservices@atha-iabs.com	Bay Area Laboratory 6398 Doughery Road, #35, Dublin, CA 94568 925-828-8226 F) 925-828-6309	ä	Source	Esposti Well	PO# 200336	month end billing	ontainer	AOV Im Yedn saa zadn	40 Po 1 Po 1 Po 1 Po 1 Po 1			x	×								the fact	Ved by:	đ by:	ð by	d by:
205 Ma 707 citent	6398 Dough 925-6	Project (D;		Phase:	Ğ	BIII	Sample	22	Date	2/16 12:00	12	18	5/17 0400		-						Repeive	Receive	Received by	Received by	Received by:
Lalpha Athe Anstrict Abratories Inc.	www.alpha-labs.com Waters, Septments, Solips	Name:	Town of Windsor - Drinking Water	Mailling Address: 9291 Old Redwood Highway Building 400 Windoor CA 06400	Project, CH 20422 Project (Hardcopy or P Dr to): Eitzabeth Cargay e car an VD (own of Wind so f. com	kent.obrien@ghd.com kent.obrien@ghd.com	Field Sampler - Print Name & Signature	Sample	tion :	C-SW- S-18-13:00	00:21-91-5-M53	CSW-5-16-24:00	00:20-61-5-12-02:00							nl In	Relinquished by	Relinduished by:	Relinquished by:	Raiinquished by	Relinquisted by:

								-	hed	ACC.	a Nucl	2							<u>8</u>	16 85			
cord	101 2		TAT		() 문 () 문 () 문 () 문 () 문 () 문 () 문 () 문	¥ 1 ¥ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(standard)	See Atta	122-	0.11an	1016				149 A&B	08, 515.1,	(ov Pž) Ž		
vvork Uraer of Custody Re	Page	ŝtie.			()sij	wole8**)	neo2 Scan	, əljiT	×							.1 NO2/NO3, 64	ha, 504.1, 507, 5		Yes X		Ves 🔘)Čle: EDF lo (Email Address);	Misc. Supplies:
vvork Urger Chain of Custody Record		Signature below authorizes work under lerms stated on reverse side.	Request	103)			itrogen (in Vanadiu biate	Silica 8.002						**Title 22 Scan		64432 Primary Inorganics, 64432.1 NO2/NO3, 64449 A&B	Asbestos, Perchlorate, Gross Alpha, 504.1, 507, 508, 515.1	8.1, 549.2	DT Report?	mber:	P Report	y Log Gode. Ear b (in	Mileage:
	Lab No.	orizas work under ten	Analysis Ro		N	l Itrite as	eb A, V, 26 e	Alkalii Chlori Vitratu Sulfat						 *		64432 Primary I	Asbestos, Perch	524.2, 531.1, 548.1, 549.2	CDPH Write On EDT Report?	State System Number:	OA Geotracker EDF Report	Sampling Company Log Code. Global ID:	Travel and Site Time:
Central Valley Laboratory 9090 Unioin Park Wy. #113, Elk Grove, CA 95624 916-686-5190 F) 916-685-5192		Signature below auth	Ar		<u> </u>	K' N⁰	Cr	7.002 8.005 8.815 7.002						_					5		Time	Time Sa	Trane
Central Jutoin Park W 916-686-51			<u> </u>				sy	8.00S 7.00S											911 11/1	Date	Date	Date	Date
Corporate Laboratory 208 Mason Street. Ukiah, CA 95482 707-468-0401 F } 707-468-5267 citentservices©aipha-labs.com	Bay Area Laboratory 6398 Dougherty Road, #35, Dublin, CA 94568 925-828-6226 F) 925-828-6309	Project ID:	Source Chemical	Phase: Esposti Well	PO# 200336	Bill to: month end billing		Soil Mater None Other HIG3 HIG3 HIG3 Jass Jass Jass Jass Jass Jass Jass Jas											Received by	Received by:	Received by:	Received by:	Received by:
9	6398 D i	Ы		£			Sample Collection							2						<u>a</u>			
Lalpha	April Animatical Laboratories inc. www.alpha-labs.com Waters, Sediments, Solids	Name:	Town of Windsor - Drinking Water	Mailing Address: 9291 Old Redwood Highway Building 400	Windsor, CA 95492 Project Contact (Hardcopy or PDF to): Elizabeth Cargay	ecargay@townorwingsor.com Kent.obrien@ghd.com	Field Sampler - Print Name & Signature	Sample Identification	ESW-5-17- /0:00				·		(1) 			11111	Retinquistreed bur	Relipenshert by:	Relinquished by:	Relinquished by:	Relinquisted by:

Provide analysis for each of the compounds listed below:

	CONTRACTOR STORE			Contract and a service	ter Ana	- Toronte and			
	pH	6.67		200000000000000000000000000000000000000	Anions		Metals & R		
	Temperature		٦F	Alkalinity	230	mg/L CaCO ₃	Antimony	<6.0	µg/L Sb
	ORP (EMF)		mV	Bicarbonate	280	mg/L CaCO2	Total Arsenic	56.0	µg/L As
	Conductivity	458,	uS/cm	Carbonate		mg/L CeCO ₃	Reduced As(III)		µg∕L As(i
3	Dissolved Solids			Chloride		mg/L Cl	Copper	<50	աց/Լ Հա
*	T		mg/L TSS	Fluoride	0.37	mg/L F	iron		µg/L Fe
•	Suspended Solids	354.0		Nitrate	<2.0	mg/L NO ₅	Lead	<5.0	Jug/L Pb
Ī		tions	1	Phosphate		Img/L PO.	Manganese	750	ព្រៀវ រក្ស
L	Hardness	120	mg/L CaCO	4 1	87.0	mg/L SiO;	Mercury		µg/L Hg
**	Ammonia	0.30	mg/L NHa	Sulfate	12	mg/1_ SO4	Selenium	<5.0	µg/L Se
	Calcium	22	-	Sulfide	***********************	mg/L S	Uranium		իսեւ Ո
	Magnesium		mg/L Mg			mg/L	Vanadium		կյց/ե.∨
	Sodium		mg/L Na	2.		тg/L			_ug/L

a,

2 8/2

Rad Blains Anchinia and assignt for banin duning antimaten

£

(=HO Job 11110001

FIELD REPORT

DATE: 8/23/2016 LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA PROJECT NAME: Town of Windsor, Esposti Supply Well JOB NO: 11110001.20 EVENT: Spinner Log - Sewer check PRESENT AT SITE: WEATHER/TEMP: 65 ° at am/0:00 ° at om weeks, lent Ofever THE FOLLOWING WAS NOTED: BAN- likets on site suns motalled suction (auno intake 220 Explained to Josh that pasker in Flation J. be 225psi not 275 Samples To be collected 1, 5 60 + End (4 hows) 11:05: Town arrived for Treffic control open S130-S130A Start pump 11:20 start 11:21 Gist sample 15:21 thest 11:26 second sample 12:21 3 sample 11:39- Town closed seme lid a leaves - checked flow at 5130 where Shiloh Rid + Old Redwood Hay seners cross Flow O.K. 11:55: spinne- log Truck arrives-WestCoast 12:25 (Approx) set up spinner 13:20 gol spinser deta print out

Page / of 2

DATE: 5/10/2016 LOCATION: : Esposti Well, Old Redwood Hwy at Shiloh 23/2016 Road, Windsor, CA 8 PROJECT NAME: Town of Windsor, Esposti Supply Well EVENT: Zone Sest - Spinner log Estimation based on Beld interp. 1625 RPM=400500=100% 370 1 screen 38.5% 38.5 Stepm 429 1000 RPM 0% 2 surcer Dun 159 1000 RPM 0% 35 creen 9pm 1000 RPM 479 20% 4 screer 535 675 RPM 41 % 5 SCreen ORAM 575 0% 6 scren 2gpm Screen 1549pm 38.5% l

2 0% 3 0, 4 20% ک Y), <u>69 gpm</u> <u>Ogpr</u> Start Flow meter 06560 0x100 gullows End Flow meter 066620×100 gellins 96000gallons pumped page 2 of 2

Drawdow	n Sheet	Okrien	à	8/23/201	Suggely Well
Measured Well	Owner: John	OBien n of Winn Ti Park	Well I Name	/Site:	Scygoly URH
Pumped Well	Owner: Town of Location:	Windsor	Well I Name	⊂sp0	sti Supply Well
Test Details	Date pumping comm Date pumping cease		Time: Time:		Test No.
Are Measurem	ents below for the pur	nped well?	Distar	nce from pumped	weli (ft): NA
Static DTW	·····	Feet below meas	uring point		
Measuring Poir	1t	Feet above/below	v ground level		
Watch Time	Elapsed Time (min)	Calculated drawdown (ft) (DTW - Static)	Measured DTW (feet) below measuring point	Discharge (gpm) Only if pumped well	Comments or pressure measurements from transducer
11:20			56,50	400	
11:24			103.3	400	
11:34			111.0	400	
11:47			115.75	400	19
12:17			120.30	400	
13:1312	8113		124.50	900	
14:15			127.40	400	
15:18			129.20	400	
					4 hour specific
					caphaste =
					capacite = 5.5 gpm/7
		·			
,					

Vell ID: Swall Well	SE, S Well Information	Ref. datum:	T Well Depth: M	Note Comment: Cohour furbidity sedim		Start at 11:20		clear - slight very Eine salunt	Kelet - very shift fires		no sand		27.7°C NO OCA DISAND	2nd doinin in adar-yes light when	not stalle +12 fo -	ceretan must - 40 chendling ter	-	400 gon plemping to	Scher For & hours	12:20 % 13:21			
	nformation direct from pump	Pump Depth 2 0	No DACKET	Ox-Red Pt. Note (± mV)	+/- 10 mV	-136	26-	-71	- 56	- 44	-20	-41	<i>-</i> ع م	ん-数4	MP+1	-29	-34						
	Sampling Information Sample Method: direct	WQ Meter Type: Flow Cell:	WLevel Meter Type:	TDS Dis.Oxygen		3.59.4	1.0	10.6	342.6	14.5	<i>د</i> .3	17-C	4	752.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N	2.2						
Parameter Record	Isor		len.			523.1 30	499.2 340.	500.1 340.	501.4 34	504.6 344.	5016 345.3	507.8 347-6	کرک	8	517.633	518.4 254	S516.3 35						
Param(Job Information Town of Windsor		11110001	pH (pH units)	+/- 0.2 C	7.29	230	27.33	7.31	7.37	2.31	7.35	7.36	738	アン	7.23	7.34						
alanagrement Enginest ring Presigneet	Ĵoĥ		Kent		Stable When:	25.9	27.7	27.7	27.0	26.6	26.9	26-5	27:7	26.5		26.4	ふじい					- -	
	Client:	Project:	Proj. No.: Sampler:	11me ()	Stat	1231	11:26	1129	14:11	11:49	12:06	12:21	13:15	14:23	14.40	15:07	15:21						

1 of 6

FIELD REPORT

DATE: 8/23/2016	LOCATION: Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA
PROJECT NAME: Town of Windsor, Esposti Well	JOB NO: 11110001.20
EVENT: Sewer Flow Test and Observations	WEATHER/TEMP: ° at am ° at pm
PRESENT AT SITE	
DATE: solimmin 200 12312016	

Time: use 24 hour time record at 15 min intervals or more freq.	Manhole number/description	Observed flow as a % of full pipe	Other observations
1115	5130	10% O com	pump
1122	5130	459, 400,00	20% going ORH
1132	5130	5090 40000	~
		5/	
Jum Start:	1:20		
4			
1013!			
	(7-		
	4		NOR HUY. 1 Die 10
	× 6.5		sh No Flow
			at
	W.Sr.	2	Start
	Li I		
	/3		~~~
			12 , 20%
······································			-1 1.14)
		2	Flow going
		<u> </u>	-sur
		2	N.O.R. Havy

Page___of___

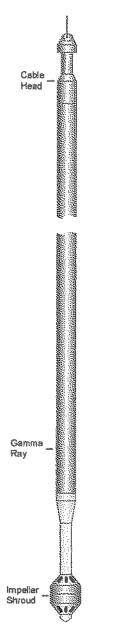
O'Brien, Kent

From:	O'Brien, Kent
Sent:	Wednesday, August 24, 2016 5:50 AM
То:	Elizabeth Cargay (ecargay@townofwindsor.com)
Cc:	Dave Vossler (dave.vossler@ghd.com); ryan.crawford@ghd.com
Subject:	8/23/2016 Esposti Supply Well discharge to sewer volume report

Elizabeth - sewer discharge summary is below:

Non-Residential One-Time Discharge Permit Permit number - TD-04152016 Effective Date - 04/15/2016 Expiration Date- 12/31/2016

Date of discharge – 8/23/2016 Point of discharge – sewer manhole S130A (Shiloh and Old Redwood Hwy) Total gallons discharged – 96,000 gallons


Kent O'Brien PG, CEG

Senior Associate | Hazen and Sawyer 201 Mission Street, Suite 500, San Francisco, CA 94105 628-242-0050 (direct) 707-478-9559 (cell) 628-242-0042 (main) 41828 (VOIP Extension) kobrien@hazenandsawyer.com | hazenandsawyer.com

3

				T			SPIN	NER INTERPI	RETAT	AON		
	P.O.Box 2797, #	Rancho (Cordove CA 95741	Phone: 915	-658-8148	Fax	: 916-858-8174	· Web: www.wowls.c	om Email	: wowis@sbo	globel.net	
f	Filing No.	cc		Weeks	Drillin	g &	Pump Co.	, inc.				
			=	Espoti								
		F	ELD	Windso						·····		
		I ST					COUN	ITY Sonon	~~		· · · · ·	
			CATION:	Gantor	1188			3011011	1.000446.000	HER SEP	VICES:	
		0	d Redwood	Hwy. & St	nilo Rd.				s	itops		
	Job No.	{										
	1425					38.528	49LONG).: <u>122,77953</u>				
'ern	nanent Datu	m:	Ground L Top of Ca	evel				150 Ft.	El	evs.: K.B.		Ft.
						0	Ft. Above	Perm. Datum		D.F.		Ft.
Drilli	ng Measure	d From	Ground L							G.L.	150	Ft.
Date			Aug 23,	2016								
ype	Log		Spini	1er								
lun			On	Ð								
)epth	≻Ori≋er		57!	; Ft			Ft		F۱			Ft
)epti	+Logger		575	5 Ft			Ft		F			Ft
op L	ogged interva	ł	30() Ft			Ft		۴ı			Fl
stm L	ogged Interva	I	57	5 FI			Ft		Ft			Ft
~~~~~	Fluid In Hole		Wat	er								
	d Level		122 p	wi Ft			Ft		F)			Ft
ype												*F
Type Flui	lemp -		n/a	۴ <b>F</b>			۴	·	⁼F			
Type Flui Max 1	Temp ating Rig Time	:	n/a n/a				°F *H¥		۴- Hr			"Hr
Type Filui Aax 1 Opera	ating Rig Time											•Hr
'ype Flui Aax 1 Dpers (an N	ating Rig Time		n/a	RC				- 				•Hr
ype Flui Max 1 Dpers /an N Recol	ating Rig Time		n/a WC-1	RC RC								•Hr
Type Flui Max T Opera /an N Recor Vitne	ating Rig Time toLocat rded By	ion	n/a WC-1 Sharp	RC RC ess ore				CASING F	١H°			°Hr
Type Fiui Max T Dpers Aan N Recor Vitne RUN	ating Rig Time toLocat rded By	BO	n/a WC-1 Sharp J. Mo	RC RC ess ore		CA			°Hr Record	OM	ŤO	•Hr
Filia Filia Max 1 Opera /an N Recor	ating Rig Time toLocat rded By rssad By	BO	n/z WC-1 J. Mo REHOLE RECO FROM	RC RC less ore DRD		CA	* 4;	CASING F	*Hr RECORD FR(		TO 656	•Hr
Type Fisi Max 1 Dpers Aan N Recor Witne RUN NO.	ating Rig Time toLocat rded By rssad By	BO	n/z WC-1 J. Mo REHOLE RECO FROM	RC RC less ore DRD TC	) 	CA	"Hr SING SIZE	CASING F	*Hr RECORD FR(	DM		

# SPINNER INTERPRETATAION TOOL

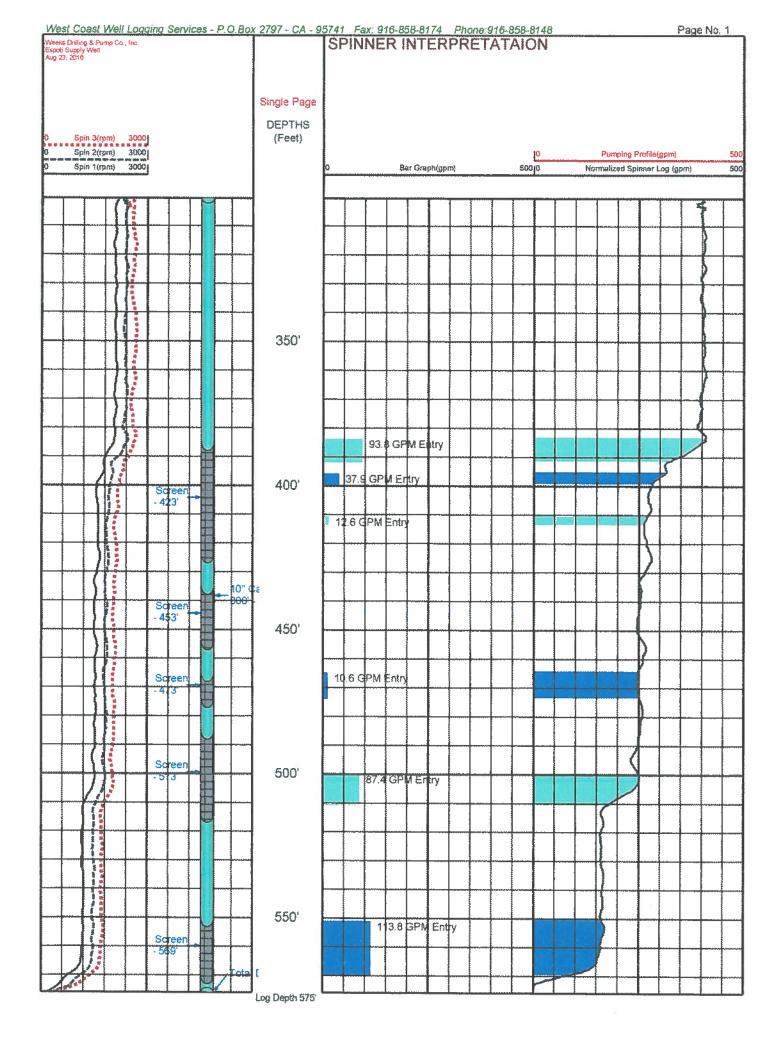


### SPINNER LOGS:

Spinner logs are used to quantify flow (up or down) in a water well. In a producing water well, the spinner log is usually run downwards at a constant speed. Deflections in the curve are indicative of water entry. Proper calibrations, eliminating the effective of line speed, will quantify the flow rate from zones of interest.

SPINNER SPE	ECIFICATIONS:
Diameter	1.77, 2.76, or 3.94 Inches
Length	5.5 Fest
Weight	16.1 Lbs.
Max. Temp	158° F
Gamma Ray	1.97 inches long x .98 inches diameter
	Scintillation crystal

### NOTICE


All interpretations are opinions based on inferences from electrical and other measurements and we do not guarantee the accuracy or correctness of any verbal or written interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by one of our officers, agents or employees. These interpretations are also subject to our General Terms and Conditions as set out in our current Price Schedule.

### REMARKS

A recreational GPS accurate to +/- 45 feet set for Datum WGS84 was used to calculate

Latitude, Longitude, and Elevation values.

Bottom of well blocked by debris



1

Corporate Laboratory 208 Mason Street Likleb, CA 95482

Central Valley Laboratory

# Work Order

.....

alpha Anta Anadorenti Anano Inde	ວບອັກແລນຕ່ວນເອຍປຸ່ມກາຍທີ່ບໍ່ບານ ອວາຍ. 707-468-0401 F) 707-468-5267 ເຊີຍກາຊາອາກ່ເວຍເໜືອໄຊກາລ-ໄສປຣ. ເວເກ	9090 Unioin Park WY, #113, Elk Grove, CA 95624 916-686-5190 F) 916-686-5192	5192 Chain of Custody Record	cord
www.aipha-iabs.com Wares. Scomerrs. Sound	Bay Area Laboratory 6398 Dougherty Road, #35, Dublin, CA 94568		t ab No.	of
es moral and an fair is a long to a same of devices in the same	925-828-6226 F} 925-826-6309			
Namo:	Project ID:	Signature below	Signature below authorizes work under terms stated on reverse side.	
FOWN OF WINDSOF - LITINKING WATER	Source Chemical		Analysis Request	TAT
Malikng Addross: 9291 Old Redwood Highway Buikding 400 Wiseleer P.A. 954822	Phase: Esposti Well			24 hr
Project Contact (Hardcopy or PDF to): Elizabeth Cargay	#Od			) <del>ä</del> () i
Kobrieva Aataranderungerine Bill to:	Contractions and hilling			numeral Required
1 mill siler llecours				ž()
Flord Sampler - Print Name & Signaturo		93		2 wk
Sample Identification	Averate Netter Netter Poly Classs Active Classs Classs Classs Classs Classs Classs Classs Classs Classs Classs Classs	200.7 200.7 200.7		(standard)
Eaposti Well-		× ×		
-23-11:21	11:4 X	x x x		8
2	x 1/: K x			Standard
12:21 8		א א		->
22-13:21 0 8	Les Mest x X X			48 hr.
-8-23-15:21)	12:51 I			
				- Miring and a second se
				****************************
Relinquistboot by	Received by	Date	CDPH Write On EDT Report? Yes	No (X
Relinquished by:	Received by	Date	State System Number:	
Relinquished by:	Received by:	Date Time	CA Geotracker EDF Report Yes	No &
Relinquished by:	Received by:	Date Time	Sampling Company Log Code:	
Constitutions of a located data to	Descripted hut	Date: Time	the Time Milane	
Soundarian up.	יאפרמנאנת הא	•••••	· m#emoral	

הכיין הספניביש עם בבי סי קצביחא ביני רטעה הכיר ליא בי ציי שי שני ייקצעי רטעה צבי ק נבצחו לי לי:

N.

rtaug nog benjupeg (svorgqA daj



# FIELD REPORT DATE: 8/24/10 LOCATION: WINDSOR ESPO-JTI PARK PROJECT NAME: ESPOSITI PILOT TEST JOB NO: 11110007.20 WEATHER/TEMP: 55 ° at am EVENT: ZOME TESTING (PACKOR) PRESENT AT SITE: RC MATT/ WEEKS THE FOLLOWING WAS NOTED: 1530 - RC ONSITE, WEEKS ASSEMBLED PICKER. INSPECT/MEASER AND REVIEW PLACEMENT ASSUMPTIONS Such THAT THE PACKOR SITS WATCH AT 428 Broc. V 1645 - RC OFFSITE PUMP/PIPE RC ONSIDE TO REVIEW PACKER, 0730 -DISCHARGE ASSEMBLY. LOOKS GOOD, WEEKS NEEDS 6 MORE PIPES TO PUMP, THEN TRANSDUCER DTW METER PVC TUBES INSTALL. 930 - RE OFFSITE 1505 - RC ONSITE, 15:15 DTW = 57.3, PREP FOR TEST-RUN (45 MIN) @ 400

Page | of Z

LOCATION: DATE: 8/25/16 WINDSOR, ESPONTI her PROJECT NAME: ESPOSTI PILOTTEST EVENT: TONE TEST 1 45 Min TEST RUN ON/OFF TIME DTW 57.3 1525 oN 1526 104.3 1531 19.5 1536 124.0 1541 129.8 Conv. (us) pH TEMP (C.) 1556 (32.0 1605 133.8 7.10 517 27.1 271 1610 134.7 518 7.30 OFF TOTAL DEMONN = 134.7-57.3 = 77.4" 45 MIN @ 400 6PM SPECIFIC GPACITY = 400 6PM = 5.2GPm/ft 1615 - DISCHARDE PUPE/SEWER LOOK GOOD, PIN HILE LEAK @ PIPE NETE CORNER OF GHILDH & REDUCED HWY -> NO STORMUTTER DISCHARGE V 1630 - Chi KOB, SUTEDULE TARE FOR OFOD START TIME

Page Zof 2



#### **FIELD REPORT**

DATE: LOCATION: Esposti Well, Old Redwood Hwy at Shiloh 8/26/16 Road, Windsor, CA PROJECT NAME: Town of Windsor, Esposti Supply Well JOB NO: 11110001.20 EVENT: ZOME TENT WEATHER/TEMP: 55 ° at am OVER CLASS 75° at pm SUNAT BREETY PRESENT AT SITE: WEEKS THE FOLLOWING WAS NOTED: 0630 - RC/MATT ONSITE. SITE SAFETY MEETING SET UP PAPERUCRU, SAMUE BOTTLES, CALIBRATE MULTIMETER. V 0715 - START 400 6PM "1" TEST" SAMPLE @ 0716, 0720, 0815 0945 - RC OFFENTE RE ONSIDE COLLECT SAMPLE @ 1115. 110 Re OFFSITE 1120 RE ONGITE, GET LABERS/ SAMPLES PREPAREDS 1430 -CHECK SEWER OK V COULE SAMPLES @ 1515. TOTAL DRAWDOWN = 153.5 (DTW GTUD D. AUBUR - 1511 - 57.5 STUP PUMPING @ 1516 96 GHOUGPM AFDE 4 Hours = 400/96 = 4.26PM/POOT Page / of /

DATE: 5410/2016 8/26/16 LOCATION: : Esposti Well, Old Redwood Hwy at Shiloh Road, Windsor, CA PROJECT NAME: Town of Windsor, Esposti Supply Well EVENT: TONE TEST 1530 - BEBIN HOSE/EQUIP BREAKDOWN, FINAL SEWER/STORM DRAIN CHECK GOOD V - GITE CLEAN - MATT TO COLLECT RECEVERY DTU WHILE HE WRIPS UP AND CLOSES DOWN SITE. 1615 - RC OFFGITE Page 2 of 2

# **PUMPING WELL**

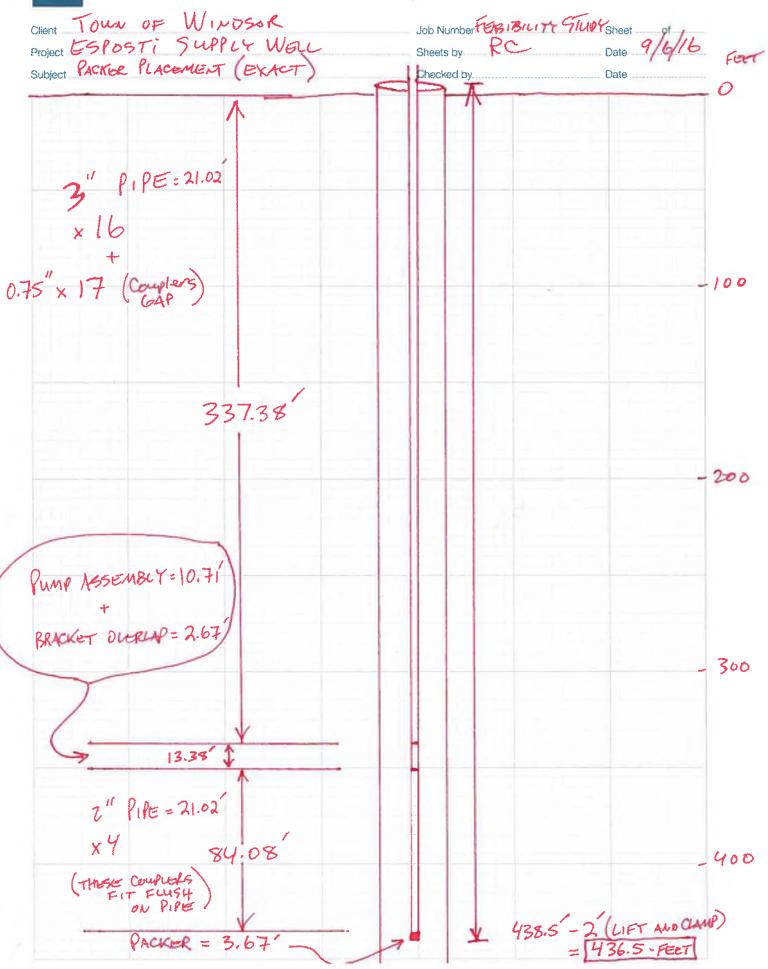
Drawdow	n Sheet					
Measured Well	Owner: Will Location: 590	NDROR FITI PARK		D: <u>[55</u> ] 9/Site:	3W	
Pumped Well	Owner: Town of Location:	Windsor	Well Name	D: Espo	sti Supply Well	
Test Details	Date pumping comm Date pumping cease		Time: Time:		Test No.	
Are Measurem	ents below for the put	mped well?	Dista	nce from pumped	well (ft):	1
Static DTW	57.55	Feet below meas		-		7
Measuring Poir	nt. TDC-	Feet above/belov				
Watch Time	Elapsed Time (min)	Calculated drawdown (ft) (DTW - Static)	Measured DTW (feet) below measuring point	Discharge (gpm) Only if pumped well	Comments or pressure measurements from transducer	merors
0715	0		57.55	,	Puny on	66846
0716	(		105.80	400		
0720	4)		123	400		
0725	5		127.90	400		-
0745	20		136.09	400		
0800	15		138-25	400		
0900	63		143.20	400		
1000	60		146.25	HDD		-
1100	60.		149	480 `	11115 Spropez	
1200	60		150.45	400		-
1300	60		151.65	2100		
1400	6D		152.60	4100		
1515	75		153.50	400		-
1615	60		73'		Pump in=	MENER
					Pump OFF RECOVERY	68957
			······································		,	

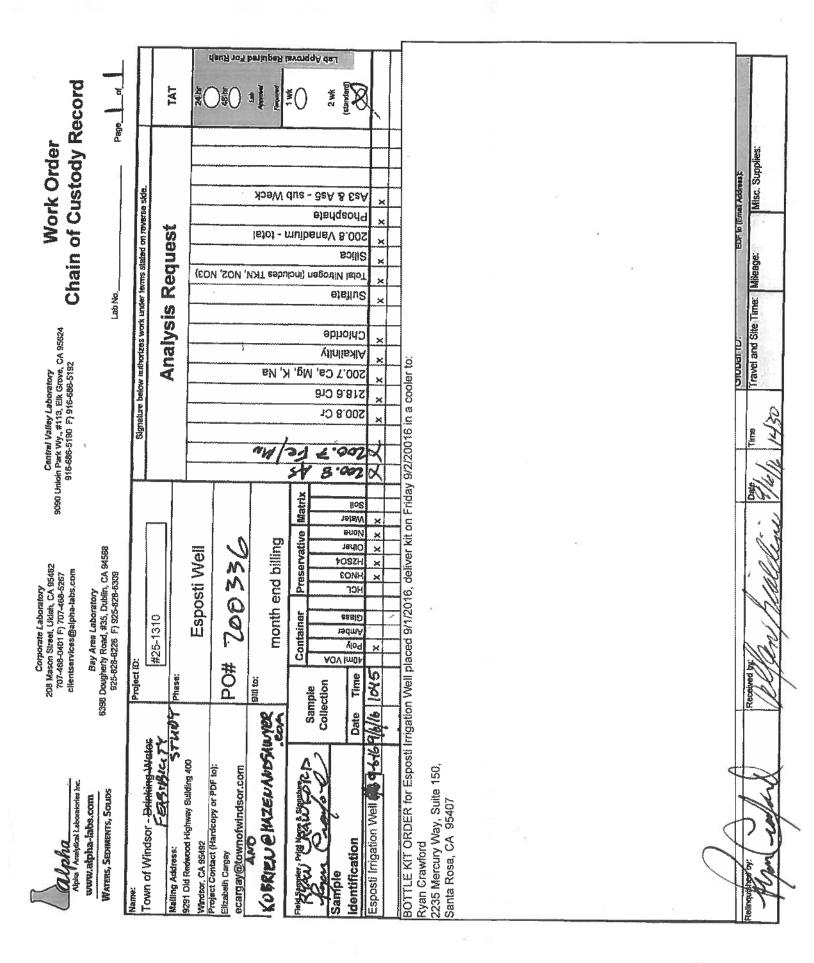
	ANADEMT NT ENGINER LING	Parame	Parameter Record	ord			A	192/5	lb lb	Well ID: ESW	
Client:	Job In T	Job Information Town of Windsor	202	San	Sample Method:	Sampling Information Method: direct from pump	a brund u	swL: S	<b>u</b> 25,1	Well Information Check:	
Project:	SPON	SPORTI GUNLY W	Wer	Flow Cell:	Meter Type:	Pump Depth: 428	128	Date: 17/2 Ref.datum:	Date: 3/24/14	Time: 07/.0 Stick Up:	
Proj. No.: Samnlar	1	11110001 MATT		WLeve	WLevel Meter Type:			Well Depth:	Depth: Mr. ft	ŧ G	, , ,
Time	Temp		Elec.Cond	TDS	Dis.Orvgen	Ox-Red Pt	Nofe	Note	11		
()	(°C)	(pH units)	()	()	()	(± mV)			Colour, turbidity	Colour, turbidity, sediment load, sheen, odour	
Stabl	Stable When:	+/- 0.2 C	+/- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV					
9140	24.9	7.52	543	925		1651			Kump	ON @ 715mg	Oloosin r
0720	26.4	7.30	\$23	358		-66			Ś		
0725	26.4	7.33	522	728		-43					
0730	261	7.31	520	356		ts-					
0745	76.7	7.30	521	652		-54					
0800	26.6	7.29	524	358		-49		14 C	SUBIT	Sucture ODOR	
0530	25.5	7:33	523	779		-41					
0900	26.0	7.34	525	360		123			SCIEHT	SULAR OPOR	
0930	20.3	7.37	525	360		5			,		
1000	25.6	7.34	525	359		-17	-				
1050	25.7	7.32	517	359	1	- 2					
1100	26.2	7.33	525	359							
1130	26.4	7.33	523	359		1 30.00					
1200	26.4	7-34	525	359		-24					
1230	26.4	7.52	5.25	359		- 16					
1300	26.3	7.27	529	362		-5-					
1330	26.6	7.31	525	300		- 21					
1400	26.6	7.33	503	360		9					
1430	26.5	7.33	526	360		-23					
1500	26.5	7-35	525	559		123		:			
1515	26-5	7.37	525	360		-33			STOP	Mump	

1 of 6

1826 610 2375

.


Record	Page of		TAT	24 hr	afen∄ voi	Lats Approvent Required	rbbiorel Ž	2 ≪k (standard) (standard)	×,							X	No No		No X	1		
Central Valley Laboratory 9090 Unioin Park Wy., #13, Elk Grove, CA 95524 916-588-5190 F) 916-886-5192 Chain of Custody Record	Lat No.	Signature below authorizes work under terms stated on reverse side.	Analvsis Request			des TKN, - total	Mg, K an (indu adium	6, <b>6, 7</b> 8, 6 Cr6 0, 7 Ca, silinity loride loride	× 500 × 500				XXXXXX XXXXXX				13/1P DP.20 COLUMNIE ON EDI KEDON	) 1 1 + CD State System Number:	CA Geotracker EDF Report Yes	Company Log Co	Time Travel and Site Time: Mileage: Misc. Supplies:	
9090 Unioin 916		F					Matrix	10.8 8.00	ios	X						Oate	20	P/3	Date	Date	Date	
Corporate Laboratory 208 Mascon Sireel, Uklah, CA 95482 707-468-0401 F) 707-468-5267 ctlentservices@alpha-labs.com	Bay Area Laboratory 6398 Dougherty Road, #35, Dublin, CA 94568 925-828-6309	Project (D:	Source Chemical	Phase: Esposti Well	PO# 706331	Bill to: month end billing	Sample Container Preservative	13 204 03 122 122 122 122 122 122 122 122 122 12	X Po Afr Afr Afr Afr Afr Afr Afr Afr Afr Afr	716		-	ISTS N NXXXX			Received by:		Received by:	Received by:	Received by:	Received by:	
Ralpha Applies Analytical Leboratories inc.	www.alpha-labs.com Waters, Sepiments, Souips	Name:	1 OWN OF WINDSOF - DENKING Water	10450119 Address: 9291 Old Redwood Highway Building 400 Witcher Co. 65462	Project Contact (Hardcopy or PDF to): Elizabeth Cargay or correction	KUBRIEN CHZEN MOSAWYER	A A A A A A A A A A A A A A A A A A A	- Contraction	Esposti Well	1-8-26-7	-	0.00	8-36- 18:15 V			Relinquigned by:	my reifer 1			Reitriquished by:	Relinquished by:	




## **FIELD REPORT**

DATE: LOCATION: ESPOST, PARIC WINDSOK PROJECT NAME ESPOSTI WELL WEEKS SEBRETOPOL JOB NO: WEATHER/TEMP: 70° at am EVENT: RRIGHTON WELL SAMPLING ___° at pm PRESENT AT SITE: MERGERENTS THE FOLLOWING WAS NOTED: at PARK RC ONSITE, BEGIN PREMELING 1000 SAMPLE PORT COMPONENTS AND PREPARE FIELD ARSEMC TEST (AS & COMP. TO THE ARSENC ANALYTICAL BRETT (WINDSOR) ONSITE, OPEN IRRIGATION 1035 WELL ENCLOSURE, ISOLATE SAMPLE PORT PULLO WITH VALVES AT PRESSURE TALK AND OUT TO SYGTEM WATTLE SAMPLE PORT. V SAMPLE FOR ANALYTICAL AND RUN A FICLD -1045 TEST ARSENIC = 10-13 ug/L RC OFFSITE -1130 RC ONSITE @ WEEKS. MEET W/ JUSH AND -1300 60 OVER YARD AND MENSURE ALL ZONE TEST PIPING, PUND ASSEMBLY, PREKER, BRICKET COMPLERS Page of / RC OFFSITE 1415



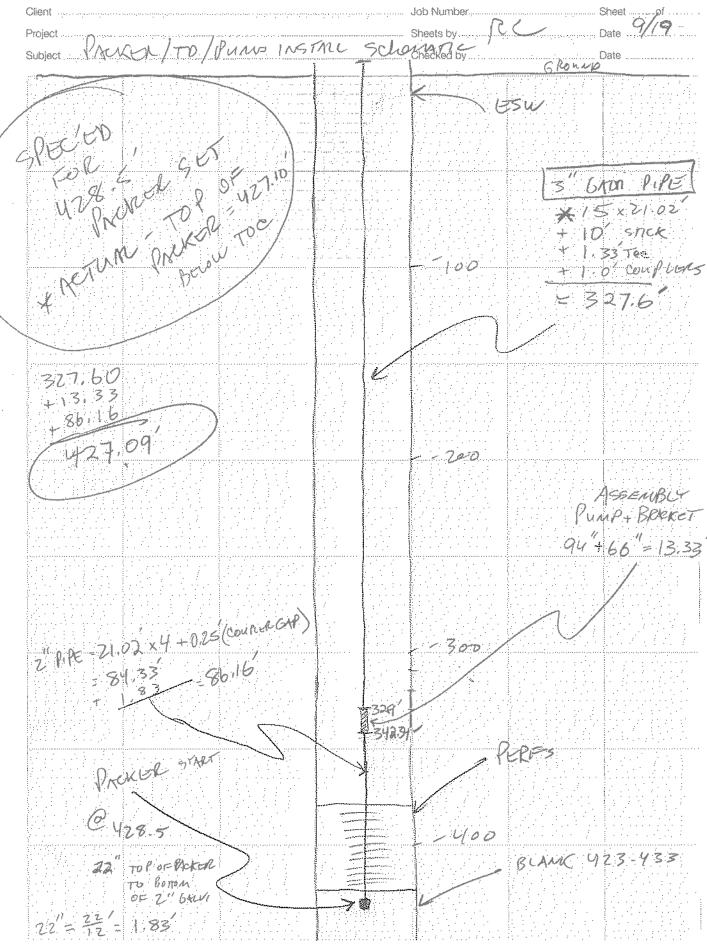




.

LOCATION: ESPOSTI PARK, WINDEOR DATE: PROJECT NAME: 16 EVENT: H. DEF CHMERT VIDED ESN RC ONSITE - WHERS/WEST CONTLOSOM -1258 DUSIDE ALRENDY SCOPE TO SEE 400-460' SET CIMERA -> START DTW = 57 5 (TOC - 1310 383 SURVER/BLANK SOINT GOOD GOOD NOTE. ~ 1070-3070 FINEIN TOROUS 400 403' SREEN /BITAK WELD GOOD 403-4241 SARVEN GOOD 4241 - SREEN/BLACK WELD GOOD 424,1 - 434.5 BLANK GOUD 00 434.5 BLANK/SREEN GOOD REAVIEW 434.5 - 454 SURVEN 6000. JUST PAST 438 SOME +438,8  $\wedge$ MATERIALS IN UBMG? DUNE * 454 - SORTER/BLANK WELD GOOD Rock in) 454 - 460+ 600D SURDEN MAKE CD COPIES, PRINT RAT PICS BETTER / ATTER V -2 COPIES COD 2, RPT, RC TO BURN FOR KOIS/CITY. -1440 Re OFFGITE - 1335




#### **FIELD REPORT**

LOCATION: Esposti Well, Old Redwood Hwy at Shiloh DATE: 9/19 - 9/21/2016 Road, Windsor, CA PROJECT NAME: Town of Windsor, Esposti Supply Well JOB NO: 11110001.20 EVENT: PREP. AND ZUNE TEST WEATHER/TEMP: 55-75 ° at am 75-100 ° at pm PRESENT AT SITE: RC / WEEKS (OTTO 3. MATT THE FOLLOWING WAS NOTED: - 9/19 10:10 - RC ONSITE, CALL WINDSOR (EZ) TO GET INTO ELCLOSURE (EIW) FOR BAROMETRIC TRANSDUCER ETC. EC TO BE ONGITE @ 15.00. 1030 - WEEKS ONSITE, GET-UP, UNLOWD, FEICING L 1100 - START ASSEMBLING PICKER ? PUMP ASSEMBLY ALL THE WAY DOWN (SEE SCHEMITIC 3 PICS 1455 - STOPPING POINT FOR DOWNHOLE EQUIP INSTALL. YLL KUB REGARDING START-UP ZONE TEST FOR WEDS NOI THES. V GOOD. WEBKS OFFRITE FOR GENERATOR, NITRO TANK (PACKER) ETC. 1500 - EC ONSITE TO OPEN EIN EL CLOSURE PROPOFF BAROMETER, DATA DUMP/STUC TRANSDUCER THATS IN EIN V -1550 RC OFFSITE Page of

DATE: 5/10/2016 LOCATION: : Esposti Well, Old Redwood Hwy at Shiloh 9/19 - 9/21 Road, Windsor, CA PROJECT NAME. Town of Windsor, Esposti Supply Well EVENT: SEPT. ZONE TEST (R2 9/10/2016 -1100 - RC/WEEKS OUSITE - FINISH 3" PIPE INSTALL INSTAL FLEXI PIPE OUT TO SEWER (SHIGH/RED. HUY - INGTAL TRANSDUCER IN SOUND TUBE @ 240 = 1 (TO) - ESW STATIC DTW = S8.5'TOC PRE-TEST @ 1237 @ 400 6PM - RUN FLOW (Q, 6PM) DTW (TOC TIME (MIN) 58.5 1237 0 0 400 -> RAPIP PROP TO 390 WITH 5 203 1242 VILLE WIDE OPN 375 MAX! 10 1247 208 15 375 -> Mu KOB DISCUSS 206 1252 + CHANDE ZONE TEST TO ZOUGEN 797.5 1257 20 WEEKS OFFSITE RC 1345 -9/21/16 0630 - RC/WEEKS ONSITE CHIBRITE METER IO. IV SET-UP GAMPLE BOTTLE SET 0700 - 9TART TEST, WILLEET 0701, 0705, 0800 SAMPLES 3 INDICTION PARAMETERS MANUEL DTW (WEEKS SAMPLE 100 1400 - GOT-UP FIELD AS TEST & FINTL SAMPLES @ 1500. FIELD AS = 13ppb Page 2 of 2 1540 - CLEAN - WP RC/WEEKS OFFSIDE



WHEKS	wer-G	l	Ð	C
Cent	18			



9/21/16 Well ID: 55W

## Parameter Record

	N7405N4NF	rataing	ster Reco	лu						Well ID:	
Glient:		nformation 'own of Wind	sor	Sar	Sampling note Method:	Information direct fre	om pump	SWL	58.4 ft	nformation Check:	
Project:	••••••			wo	t Meter Type:			1	*****	Time:	
				Flow Cell:		Pump Depth:	m	Ref.datum:		Stick Up:	
Proj. No.:	L	11110001		WLeve	Meter Type:			Well Depth:	ft	Well Diam.;	ft
Sampler:	*********							1	From: ft	To: ft	
Time	Temp	рМ	Elec.Cond	TDS	Dis.Oxygen	Ox-Red Pt.	Note	Note	Comment:		
() Statu	(°C)	{pH units}	+/- 0.05 pH	() +/- 3%	(	{± mV} +/- 10 mV			Colour, turbidity, sea	fiment load, sheen, odour	
701	251	7.39	515	353		96		300 GPM	TURBIN	(SCIGHTLY	· \
705	260	7,27	5/3	352		-69	·	777 0111	CLEAR	<u>() () () () () () () () () () () () () (</u>	,
710	26.2	7.33	506	347		-65			C	· · · · · · · · · · · · · · · · · · ·	
715	26.7	7.34	509	349		-63			Ŝ		
730	23.2	7.30	494	342		-33			5	····	
745	24.3	7.25	510	351	~	-25	MISSED	745 RC	- ~	· · · · · · · · · · ·	
800	+	+	4	₹.		ł					
830	252	7.28	526	358		- 29				2	
900	25.7	7,17	525	360		- 27					
930	25.2	7.30	526	361		- 30					
1000		7.31	525	360		-35					
	25.5	7.33	527	362		- 38					
	26	7.26	528	342		-38					
1130.	25.7	7.52	529	302		-35				·····	10
1200	26.	7.31	525	359		- 46		ļ			
1230		7.41	527	359		-29	ļ	ļ			
100	26.2	7.33	530	364		-21		Į			
130	26.3	7.28	533	364		- 33					
200	2009	7.30	533	366		-38					
250	25-9	7.29	531	364		- 38					
>00			533			-38					
	L						L	l			

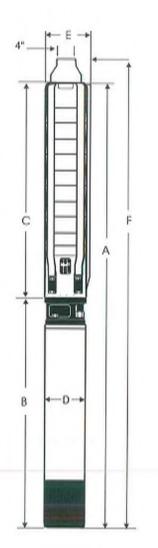
1 of 6

# **PUMPING WELL**

# **Drawdown Sheet**



MANAGEMENI Enginisering Environmeni

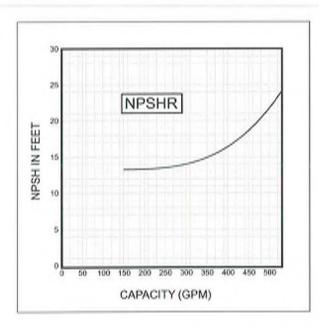

Measured Well		J DF WINDSO STI PARK		ID:		
Pumped Well	A	f Windsor	Well	ID: Espo e/Site:	osti Supply Well	
Test Details	Date pumping comr Date pumping cease		70 Time Time	: D7DD :	Test No.	
Are Measurem	ents below for the pu	mped well?	Dista	nce from pumped	l well (ft):	1
Static DTW		Feet below meas				]
Measuring Poir	nt TOC	Feet above/below	v ground level			
Watch Time	Elapsed Time (min)	Calculated drawdown (ft) (DTW - Static)	Measured DTW (feet) below measuring point	Discharge (gpm) Only if pumped well	Comments or pressure measurements from transducer	
0700	8		58.40	300	PUMP START - METER	6905
0705	5		152	300	· · · · · · · · · · · · · · · · · · ·	
0710	5		158.65	300		
0715	5		162-45	300		
0725	10		165.60	300		
0735	10		167-25	300		
0745	18		169-90	300		
0800	15		171.75	300		
0900	<u> </u>		177.10	Søø		
1000	1		177.80	300		
1100	1		178.40	300		
1200	1	4	180-50	300		
13.00	}		178.70	300		
INDO	1		179.65	300		
1500	}		180-60	300		
1510	-			500	Ruf Stop-metter-70	71,2
1515	10		91.25		Reament	
7538	15		73.45		~	
1600	30		69.20		<u>.</u>	
1615	15		67.80	and the second s	N 3 of 6	

Appendix I – Equipment Technical Information and Photographic Documentation

### DIMENSIONS AND WEIGHTS

		1000	MOTOR	DISCH.		DIM	IENSION:	S IN INCH	IES		APPROX
MODEL NO.	FIG.	HP	SIZE	SIZE	A	B	C	D	E	F	SHIP WT
385875-1	Α	7.5	6"	4" NPT	48.3	24.0	24.3	6.4	7.0	53.1	148
385S100-2BA	Α	10	6"	4" NPT	54.8	25.4	29.4	5.4	7.0	59.6	178
3858150-2	۸	15	6*	4" NPT	57.4	28.0	29.4	5,4	7.0	62.2	192
3855200-3A	Α	20	6"	4" NPT	65.0	30.6	34.4	5.4	7.0	69.8	223
3858250-3	۸	25	6*	4" NPT	67.5	33.1	34.4	5.4	7.0	72.3	210
385S250-4B	Α	25	6*	4" NPT	72.6	33.1	39.5	5.4	7.0	77.4	210
3855 300-4	Α	30	6*	4" NPT	76.2	35.7	39.5	5.4	7.0	80.0	243
3858300-5BB	A	30	6*	4" NPT	80.2	35.7	44.5	5.4	7.0	85.0	252
3855400-5*	A	40	6*	4" NPT	85.3	40.8	44.5	5.4	7.0	90.1	276
385S400-6B	A	40	6*	4" NPT	90.4	40.8	49.6	6.4	7.0	95.2	285
3853500+6*	Λ	50	61	4" NPT	107.4	57.8	49.6	5.4	7,0	112.2	285
3855500-7A	A	50	6"	4" NPT	113.0	57.8	55.2	5.4	7.0	117.8	450
3855600-7*	Α	60	6"	4" NPT	119.0	63.8	55.2	5.4	7.0	123.8	450
3858600-8*	٨	60	6"	4" NPT	124.0	63.8	60.2	5.4	7.0	128.8	459
3855750-9	Α	75	8"	4" NPT	112.7	47.4	65.3	7.6	7.7	117.6	577
3858750-10	Α	75	8"	4" NPT	117.7	47.4	70.3	7.6	7.7	122.6	586
38551000-11	Α	100	8"	4" NPT	130.3	54.91	75.4	7.6	7.7	135.1	672
3855 1000-12	Α	100	8"	4" NPT	135.3	54.91	80.4	7.6	7.7	140.1	701
38581000-13	Α	100	8"	4" NPT	140.3	54.91	85.4	7.6	7.7	145.1	709
Pipe Adapter	A	H-GHINIG	and the second	(or all probably	R. Steamers	TYLE 2 STA	CONTRACTOR	Series and Series	SUN YUT	4.0	and the letter by

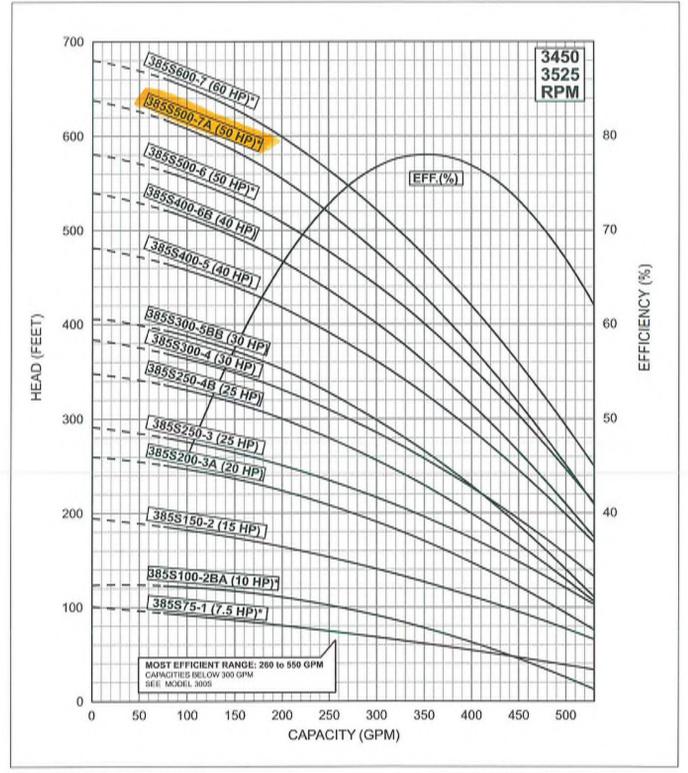
NOTES: All models suitable for use in 8" wells, unless otherwise noted. Weights include pump end with motor in lbs. "Alternate motor sizes available. All models come with a standard 5"-4" Pipe Adapter. Refer to chart for dimensions.




1

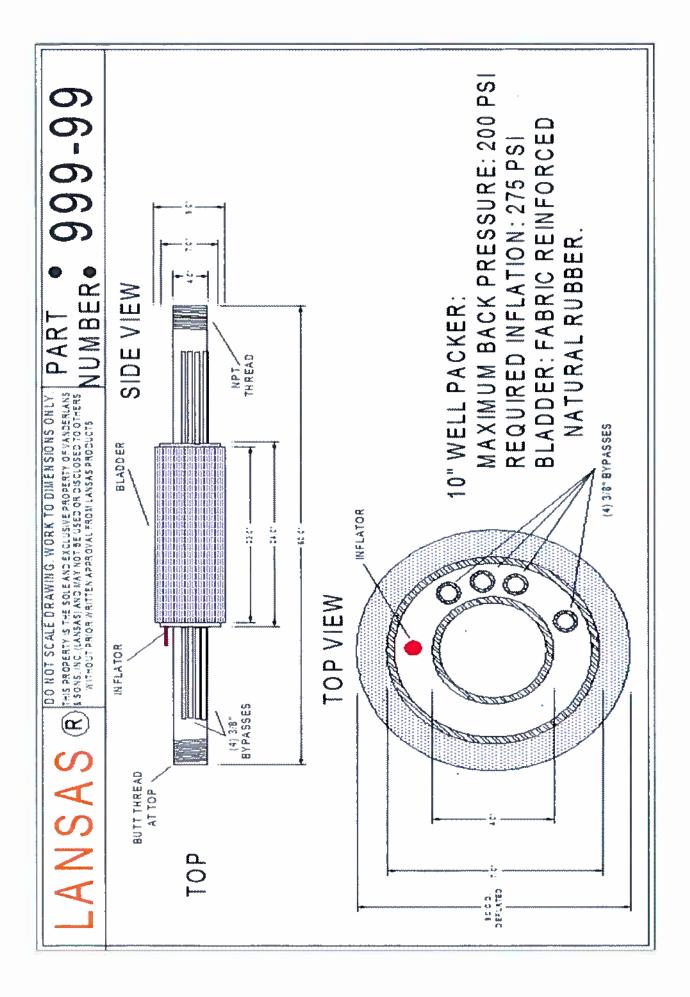
COMPONENT	CYLINDRICAL SHAFT (1-13 Stgs.)
Valve Housing	304 Stainless Steel
Check Valve	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel
Split Cone Nut	304 Stainless Steel
Split Cone	304 Stainless Steel
Impeller	304 Stainless Steel
Suction Interconnector	304 Stainless Steel
Inlet Screen	304 Stainless Steel
Straps	304 Stainless Steel
Cable Guard	304 Stainless Steel
Coupling	316/329 Stainless Steel
Pump Shaft	431 Stainless Steel
Intermediate Bearings	NBR
Impeller Seal Ring	NBR/PPS
Lower Bearing	NBR/316 Stainless Steel
Upthrust Washer	Carbon/Graphite HY22
Upthrust stop ring	304 S.S./Tungsten Carbide
O-Ring	NBR
Valve Seat	304 Stainless Steel
Lower Valve Seat Retainer	316 Stainless Steel
Upper Valve Seat Retainer	304 Stainless Steel
Valve Guide	304 Stainless Steel
Valve Cup Spring	304 Stainless Steel

## MATERIALS OF CONSTRUCTION

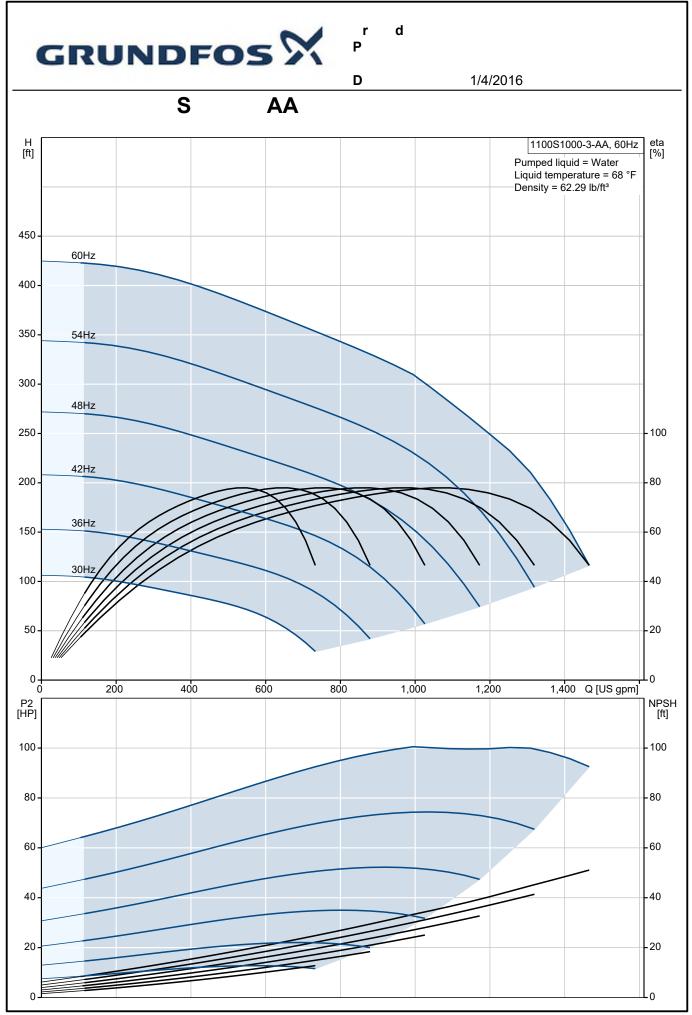

NOTES: Specifications are subject to change without notice.



FLOW RANGE: 75 - 550 GPM


**OUTLET SIZE: 4" NPT** 

NOMINAL DIA. 8"




SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. 6" MOTOR STANDARD, 7.5-60 HP/3450 RPM. 8" MOTOR STANDARD,75-100 HP/3525 RPM. * Alternate motor sizes available. Performance conforms to ISO 9906. 1999 (E) Annex A Minimum submergance is 8 feet.

GRUNDFOS X



ICUNE	FOSX	Ρ
		<b>D</b> 1/4/2016
Dr		
1 <b>S</b>	AA	
Multi-stag groundwa pump is su liquids with The pump DIN WNu horizontal	Pr d o.: 18BG00B3 e submersible pump for raw wate ter lowering and pressure boostin uitable for pumping clean, thin, n hout solid particles or fibers. is made entirely of Stainless ster : EN 1.4301 and suitable for and vertical installation. is fitted with a built-in non-return	ing. The non-agressive eel
L d Pumped li Maximum Liquid tem Density:	liquid temperature: 104 °F	ft³
<b>T</b> Speed for Rated flow Rated hea Curve tole	id: 2772 ft	gpm
<b>M r</b> Pump: Impeller:	Stainless EN 1.430 AISI AST Stainless EN 1.430 AISI 304	01 FM 304 s steel 01
l Pump outl Motor diar		
E r Rated pov Power (P2	<b>d</b> ver - P2: 100 HP ?) required by pump: 100 HP	
r ErP status Net weigh Gross wei Shipping v	t: 138 lb ght: 198 lb	ndalone/Prod.



Printed from Grundfos Product Center [2015.08.034]

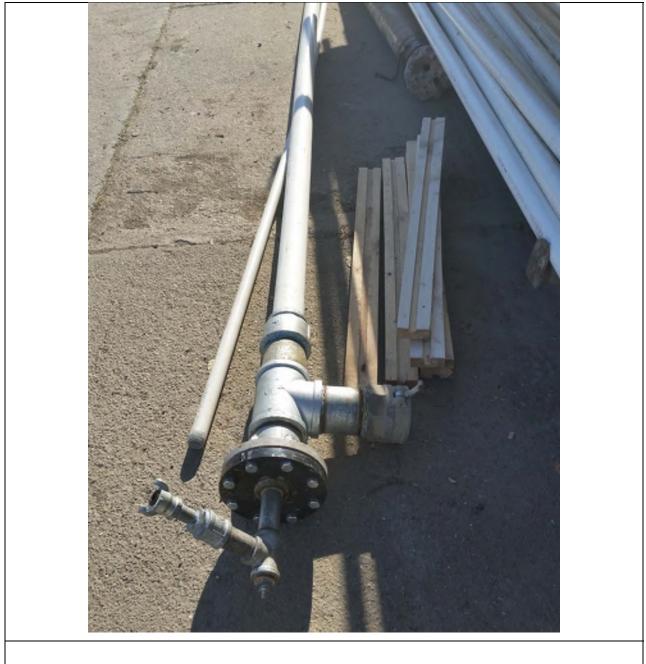


Baker tanks staged along Old Redwood Hwy used for settling of silt prior to filtration through bag filters.



Video service at Esposti Supply Well prior to well development.




Baker tanks staged along Old Redwood Hwy.



Bag filters used for sediment removal prior to discharge of water to sanitary sewer.



Configuration of well head during pumping tests.



Head assembly for dual swab development tool.



Dual swap development tool.

# Appendix J – Analytical Reports





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

26 April 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Potable Well Work Order: 16D1995

Enclosed are the results of analyses for samples received by the laboratory on 04/22/16 16:43. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette Popli

Jeanette L. Poplin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/26/16 15:39

#### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESW-4-20-08:23	16D1995-01	Water	04/20/16 08:23	04/22/16 16:43

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100		ect Manager: Eliz Project: Esp ject Number: [noi	osti Pota	0,				Reported: 16 15:39
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-4-20-08:23 (16D1995-01)		Sample Type:	Water		Sample	d: 04/20/16 08:23		
Metals (Dissolved) by EPA 200 Series Methods								FILT
Iron, dissolved	ND mg/L	0.10	1	AD63610	04/25/16 08:01	04/26/16 11:06	EPA 200.7	
Manganese, dissolved	1.0 mg/L	0.020	1	AD63610	04/25/16 08:01	04/26/16 11:06	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS								FILT
Arsenic, dissolved	4.4 ug/L	0.40	1	AD63608	04/25/16 07:54	04/26/16 12:34	EPA 200.8	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/26/16 15:39

#### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AD63610 - EPA 200 Series										
Blank (AD63610-BLK1)				Prepared &	Analyzed:	04/26/16				
Iron, dissolved	ND	0.10	mg/L							
Manganese, dissolved	ND	0.020	mg/L							
LCS (AD63610-BS1)		Prepared & Analyzed: 04/26/16								
Iron, dissolved	2.21	0.10	mg/L	2.00		111	85-115			
Manganese, dissolved	0.219	0.020	mg/L	0.200		110	85-115			
Duplicate (AD63610-DUP1)	Sou	Source: 16D1995-01			Analyzed:	04/26/16				
Iron, dissolved	ND	0.10	mg/L		ND			6.07	20	
Manganese, dissolved	1.03	0.020	mg/L		0.995			3.48	20	
Matrix Spike (AD63610-MS1)	Sou	Source: 16D1995-01		Prepared &	Analyzed:	04/26/16				
Iron, dissolved	2.28	0.10	mg/L	2.00	ND	111	70-130			
Manganese, dissolved	1.24	0.020	mg/L	0.200	0.995	120	70-130			
Matrix Spike Dup (AD63610-MSD1)	Sou	Source: 16D1995-01		Prepared & Analyzed: 04/26/16						
Iron, dissolved	2.35	0.10	mg/L	2.00	ND	115	70-130	3.23	20	
Manganese, dissolved	1.28	0.020	mg/L	0.200	0.995	140	70-130	3.11	20	QM-

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/26/16 15:39

#### Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AD63608 - EPA 200 Series										
Blank (AD63608-BLK1)				Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	ND	0.40	ug/L							
LCS (AD63608-BS1)				Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	21.4	0.40	ug/L	20.0		107	85-115			
Duplicate (AD63608-DUP1)	Sour	ce: 16D199	5-01	Prepared: (	)4/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	4.48	0.40	ug/L		4.36			2.85	20	
Matrix Spike (AD63608-MS1)	Source: 16D1995-01 Prepared: 04/25/16 Analyzed: 04/26/16									
Arsenic, dissolved	26.8	0.40	ug/L	20.0	4.36	112	70-130			
Matrix Spike Dup (AD63608-MSD1)	Source: 16D1995-01			Prepared: 04/25/16 Analyzed: 04/26/16						
Arsenic, dissolved	26.6	0.40	ug/L	20.0	4.36	111	70-130	0.697	20	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/26/16 15:39

#### **Notes and Definitions**

- FILT The sample was filtered in the lab prior to analysis.
- QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- REC Recovery
- RPD Relative Percent Difference

alaha	Algha I Analytical E aboratories the	WATERS, SEDIMENTS, SOLIDS
Late	Alpha T An	WATERS, SI

Corporate Laboratory 200 Mason Street, Ukiah. CA 95482 707-466-0401 F) 707-466-5257 clientservices@alpha-labs.com

Bay Area Laboratory 6398 Dougherty Road, #35, Dublin, CA 94568 925-828-6226 F) 925-828-6309

Central Valley Laboratory 9090 Unidin Park WV., #113. Elk Ortwe, CA 95624 916-686-5190 F) 916-686-5192

**Chain of Custody Record** Work Order

1
5
66/
5
$\sim$
<b>L</b>
See.
$\sim$
-}
j.
<u> </u>
N de
놂
<u> </u>

्रें

Page...

e i do

-J-

		Signature below at	Signature below authomzes work under terms stated on reverse side.	Τ
Name: Town of Windsor - Drinking Water		A	Analysis Request	
	.Phase:			T
Mating Acoress. 9291 Old Recwood Highway Building 400		(po	(EON 1	មេខាង
Windsof. CM 55-24 Project Contact (Hardcopy or POF to): Elizabeth Cergay	PO#		(121) V V V V	104 þe
ecargay@townofwindsor.com		1) (	0 0 181( 181)	anb
kent OBrien kent obrien@ghd.com	Bill to: month end billing		, K, Na Nitrite i noiudes C (++Bel C (++Bel C	l By tavor
	Container Preservative Matrix	esi( esi( esi( esi(	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	dd¥
Fleid Sampler - Print Name & Signature	3	As ([ Pe ([ Mn (	ide ide (G, B' Nevoge iphate i 7117 (G, B' 1 7 7 1 7 7 1 7 8 8 8 8 8 8 8 8 8 8 8 8	
Sample	9160 1006 1003 1003 5250 5250 103 103 103 103 103 103 103 103 103 10	7.00 7.00 8.00	ileali strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict strict stri strict strict strict strict stri	
ation	104 Род ИА ИА ИА ИА ИА ИА	Z Z Z Z Z		EX
ESW-4.20-08:23	1/10/10 08:13 X X X 10/10/16		11	-
л тар — миник булатататар — бала тар <mark>- бала д</mark> атататар — бала бала тар тар са бала са тар са бала са тар са бал				
			** litle 22 Scan	
			21110 D-2010 6449 A&B	
			04432 TINION IN SUIVES ADDA 504.1, 507.508, 515.1,	
			524.2 531.1.548.1.549.2	
Hallingtowing by: N.	Received by:	Time	EDT	$(\bullet)$
11 Jul 11	Aval Jomes		at the Constant Manufacture	
Keinger Y. O. O.	Racewed by:	<u> </u>	State System I Number.	
Relinquished by.	Received by:	Date Time	CA Geotracker EDF Report Yes O No (	•
	محمد من من من المان ا محمد من	Date Time	Sampling Company Log Code:	
Reinfuusteet by:		:	to (Em	
Relinquished by:	Received by:	Date Time	Travel and Site Time: Mileage: Misc. Supplies:	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

27 April 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Potable Well Work Order: 16D2256

Enclosed are the results of analyses for samples received by the laboratory on 04/26/16 15:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette Popli

Jeanette L. Poplin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/27/16 16:12

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESW-4-26-11:50	16D2256-01	Water	04/26/16 11:50	04/26/16 15:40

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100	Project Manager: Elizabeth Cargay Project: Esposti Potable Well Project Number: [none]						Reporte 04/27/16 16: ⁻			
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note		
ESW-4-26-11:50 (16D2256-01)		Sample Type:	Water		Sample	d: 04/26/16 11:50				
Metals (Dissolved) by EPA 200 Series Methods								FILT		
Iron, dissolved	ND mg/L	0.10	1	AD63610	04/27/16 11:20	04/27/16 11:55	EPA 200.7			
Manganese, dissolved	0.64 mg/L	0.020	1	AD63610	04/27/16 11:20	04/27/16 11:55	EPA 200.7			
Metals (Dissolved) by EPA Method 200.8 ICP/MS								FILT		
Arsenic, dissolved	3.0 ug/L	0.40	1	AD63608	04/27/16 11:20	04/27/16 13:19	EPA 200.8			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/27/16 16:12

## Metals (Dissolved) by EPA 200 Series Methods - Quality Control

			Spike						
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
			Prepared &	Analyzed:	04/26/16				
ND	0.10	mg/L							
ND	0.020	mg/L							
			Prepared &	Analyzed:	04/26/16				
2.21	0.10	mg/L	2.00		111	85-115			
0.219	0.020	mg/L	0.200		110	85-115			
Sou	ırce: 16D199	5-01	Prepared &	Analyzed:	04/26/16				
ND	0.10	mg/L		ND			6.07	20	
1.03	0.020	mg/L		0.995			3.48	20	
Soι	ırce: 16D199	5-01	Prepared & Analyzed: 04/26/16						
2.28	0.10	mg/L	2.00	ND	111	70-130			
1.24	0.020	mg/L	0.200	0.995	120	70-130			
Sou	ırce: 16D199	5-01	Prepared &	Analyzed:	04/26/16				
2.35	0.10	mg/L	2.00	ND	115	70-130	3.23	20	
1.28	0.020	mg/L	0.200	0.995	140	70-130	3.11	20	OM-01
-	ND 2.21 0.219 <b>Sou</b> 1.03 <b>Sou</b> 2.28 1.24 <b>Sou</b> 2.35	ND         0.10           ND         0.020           2.21         0.10           0.219         0.020           Source:         16D199           ND         0.10           1.03         0.020           Source:         16D199           2.28         0.10           1.24         0.020           Source:         16D199           2.35         0.10	Result         Limit         Units           ND         0.10         mg/L           ND         0.020         mg/L           ND         0.020         mg/L           2.21         0.10         mg/L           0.219         0.020         mg/L           Source:         16D1995-01         mg/L           1.03         0.020         mg/L           2.28         0.10         mg/L           1.24         0.020         mg/L           2.35         0.10         mg/L	Result         Limit         Units         Level           ND         0.10         mg/L         Prepared &           ND         0.020         mg/L         Prepared &           ND         0.020         mg/L         Prepared &           2.21         0.10         mg/L         2.00           0.219         0.020         mg/L         0.200           Source:         16D1995-01         Prepared &           ND         0.10         mg/L         0.200           Source:         16D1995-01         Prepared &           2.28         0.10         mg/L         2.00           1.24         0.020         mg/L         0.200           Source:         16D1995-01         Prepared &           2.35         0.10         mg/L         2.00	ResultLimitUnitsLevelResultND0.10mg/LPrepared & Analyzed:ND0.020mg/LPrepared & Analyzed:ND0.020mg/L2.000.2190.020mg/L0.200Source: 16D1995-01Prepared & Analyzed:ND0.10mg/L0.995Source: 16D1995-01Prepared & Analyzed:2.280.10mg/L2.002.280.10mg/L2.001.240.020mg/L0.200Source: 16D1995-01Prepared & Analyzed:2.350.10mg/L2.002.350.10mg/L2.00	Result         Limit         Units         Level         Result         %REC           Prepared & Result         %REC           ND         0.10         mg/L         Prepared & Analyzed: 04/26/16           ND         0.020         mg/L         Prepared & Analyzed: 04/26/16           2.21         0.10         mg/L         2.00         111           0.219         0.020         mg/L         0.200         110           Source:         16D1995-01         Prepared & Analyzed: 04/26/16         ND           1.03         0.020         mg/L         0.995         110           2.28         0.10         mg/L         2.00         ND         111           1.24         0.020         mg/L         2.00         ND         111           1.23         0.10         mg/L         2.00         ND         111           1.24         0.200         mg/L         2.00         ND <td>Result         Limit         Units         Level         Result         %REC         Limits           ND         0.10         mg/L         Prepared &amp; Analyzed: 04/26/16                                                                                                         &lt;</td> <td>Result         Limit         Units         Level         Result         %REC         Limits         RPD           NB         0.10         mg/L                                     RPD</td> <td>Result         Limit         Units         Level         Result         %REC         Limits         RPD         Limit           Prepared &amp; Analyzed: $04/26/16$           ND         0.10         mg/L         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <td< td=""></td<></td>	Result         Limit         Units         Level         Result         %REC         Limits           ND         0.10         mg/L         Prepared & Analyzed: 04/26/16                                                                                                         <	Result         Limit         Units         Level         Result         %REC         Limits         RPD           NB         0.10         mg/L                                     RPD	Result         Limit         Units         Level         Result         %REC         Limits         RPD         Limit           Prepared & Analyzed: $04/26/16$ ND         0.10         mg/L         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""></td<>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/27/16 16:12

## Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AD63608 - EPA 200 Series										
Blank (AD63608-BLK1)				Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	ND	0.40	ug/L							
LCS (AD63608-BS1)				Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	21.4	0.40	ug/L	20.0		107	85-115			
Duplicate (AD63608-DUP1)	Sour	ce: 16D199	5-01	Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	4.48	0.40	ug/L		4.36			2.85	20	
Matrix Spike (AD63608-MS1)	Sour	ce: 16D199	5-01	Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	26.8	0.40	ug/L	20.0	4.36	112	70-130			
Matrix Spike Dup (AD63608-MSD1)	Sour	ce: 16D199	5-01	Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	26.6	0.40	ug/L	20.0	4.36	111	70-130	0.697	20	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/27/16 16:12

#### **Notes and Definitions**

- FILT The sample was filtered in the lab prior to analysis.
- QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- REC Recovery
- RPD Relative Percent Difference

Alpha Analytical Laboratories Inc. www.alpha-labs.com Waters, Sediments, Solups	Corporate Laboral 208 Mason Street, Uklah, 707-468-0401 F) 707-46 clientservices@alpha-k Bay Area Laborate 8 Dougherty Road, #35, Du	CA 95482 18-5267 9090 Un 1bs.com Dry blin, CA 94568	Central Valloy Laborat Jnioin Park Wy., #113, Eik Gr 916-686-5190 F) 916-686	Chain of Custody Record	
	925-828-6226 F) 925-82 Project ID:	28-6309			
Name: Town of Windsor - Drinking Water	-	otable Well		v authorizes work under terms stated on reverse side.	
Malling Address: 9291 Old Redwcod Highway Building 400 Windsor, CA 95492	Phase:			Analysis Request TAT	
Project Contact (Hardcopy or PDF to): Elizabeth Cargay ecargay@townofwindsor.com	PO#			200.7 Ca, Mg, K, Na (Dissolved) Alkalinity Chloride Nitrate as N, Nitrite as N Sulfate Total Nitrogen (includes TKN, NO2, NO3 Fotal Nitrogen (includes TKN, NO2, NO3 Silica Total Nitrogen (includes TKN, NO2, NO3 Silica Total Nitrogen (includes TKN, NO2, NO3 Fotal Nitrogen (includes TKN, NO2,	Required For Rush
Kent O'Brien kent.obrien@ghd.com	Bill to: month	end billing	(Dissolved) (Dissolved) (Dissolved) (Dissolved) (Dissolved)	7 Ca, Mg, K, Na (Disso linity ate as N, Nitrite as N Nitrogen (includes TKN, NC Nitrogen (includes TKN, NC a B Vanadium - total a B Vanadium - total a B Vanadium - total a B Vanadium - total 22 Scan (**Below List) 22 Scan (**Below List)	
Field Samplor - Print Name & Signature Sam		Preservative Matrix	As (Dissolved) Fe (Dissolved) Mn (Dissolved) Cr (Dissolved) Cr6 (Dissolved)	Park Mg, I Park Ni Park Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni N	Lab Approval
Colle Sample Identification Date	Lime 40mi VOA	Na2S2O3 HNO3 NIH4CI Other None Water Soil	200.8 As (Dissolved) 200.7 Fe (Dissolved) 200.7 Mn (Dissolved) 200.8 Cr (Dissolved) 218.6 Cr6 (Dissolved)	200.7 Ca, Mg, K, Na (Dissolv Alkalinity Chloride Nitrate as N, Nitrite as N Sulfate Total Nitrogen (includes TKN, NO2, Silica 200.8 Vanadium - total Phosphate CAM 17 CAM 17 TPH G, BTEX, D/MO 6010 As STLC Title 22 Scan (**Below List) (Augurs)	
ESW-4-26-11:50 4/24/16	11.50 X		XXX	Filter Filter	
		┍┯┥┥┥┥			
		┍ <del>╸╸</del> <del>╶╶╺╺┥╸╸╸</del>	╋╎┿┥		
				**Title 22 Scan	
	_			64432 Primary Inorganics, 64432.1 NO2/NO3, 64449 A&B	
		╋╋╄╡╎╉┾┾ ┿┼┽┽┾╉╎╼╴	╋╎┥┥┾┤	Asbestos, Perchlorate, Gross Alpha, 504.1, 507, 508, 515.1,	
The word	Received by:	peleteni 1	Mar 1 Z a	524.2, 531.1, 548.1, 549.2 CDPH Write On EDT Report? Yes No	
alfindalline	Received by:		11 1540	State System Number:	
	Received by:		ate Time	CA Geotracker EDF Report Yes No	
Relinquished by:	Received by:	Dat		Global ID; EDF to (Email Address): Travel and Site Time: Mileage: Misc: Supplies:	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

29 April 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Potable Well Work Order: 16D2432

Enclosed are the results of analyses for samples received by the laboratory on 04/28/16 15:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Robin C. Edens For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/29/16 16:24

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EWS-4-28-11:40	16D2432-01	Water	04/28/16 11:40	04/28/16 15:15

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100		ect Manager: Eliz Project: Esp ject Number: [noi	oosti Pota	0,				Reported: 16 16:24
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
EWS-4-28-11:40 (16D2432-01)		Sample Type:	Water		Sample	d: 04/28/16 11:40		
Metals (Dissolved) by EPA 200 Series Methods								FILT
Iron, dissolved	ND mg/L	0.10	1	AD63610	04/29/16 08:20	04/29/16 10:49	EPA 200.7	
Manganese, dissolved	0.93 mg/L	0.020	1	AD63610	04/29/16 08:20	04/29/16 10:49	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS								FILT
Arsenic, dissolved	18 ug/L	0.40	1	AD63608	04/29/16 08:20	04/29/16 10:52	EPA 200.8	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/29/16 16:24

## Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AD63610 - EPA 200 Series										
Blank (AD63610-BLK1)				Prepared &	Analyzed:	04/26/16				
Iron, dissolved	ND	0.10	mg/L							
Manganese, dissolved	ND	0.020	mg/L							
LCS (AD63610-BS1)				Prepared &	Analyzed:	04/26/16				
Iron, dissolved	2.21	0.10	mg/L	2.00		111	85-115			
Manganese, dissolved	0.219	0.020	mg/L	0.200		110	85-115			
Duplicate (AD63610-DUP1)	So	urce: 16D199	5-01	Prepared &	Analyzed:	04/26/16				
Iron, dissolved	ND	0.10	mg/L		ND			6.07	20	
Manganese, dissolved	1.03	0.020	mg/L		0.995			3.48	20	
Matrix Spike (AD63610-MS1)	So	urce: 16D199	5-01	Prepared &	Analyzed:	04/26/16				
Iron, dissolved	2.28	0.10	mg/L	2.00	ND	111	70-130			
Manganese, dissolved	1.24	0.020	mg/L	0.200	0.995	120	70-130			
Matrix Spike Dup (AD63610-MSD1)	So	urce: 16D199	5-01	Prepared &	Analyzed:	04/26/16				
Iron, dissolved	2.35	0.10	mg/L	2.00	ND	115	70-130	3.23	20	
Manganese, dissolved	1.28	0.020	mg/L	0.200	0.995	140	70-130	3.11	20	OM-01





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/29/16 16:24

## Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AD63608 - EPA 200 Series										
Blank (AD63608-BLK1)				Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	ND	0.40	ug/L							
LCS (AD63608-BS1)				Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	21.4	0.40	ug/L	20.0		107	85-115			
Duplicate (AD63608-DUP1)	Sour	ce: 16D199	5-01	Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	4.48	0.40	ug/L		4.36			2.85	20	
Matrix Spike (AD63608-MS1)	Sour	ce: 16D199	5-01	Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	26.8	0.40	ug/L	20.0	4.36	112	70-130			
Matrix Spike Dup (AD63608-MSD1)	Sour	ce: 16D199	5-01	Prepared: (	)4/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	26.6	0.40	ug/L	20.0	4.36	111	70-130	0.697	20	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	04/29/16 16:24

#### **Notes and Definitions**

- FILT The sample was filtered in the lab prior to analysis.
- QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- REC Recovery
- RPD Relative Percent Difference

	Phase: PO7 Bill to:	Esp <del>4</del>	005	sti F	Pot	ab	le	W	ell					01															eof	
Aailing Address: 1291 Old Redwood Highway Building 400 Vindsor, CA 95492 Project Contact (Hardcopy or PDF to): Elizabeth Cargay acargay@townofwindsor.com Kent O'Brien Kent O'Brien Kent.obrien@ghd.com Field Sampler - Print Name & Signature RYAN CRUMEN Manual San Colle	Phase: PO7 Bill to:	 ¥		sti F	Pot	ab	le	W	ell				_	Sign	ature	belov	v auth	orize	s work	unde	er term	s stai	ed on	reve	rse si	de.			<b>—</b>	
1291 Old Redwood Highway Building 400 Vindsor, CA 95492 Project Contact (Hardcopy or PDF to): Elizabeth Cargay acargay@townofwindsor.com Kent O'Brien Kent O'Brien Kent.obrien@ghd.com Field Sampler - Print Name & Signature RYAN CRUMER Manual Solar Colle	PO7 Bill to:								_								Ar	al	ysi	S	Re	qu	ies	st					TAT	
Project Contact (Hardcopy or PDF to): Elizabeth Cargay Scargay@townofwindsor.com Kent O'Brien Kent.obrien@ghd.com	Bill to:														<u> </u>			_				ज्ञा					<del></del>	Ť	 24 hr	<u></u>
ecargay@townofwindsor.com Kent O'Brien Kent.obrien@ghd.com Tield Sampler - Print Name & Signature RYAN CRIWISSI January San Colle	Bill to:							_			_						(ed)					őz							48 hr	۲g
Kent O'Brien Kent.obrien@ghd.com Teld Sampler - Print Name & Sigrature RYAN CRAWSON Jon of San Colle																	(Dissolved)			_		l otal Nitrogen (includes TKN, NO2, NO3)						List)		Required For Rush
ield Sampler - Print Name & Signature							_		-		-	ц)	<u> </u>	(p	<b>•</b>	(p	0		1	as N		I	13	- 1019				OW L	Lab Approval	ulred
RYAN CRIMAN for after San	_	I	nor	nth	én	d b	illir	ıg				(Dissolved)	Fe (Dissolved)	200.7 Mn (Dissolved)	Cr (Dissolved)	218.6 Cr6 (Dissolved)	K, Na			Nitrate as N, Nitrite		Indes					6010 As STLC	Title 22 Scan (**Below	Required 1 wk	
		Cor	ntair	ner	P	rese	erva	tive	м	atri	x	Disse	Disso	Diss	isso	Diss	Mg, I			z∣ -			Silica				STLC	- -	$\bigcirc$	Lab Approval
/ /-	mple ection				_			Τ			Π	As (I	_e (I	VIn (	L L	Dr6 (	Ca,	≥	e	as		loger					s ST	Sce	2 wk	ab Ap
Sample / /		40ml VO	ber	ss	2S20	EONH:	ğ	<u>ه</u> او	er i			200.8 /	200.7	0.7	200.8 (	8.6 (	200.7 Ca,	Alkalinity	Chloride	late	Sulfate		ច្រ		Filospna	-   () §   ]	6010 As	e 22	(standard)	
dentification Date	Time			Glass	Na	Ť	Ξđ	None None			Ц	20	20	(20	20	21	20	₹	ភ្ញ	ž	<u>8</u>	10 			Ē	5	i è	Ē		
<u>=ws-y-28-11-40 4/04/6</u>	5 1140	<u>∤</u> ∤∕			_		┝╌┝	_ <u> </u> X	(X		┝┟	×	X	X				-	$\rightarrow$	_	_		_	-		_		$\perp$	FILTER	
,		╉┼╴	╋	╉╂		+		╉	+				_			-		{	_	-	+	+	- -	+	+	+	╇	+	<u>Fix w</u>	LAB
			+	┼╌┠╴	╋			+-	,		╎─┨					_		$\dashv$		+				_			+	┼─┥	<u> </u>	
		$\square$	+-			† †		+-	t			_			Ì			╡		-†-		1	+	+	┼	+	+-	+	<u>_</u>	
Fl									Γ						Ì				- [	-			╈	+-	+	+	_	╀┩		
	L	$\square$										_				Ļ													<b></b>	
·		┞┼-		$\downarrow$		╉				-						Ĺ														
		$\left  + \right $		$\vdash$		┼┤			_			_				ł					**	<b>.</b>	11	_	~	<b>`</b>	~			
		$\vdash$	+		-	┨┥		+	┢	-		_										l	ITI	Э	2	23	Sc	ar	า	
· · · · ·		┢┼╴	┢	++	╈	╎┤		+	┢		H	-				-	- 6	6443	32 Pri	mar	v Ino	toan	ics f	443	21	NO2	/NO3	644	49 A&B	-+
		T I ·				$\uparrow \uparrow$			T			ĺ																	08, 515.1,	
																			2, 53											
Relinquighed by:	Received	12	p	. ,	H	ia	le	( je	- 		Date	28		Time		5			Vrite		3 1		-	).	-	Ye	:s (	$\overline{)}$	No (	
Relinquished by:	Received	i by:			7	,			~~	_	Date	_	<u> </u>	Time	14	_	Stat	e S	ystei	'n'n	lumi	oer:			<u>-</u>		<u> </u>	<u> </u>		
Relinquished by:	Received	i by:	-6						-		Date			7 U Time	<u></u>			Seo	track	- 		200				×-	7		No (	5
Relinquished by:	Received	bv:			_					_	Date			Time												Ye	s	$\mathcal{I}$	No 🤇	2
-vinquianed by,	Received by: Date				Date Time Sampling Company Log Code: Global ID: EDF to (Email Address):																									
Relinquished by:	Received	by:					_		_		Date	_					Trave							ω i⊨	anon A	625	4			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

02 May 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Potable Well Work Order: 16D2537

Enclosed are the results of analyses for samples received by the laboratory on 04/29/16 14:57. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette Popli

Jeanette L. Poplin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/02/16 16:46

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESW-4-29-1145	16D2537-01	Water	04/29/16 11:45	04/29/16 14:57

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100		ect Manager: Eliz Project: Esp ject Number: [noi	osti Pota	0,				Reported: /16 16:46
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-4-29-1145 (16D2537-01)		Sample Type:	Water		Sample	d: 04/29/16 11:45		
Metals (Dissolved) by EPA 200 Series Methods								FILT
Iron, dissolved	ND mg/L	0.10	1	AD63610	04/29/16 12:20	04/29/16 18:22	EPA 200.7	
Manganese, dissolved	0.89 mg/L	0.020	1	AD63610	04/29/16 12:20	04/29/16 18:22	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS								FILT
Arsenic, dissolved	16 ug/L	0.40	1	AD63608	04/29/16 12:20	05/02/16 10:14	EPA 200.8	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/02/16 16:46

## Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AD63610 - EPA 200 Series										
Blank (AD63610-BLK1)				Prepared &	Analyzed:	04/26/16				
Iron, dissolved	ND	0.10	mg/L							
Manganese, dissolved	ND	0.020	mg/L							
LCS (AD63610-BS1)				Prepared &	Analyzed:	04/26/16				
Iron, dissolved	2.21	0.10	mg/L	2.00		111	85-115			
Manganese, dissolved	0.219	0.020	mg/L	0.200		110	85-115			
Duplicate (AD63610-DUP1)	Sou	rce: 16D199	5-01	Prepared &	Analyzed:	04/26/16				
Iron, dissolved	ND	0.10	mg/L		ND			6.07	20	
Manganese, dissolved	1.03	0.020	mg/L		0.995			3.48	20	
Matrix Spike (AD63610-MS1)	Sou	rce: 16D199	5-01	Prepared &	Analyzed:	04/26/16				
Iron, dissolved	2.28	0.10	mg/L	2.00	ND	111	70-130			
Manganese, dissolved	1.24	0.020	mg/L	0.200	0.995	120	70-130			
Matrix Spike Dup (AD63610-MSD1)	Sou	rce: 16D199	5-01	Prepared &	Analyzed:	04/26/16				
Iron, dissolved	2.35	0.10	mg/L	2.00	ND	115	70-130	3.23	20	
Manganese, dissolved	1.28	0.020	mg/L	0.200	0.995	140	70-130	3.11	20	QM-0





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/02/16 16:46

## Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AD63608 - EPA 200 Series										
Blank (AD63608-BLK1)				Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	ND	0.40	ug/L							
LCS (AD63608-BS1)				Prepared: (	)4/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	21.4	0.40	ug/L	20.0		107	85-115			
Duplicate (AD63608-DUP1)	Sour	ce: 16D199	5-01	Prepared: (	)4/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	4.48	0.40	ug/L		4.36			2.85	20	
Matrix Spike (AD63608-MS1)	Sour	ce: 16D199	5-01	Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	26.8	0.40	ug/L	20.0	4.36	112	70-130			
Matrix Spike Dup (AD63608-MSD1)	Sour	ce: 16D199	5-01	Prepared: (	04/25/16 A	nalyzed: 04	/26/16			
Arsenic, dissolved	26.6	0.40	ug/L	20.0	4.36	111	70-130	0.697	20	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/02/16 16:46

#### **Notes and Definitions**

- FILT The sample was filtered in the lab prior to analysis.
- QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- REC Recovery
- RPD Relative Percent Difference

	atheration for	bs.com	113, SOLIDS
a laka	Alghin Analytical Laboration for	www.aipha-labs.com	WATERS, SEDIMENTS, SOLIDS

Corporate Laboratory 208 Mason Street. Ukiah CA 95482 707-468-0401 F) 707-468-5267

**Bay Area Laboratory** 6398 Dougherty Rd #35, Dublin CA 94568 925-828-6226 F) 925-828-6309

Chain of Custody - Work Order

and Invoices delivered by email in PDF format Danate

jo 64	terms stated on reverse side.	Temp upon	2	9				Labs pr	Sample Notes or DDW Source Numbers:	FILTER/FIX IN LAP.					nsmission? 🔿 Yes 💿 No	eres and the the the transmission of the second s		ampling Company Log Code:	ge: Misc. Supplies:	
Lab No 16D2537	Signature below authorizes work under terms stated on reverse side		Alfalysis Request			55197		wt	- 00/2						Time DDW Write On EDT Transmission?	off State	(4 57 If T prease enter the 2	CA Geotracker EUT report	Travel and Sde Time: Mileage	
Ek Grove CA 95624 192				a	I əlqms2		tuoo	Ber of	iner Iher 100, 7 100, 7 10, 7 100, 7 100, 7 10, 7 1						Date		1 91.12.11			
Central Valley Laboratory 9090 Union Park Way #113. Elk Grove CA 95624 916-686-5190 F) 916-686-5192	Brolect Information	Drolact ID: 0	Lesporri lotable	Project No:	PO Number:	MO. H ORDINENO END. COM	Preservative Ma	┼───	ајет 2504 103 103						sceived by	Power	Sector 1		****	
email: ciientservices@atpha-iabs.com ELAP Certifications Uklah 1551 / Dublin 2728 / Elk Grove 2922		Invoice to (if different)		286:			Ľ,		ənər Sse	<b>Time</b>	*/// 2 V									
1 %	WATERS, SEDIMENTS, SOLIDS		COMPANY. OF WINDARD WATCH WATCH		o Itury Losor	Phone/Fax: Phone/Fax: Errorit Address:	ecargay Townor WINDOR Con	Field Sampler - Minted Name & Signature: Ryan C. Ruy Fullo	₹ -	Sample Identification Date	1/24-4-24-1145 1/24/18					Relinquished by	The reme			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

11 May 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Potable Well Work Order: 16E0997

Enclosed are the results of analyses for samples received by the laboratory on 05/10/16 15:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette Popli

Jeanette L. Poplin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/11/16 15:40

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESW-5-9-10:50	16E0997-01	Water	05/09/16 10:50	05/10/16 15:50
ESW-5-9-15:35	16E0997-02	Water	05/09/16 15:35	05/10/16 15:50



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100		ect Manager: Eliz Project: Esp ject Number: [nor	osti Pota					Reported: /16 15:40
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-5-9-10:50 (16E0997-01)		Sample Type:	Water		Sample	d: 05/09/16 10:50		
Metals (Dissolved) by EPA 200 Series Methods								FILT
Iron, dissolved	ND mg/L	0.10	1	AE63518	05/11/16 12:39	05/11/16 13:38	EPA 200.7	
Manganese, dissolved	0.92 mg/L	0.020	1	AE63518	05/11/16 12:39	05/11/16 13:38	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS								FILT
Arsenic, dissolved	26 ug/L	0.40	1	AE63517	05/11/16 12:37	05/11/16 14:44	EPA 200.8	
ESW-5-9-15:35 (16E0997-02)		Sample Type:	Water		Sample	d: 05/09/16 15:35		
Metals (Dissolved) by EPA 200 Series Methods								FILT
Iron, dissolved	ND mg/L	0.10	1	AE63518	05/11/16 12:39	05/11/16 14:08	EPA 200.7	
Manganese, dissolved	0.94 mg/L	0.020	1	AE63518	05/11/16 12:39	05/11/16 14:08	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS								FILT
Arsenic, dissolved	16 ug/L	0.40	1	AE63517	05/11/16 12:37	05/11/16 14:59	EPA 200.8	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/11/16 15:40

## Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63518 - EPA 200 Series										
Blank (AE63518-BLK1)				Prepared &	Analyzed:	05/11/16				
Iron, dissolved	ND	0.10	mg/L							
Manganese, dissolved	ND	0.020	mg/L							
LCS (AE63518-BS1)				Prepared &	Analyzed:	05/11/16				
Iron, dissolved	2.16	0.10	mg/L	2.00		108	85-115			
Manganese, dissolved	0.212	0.020	mg/L	0.200		106	85-115			
Duplicate (AE63518-DUP1)	Sou	ce: 16E0997	7-02	Prepared &	Analyzed:	05/11/16				
Iron, dissolved	ND	0.10	mg/L		ND				20	
Manganese, dissolved	0.928	0.020	mg/L		0.937			0.958	20	
Matrix Spike (AE63518-MS1)	Sou	ce: 16E099	7-02	Prepared &	Analyzed:	05/11/16				
Iron, dissolved	2.19	0.10	mg/L	2.00	ND	109	70-130			
Manganese, dissolved	1.08	0.020	mg/L	0.200	0.937	70.1	70-130			
Matrix Spike Dup (AE63518-MSD1)	Sou	ce: 16E0997	7-02	Prepared &	Analyzed:	05/11/16				
Iron, dissolved	2.31	0.10	mg/L	2.00	ND	116	70-130	5.56	20	
Manganese, dissolved	1.10	0.020	mg/L	0.200	0.937	79.0	70-130	1.64	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/11/16 15:40

## Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63517 - EPA 200 Series										
Blank (AE63517-BLK1)				Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	ND	0.40	ug/L							
LCS (AE63517-BS1)				Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	20.3	0.40	ug/L	20.0		102	85-115			
Duplicate (AE63517-DUP1)	Sour	ce: 16E099	7-01	Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	25.7	0.40	ug/L		25.6			0.443	20	
Matrix Spike (AE63517-MS1)	Sour	ce: 16E099	7-01	Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	48.0	0.40	ug/L	20.0	25.6	112	70-130			
Matrix Spike Dup (AE63517-MSD1)	Sour	ce: 16E099	7-01	Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	48.2	0.40	ug/L	20.0	25.6	113	70-130	0.268	20	



# e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/11/16 15:40

#### **Notes and Definitions**

- FILT The sample was filtered in the lab prior to analysis. ND Analyte NOT DETECTED at or above the reporting limit
- Sample results reported on a dry weight basis dry
- REC Recovery
- RPD Relative Percent Difference

Alpha Analytical Laboratories Inc.		208 Mas 707-4 clients	son S 68-04 servic	treet, IO1 F) :es@a	Ukiah 707- alpha	468-54 -labs.c	267				909	10 Un	vioin P	Park	Wy.,	#11	' Labo 3, Elk 916-4	Gr	ove, C		624		C	ha	in					)rc oc			eco	rd			
www.alpha-labs.com Waters, Sediments, Solids	63	8 98 Doughe 925-82	erty R	oad, f		)ublin,		945	5 <b>8</b>													Lab	No.	_/	6	S	19	97	2_			Page	e	of	_		
Name: Town of Windsor - Drinking Wate		Project I		ро	sti	Pot	tał	ole	• W	/el	[]		$\mathbb{F}$		Si	igna	ture b		r auth Ar						-			se si	de.					AT.	_	]	
Mailing Address: 9291 Old Redwood Highway Building 400 Windsor, CA 95492		Phase:											┠	T											<u>-</u>	T	Ţ	-					24 Q 48				
Project Contact (Hardcopy or PDF to): Elizabeth Cargay ecargay@townofwindsor.com		POŧ	#																K, Na (Dissolved)			z		Total Nitrogen (includes TKN, NO2, NO3)		_						List)	La	ь	ed For Rush	,	1.6
Kent O'Brien kent.obrlen@ghd.com		Bill to:		mc	onth	ı en	dl	bill	ing				olved)		solved)	solved)	olved)	solved)	K, Na (I			litrite as N		cludes TK		m - total				D/MO		Scan (**Below List)	Appr Requ 1 V	ulred NK	Lab Approval Required		
Field Sampler - Print Name & Signature		mple ection		onta	iner		Т	sen.	/ativ	e	Mat	rix	As (Dissolved)		re (Lissoived)	.200./ Mn (Lissolved)	200.8 Cr (Dissolved)	218.6 Cr6 (Dissolved)	Ca, Mg,	iity	de	Nitrate as N, Nitrite		rogen (in		200.8 Vanadium		Prosprate	2	, BTEX, I	6010 As STLC	2 Scan (	2 1	-	Lab Appro		
Sample	1		40ml VOA		ı ۲	Na2S203		ច្ន	5	۰	er		200.8		7.002	2	8.0	.0 8	200.7	Alkalinity	Chloride	rate	Sulfate	N.	Silica	8			CAM 17	TPH G, I	10/	Title 22	(stand	(brst			
Identification	Date	Time	40m	Pol	Glass	L N	FONH	Ĭ			Water	00	20			07 7	20	3	20	₹	ర్	ĬŽ	S	р Ц	1	20		20	S U	₽	09	Ц	$\subset$	2	_		
ESW-5-9-10:50	5/9	10:50		X						시	X				را×						Ι							Ī	ſ				Fill	Fer a	-		
<b></b>	5/9	1535		א ⁻						×	*				<u>נא</u>	~																	in	<u>La</u>	6		
					<u> </u>			-			_																										
	-	<u> </u>									-	-			_	_	_	_													-						
							-																5	×*.	Ti	tl€	Э	2	2	S	SC	a	า				
													Ι						_	644	32 F	² rim	ary	Inorg	gani	cs, 6	6443	32.1	NC	)2/N	103,	644	49 A&	8		1	
						Ц							Asbestos, Perchlorate, Gross Alpha, 504.1, 507, 508, 515.1,																								
																				524	.2, 5	531.	1, 5	48.1	, 54	9.2											
Relinquished by O		Received	Ø	h	12	1	ļ	l		e		5	Time     Time       1460     CDPH Write On EDT Report?     Yes     No				]																				
Relinquished by Relinquished by:	erie			Ĺ	v 4	H.	/	_					4 159 State System Number.																								
Relinquished by:		Receive						Date     Time     CA Geotracker EDF Report     Yes     No       Date     Time     Sampling Company Log Code:																													
Relinquished by:							Global ID:         EDF to (Email Address):           Date         Time         Travel and Site Time:         Mileage:         Misc. Supplies:																														
									_					_											-						_						

•

_____

---

- - -





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

11 May 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Potable Well Work Order: 16E0995

Enclosed are the results of analyses for samples received by the laboratory on 05/10/16 15:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette Popli

Jeanette L. Poplin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/11/16 15:40

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESW-5-10-10:09	16E0995-01	Water	05/10/16 10:09	05/10/16 15:50
ESW-5-10-10:09 Total	16E0995-02	Water	05/10/16 10:09	05/10/16 15:50



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100		ect Manager: Eliz Project: Esp ject Number: [nor	osti Pota	0,				Reported: /16 15:40
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-5-10-10:09 (16E0995-01)		Sample Type:	Water		Sample	d: 05/10/16 10:09		
Metals (Dissolved) by EPA 200 Series Methods								FILT
Iron, dissolved	ND mg/L	0.10	1	AE63518	05/11/16 12:39	05/11/16 14:23	EPA 200.7	
Manganese, dissolved	0.91 mg/L	0.020	1	AE63518	05/11/16 12:39	05/11/16 14:23	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS								FILT
Arsenic, dissolved	29 ug/L	0.40	1	AE63517	05/11/16 12:37	05/11/16 14:51	EPA 200.8	
ESW-5-10-10:09 Total (16E0995-02)		Sample Type:	Water		Sample	d: 05/10/16 10:09		
Metals by EPA 200 Series Methods								P-02
Iron	1.1 mg/L	0.10	1	AE63520	05/11/16 12:41	05/11/16 14:53	EPA 200.7	
Manganese	1.0 mg/L	0.020	1	AE63520	05/11/16 12:41	05/11/16 14:53	EPA 200.7	
Metals by EPA Method 200.8 ICP/MS								
Arsenic	33 ug/L	0.40	1	AE63290	05/11/16 12:43	05/11/16 15:06	EPA 200.8	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/11/16 15:40

## Metals by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63520 - EPA 200 Series										
Blank (AE63520-BLK1)				Prepared &	Analyzed:	05/11/16				
Iron	ND	0.10	mg/L							
Manganese	ND	0.020	mg/L							
LCS (AE63520-BS1)				Prepared &	Analyzed:	05/11/16				
Iron	2.18	0.10	mg/L	2.00		109	85-115			
Manganese	0.213	0.020	mg/L	0.200		107	85-115			
Duplicate (AE63520-DUP1)	Sou	rce: 16E099	5-02	Prepared &	Analyzed:	05/11/16				
Iron	1.18	0.10	mg/L		1.06			11.2	20	
Manganese	0.995	0.020	mg/L		1.02			2.29	20	
Matrix Spike (AE63520-MS1)	Sou	rce: 16E099	5-02	Prepared &	Analyzed:	05/11/16				
Iron	3.22	0.10	mg/L	2.00	1.06	108	70-130			
Manganese	1.20	0.020	mg/L	0.200	1.02	93.3	70-130			
Matrix Spike Dup (AE63520-MSD1)	Sou	rce: 16E099	5-02	Prepared &	Analyzed:	05/11/16				
Iron	3.12	0.10	mg/L	2.00	1.06	103	70-130	3.35	20	
Manganese	1.20	0.020	mg/L	0.200	1.02	89.7	70-130	0.588	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/11/16 15:40

## Metals by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63290 - EPA 200 Series										
Blank (AE63290-BLK1)				Prepared: (	05/05/16 A	nalyzed: 05	6/06/16			
Arsenic	ND	0.40	ug/L							
LCS (AE63290-BS1)				Prepared: (	05/05/16 A	nalyzed: 05	5/06/16			
Arsenic	21.8	0.40	ug/L	20.0		109	85-115			
Duplicate (AE63290-DUP1)	Sour	ce: 16E034	1-07	Prepared: (	05/05/16 A	nalyzed: 05	06/16			
Arsenic	4.48	2.0	ug/L		4.33			3.52	20	
Matrix Spike (AE63290-MS1)	Sour	ce: 16E034	1-07	Prepared: (	05/05/16 A	nalyzed: 05	06/16			
Arsenic	114	2.0	ug/L	100	4.33	110	70-130			
Matrix Spike Dup (AE63290-MSD1)	Sour	ce: 16E034	1-07	Prepared: (	05/05/16 A	nalyzed: 05	5/06/16			
Arsenic	114	2.0	ug/L	100	4.33	109	70-130	0.320	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/11/16 15:40

# Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63518 - EPA 200 Series										
Blank (AE63518-BLK1)	Prepared & Analyzed: 05/11/16									
Iron, dissolved	ND	0.10	mg/L							
Manganese, dissolved	ND	0.020	mg/L							
LCS (AE63518-BS1)	Prepared & Analyzed: 05/11/16									
Iron, dissolved	2.16	0.10	mg/L	2.00		108	85-115			
Manganese, dissolved	0.212	0.020	mg/L	0.200		106	85-115			
Duplicate (AE63518-DUP1)	Source: 16E0997-02		Prepared & Analyzed: 05/11/16							
Iron, dissolved	ND	0.10	mg/L		ND				20	
Manganese, dissolved	0.928	0.020	mg/L		0.937			0.958	20	
Matrix Spike (AE63518-MS1)	Source: 16E0997-02		Prepared & Analyzed: 05/11/16							
Iron, dissolved	2.19	0.10	mg/L	2.00	ND	109	70-130			
Manganese, dissolved	1.08	0.020	mg/L	0.200	0.937	70.1	70-130			
Matrix Spike Dup (AE63518-MSD1)	Source: 16E0997-02		Prepared & Analyzed: 05/11/16							
Iron, dissolved	2.31	0.10	mg/L	2.00	ND	116	70-130	5.56	20	
Manganese, dissolved	1.10	0.020	mg/L	0.200	0.937	79.0	70-130	1.64	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/11/16 15:40

## Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63517 - EPA 200 Series										
Blank (AE63517-BLK1)				Prepared & Analyzed: 05/11/16						
Arsenic, dissolved	ND	0.40	ug/L							
LCS (AE63517-BS1)	Prepared &			Analyzed:	05/11/16					
Arsenic, dissolved	20.3	0.40	ug/L	20.0		102	85-115			
Duplicate (AE63517-DUP1)	Source: 16E0997-01			Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	25.7	0.40	ug/L		25.6			0.443	20	
Matrix Spike (AE63517-MS1)	Source: 16E0997-01			Prepared & Analyzed: 05/11/16						
Arsenic, dissolved	48.0	0.40	ug/L	20.0	25.6	112	70-130			
Matrix Spike Dup (AE63517-MSD1)	Source: 16E0997-01		Prepared & Analyzed: 05/11/16							
Arsenic, dissolved	48.2	0.40	ug/L	20.0	25.6	113	70-130	0.268	20	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/11/16 15:40

### **Notes and Definitions**

- FILT The sample was filtered in the lab prior to analysis.
- P-02 Sample was received with insufficient preservative. Sample was preserved and allowed to sit 24 hours before further processing.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- REC Recovery
- RPD Relative Percent Difference

1	ľ
	Alpha Analytical Laboratories Inc.
~	Alpha Analytical Laboratories Inc.
	www.alpha-labs.com
,	WATERS, SEDIMENTS, SOLIDS

____

Corporate Laboratory 208 Mason Street, Ukiah, CA 95482 707-468-0401 F) 707-468-5267 clientservices@alpha-labs.com

Bay Area Laboratory

6398 Dougherty Road, #35, Dublin, CA 94568 925-828-6226 F) 925-828-6309 Central Valley Laboratory 9090 Unioin Park Wy., #113, Elk Grove, CA 95624 916-686-5190 F) 916-686-5192 Work Order Chain of Custody Record

Lab No. 16E0995

 $\mathbf{x}$ 

Page____of____

Name:	Project il	D:			_									Sig	nature	beloy	w auth	norizes	s wori	k und	er ter	rns st	ated	on rev	verse	side.		_			-		
Town of Windsor - Drinking Water	1	Es	ро	sti	Po	tat	ole	W	/el	[							A	nal	ys	sis	R	eq	ue	est					•	<b>.</b>	TAT		
Malling Address: 9291 Old Redwood Highway Building 400 Windsor, CA 95492	Phase:											╞					(p	Γ				NO3)									24 hr 48 hr	ush	
Project Contact (Hardcopy or PDF to): Elizabeth Cargay ecargay@townofwIndsor.com	PO#	<i>‡</i>			_								8				Mg, K, Na (Dissolved)			Z		Total Nitrogen (includes TKN, NO2, NO3)		- -					v List)		48 hr Lab	 Required For Rush	],6
Kent O'Brien kent.obrien@ghd.com	Bill to:	_	ma	onth	ı er	nd I	billi	ng			•	As (Dissolved)	Fe (Dissolved)	200 7 Mn (Dissolved)	(Dissolved)	218.6 Cr6 (Dissolved)	, K, Na			N, Nitrite as		ncludes T		200.8 Vanadium - total			<, D/MO	0	Scan (**Below List)	-	Required		. ,
	nple ection		onta	liner	П	Pres	Τ	Π				As (Dis	e (Dis	h (Dis	C (Dis	0. Dig	Ca, Mg		U			i) uəbaı		Vanadi	nate	7	BTEX,	STL	2 Scan		 2 wk	Lab Approval	
Sample Date	Time	40ml VOA	Poty .	Amber Glass		Na2S203	NH4CI	Other	None	Water ci	201	200.8 /	200.7 F	2007	200.8 (	218.6 (	200.7 Ca,	Alkalinity	Chloride	Nitrate as	Sulfate	Total Nit	Silica	200.8	Phosphate	CAM 17	TPH G, I	6010 As STLC	Title 22	(s	standard)	1	
	10:09		X	1					X	X		X	لا		2						-		[ 				-		1		Ter.	ants.	x
											+	+			+														U	E	:ITer	. The	xer n
ESW-5-10-10:09 15Tal \$/10	10:09		×	-	┝		╀		Y	*		×	<u>×</u>	<u>د</u> ا	<u>;</u>			12	ta/	ne	fal s	₹ ₽ł		Ken E	1								
	+											-		-	-		-					-					-						
							Ì								Ŧ															1_			
	<u> </u>										_					-	_				*	**	Γi	tle	2	22	2 3	Sc	a	n			
		╂─		+				-		╡				╉	$\pm$			644	- 132	Prim	a <u>ry</u> I	norg	anic	s, 6	4432	2.1 N	102	/NO3	8, 64	449	A&B		
				_			+-	+-			+	╀		+-	_		-	+			_	1 <u>lora</u> 18.1,			s Alp	oha,	504	.1, 5	07, 9	508,	515.1,		
Relinquister	Receive			   }				1 Vil	• •_				, , ,		пе 140	ע ה⊥י	C	DPH		_							Ye	es (	$\Box$	) r	No (	$\bigcirc$	
Relingeshed by	Receive	st by:			Ŋ	_	,					Date U			ne 153	0	St	ate	Sys	tem	i Nu	mb	er:				х 		<del></del>	<u>.</u>		:	
Relinquished by:	Receive	ed by:										)ate		Tì	me			٩Ge									Ye	es (	$\bigcirc$	) (	NO (	$\supset$	
Relinquished by:	Receive	ed by:	:									Date		Ti	me			ampli obal		Corr	pan	iy Lo	og C			mail A	ddres	s):					
Relinquished by:	Receive	ed by:	:					7				Date		Ti	me		Tra	avel a	ind S	ite T	ime:	Mil	eage	:		Mis	sc. S	uppli	es:		_		]





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

12 May 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Potable Well Work Order: 16E1054

Enclosed are the results of analyses for samples received by the laboratory on 05/11/16 14:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette Popli

Jeanette L. Poplin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/12/16 16:12

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESW-5-11-10:44	16E1054-01	Water	05/11/16 10:44	05/11/16 14:20

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100	Proje Proj			Reported: (16 16:12				
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-5-11-10:44 (16E1054-01)		Sample Type:	Water		Sample	d: 05/11/16 10:44		
Metals (Dissolved) by EPA 200 Series Methods								FILT
Iron, dissolved	ND mg/L	0.10	1	AE63518	05/11/16 15:09	05/11/16 17:14	EPA 200.7	
Manganese, dissolved	1.0 mg/L	0.020	1	AE63518	05/11/16 15:09	05/11/16 17:14	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS								FILT
Arsenic, dissolved	28 ug/L	0.40	1	AE63517	05/11/16 15:09	05/12/16 09:31	EPA 200.8	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/12/16 16:12

# Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD				
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag			
Batch AE63518 - EPA 200 Series													
Blank (AE63518-BLK1)		Prepared & Analyzed: 05/11/16											
Iron, dissolved	ND	0.10	mg/L										
Manganese, dissolved	ND	0.020	mg/L										
LCS (AE63518-BS1)				Prepared &	Analyzed:	05/11/16							
Iron, dissolved	2.16	0.10	mg/L	2.00		108	85-115						
Manganese, dissolved	0.212	0.020	mg/L	0.200		106	85-115						
Duplicate (AE63518-DUP1)	Sou	ce: 16E0997	7-02	Prepared &	Analyzed:	05/11/16							
Iron, dissolved	ND	0.10	mg/L		ND				20				
Manganese, dissolved	0.928	0.020	mg/L		0.937			0.958	20				
Matrix Spike (AE63518-MS1)	Sou	ce: 16E099	7-02	Prepared &	Analyzed:	05/11/16							
Iron, dissolved	2.19	0.10	mg/L	2.00	ND	109	70-130						
Manganese, dissolved	1.08	0.020	mg/L	0.200	0.937	70.1	70-130						
Matrix Spike Dup (AE63518-MSD1)	Sou	ce: 16E0997	7-02	Prepared &	Analyzed:	05/11/16							
Iron, dissolved	2.31	0.10	mg/L	2.00	ND 116		70-130	5.56	20				
Manganese, dissolved	1.10	0.020	mg/L	0.200	0.937	79.0	70-130	1.64	20				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/12/16 16:12

# Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63517 - EPA 200 Series										
Blank (AE63517-BLK1)				Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	ND	0.40	ug/L							
LCS (AE63517-BS1)				Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	20.3	0.40	ug/L	20.0		102	85-115			
Duplicate (AE63517-DUP1)	Sour	ce: 16E099	7-01	Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	25.7	0.40	ug/L		25.6			0.443	20	
Matrix Spike (AE63517-MS1)	Sour	ce: 16E099	7-01	Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	48.0	0.40	ug/L	20.0	25.6	112	70-130			
Matrix Spike Dup (AE63517-MSD1)	Sour	ce: 16E099	7-01	Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	48.2	0.40	ug/L	20.0	25.6	113	70-130	0.268	20	



# e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/12/16 16:12

#### **Notes and Definitions**

- FILT The sample was filtered in the lab prior to analysis. ND Analyte NOT DETECTED at or above the reporting limit
- Sample results reported on a dry weight basis dry
- REC Recovery
- RPD Relative Percent Difference

										r				7.	17-	<i>т</i> у	•••	7	' '\' '	۰.		,	ï											-		
Apha Analytical Laboratories Inc.		0 208 Ma: 707-4 clients	son S 68-04	itreet, 401 F	) 707	h, C/ -468-	954 5267				90	90 Ui	nioin I	Ce <i>ntra</i> Park 1	al Val Wy., i	<i>lle<b>y I</b> #113</i>	abora	a <i>tor</i> j Grovi	۷ ө, са 9			,	nai					Or to			eco	ord				
www.alpha-labs.com Waters, Sediments, Solids	639	E 98 Doughe 925-82	erty R	load,	Labo/ #35,   ⁻ ) 925	Dubli	n: CA	\ 945 )	68												Lat	No	10	bF	<u>=10</u>	<u>22</u>	57	/	_	Pag	je	of			0	4
Name:		Project		_		_							Т	_	Sic	natu	re bel	ow a	_ uthoriz	es w	orkiun	der te	rine s	tated	00.79	Veren	ride							-		
Town of Windsor - Drinking Wate	r		Es	po	sti	Po	ota	ble	϶V	Ve	)) 								٩na			_					5100	-			†			1		
Malling Address: 9291 Old Redwood Highway Building 400		Phase:										-	┞	Τ	<b>T</b>	Τ		T		T			r	-	-31 	-	Τ	T-	T			<b>TAT</b>		4		
Windsor, CA 95492 Project Contact (Hardcopy or PDF to): Elizabeth Cargay ecargay@townofwindsor.com		PO	 #															(Perdee	zuu./ ua, ivig, n, iva (uissoived) Alkalinity				Total Nitrogen (includes TKN, NO2, NO3)							st)	. (		For Rush			
Kent O'Brien kent.obrien@ghd.com		Bill to:		ma	onth	n e	nd	bill	ling				(ped)	ved)	lver)	(how)	olved)				ite as N		des TKN,		- total			/MO		Title 22 Scan (**Below List)	A JA	Ləb Approval Required	Lab Approval Required			
Field Sampler - Print Name & Signature		npie	C		iner		-	_			Ma	trix	As (Dissolved)	200.7 Fe (Dissolved)	Disso	200 8 Cr (Dissolved)	218.6 Cr6 (Dissolved)	No.	4 MG, 1		s N, Nitrite		gen (inclu		200.8 Vanadium	e		TPH G, BTEX, D/MO	STLC	tcan (**1		1 wk	Approval			
Sample Identification	<b></b>	ection	Iml VOA	Ą	Amper Glass		12S203	40	Other	eu	ater	-	200.8 As	00.7 Fe	M 2.00		18.6 Cr		Alkalinity	Chloride	Nitrate as	Sulfate	tal Nitro	Silica	0.8 Va	Phosphate	CAM 17	ЧG, E	6010 As STLC	le 22 S	(51	2 wk landard)				
ESW - 5-11 - 10;44	Date 5/11	Time 10544		×	ই তি	┝╴┥	ž	ĪŹ	ō	хX	Ň	ŭ,	X	_		<u>ة ا</u>	<u> </u>		<u>4                                    </u>		Î	ю П	₽	<u>ı</u>	20	d.	õ		8	Ë		$\frac{1}{2}$				
					T			+	$\square$				Í				+	╀	+	-				-	_				-		<u> </u>	Ker	<u> </u>	1		
																											_					_		1		
		. <u> </u>	$\left  \right $	-+	+-	$\square$		+	┢			+			+	_		+		┝				_										]		
			╂┤	╉	┥	⊢	+	╋	┢	_		+	-	-	+	+		╢	+								_		_							
			╉┤	╉	╋	╞┼╽	╉	╀	┢	_	┝╋	+				+		+		-	┢	-				_								1		
	-		$\square$			Ħ	╈	╧	ł			-	┢					┢	-		╀	-		-				-						1		
					+		+				-	-				-	-			ı		*	└── ' <b>*</b> ]			 	 ງງ	ر ح	`~	ai	~					
							+	t		_															IE	2		C	C	a	ľ					
·	-		┞╷				$\perp$						_						644	32	Prima	ary Ir	norga	anics	64	432.	1 N	02/N	103,	644	49 A	&B				
			┥┥	_	_			+-					⊢					-								Aipł	na t	04.1	<b>, 5</b> 0	<u>7, 5</u>	08, 5 ⁻	15.1,				
Relinquisted	I	Received										Da	Ite		Tim			┢	524	.2,	531.1	54	8.1,	549.	2								~			
JAN 1			Y	$\sum$	<u>Da</u>	re	)	R	<del>M</del>	a		4	<u>ç/n</u>	14	11	1-5	57	Ľ.	DPH	~				•	rt?	•	Å	Yes	(	$\mathcal{D}$	No	» (				
Relinquisbed by: David Pome	í	Received	1		Į.	Ŀ						_	<u>-1(</u> -	-16	Tim b	42	20	St	tate (	Sys	tem	Nur	nbe		•		•			<u></u>			ĵ,			
Relinquished by:		Received							_			Da			Tím		_		A Ge									Yes	$\langle$	$\supset$	No	$\sim$	$\supset$			
Relinquished by:		Received	•					_				Da	te		Tim	e			ampli lobal		Com	bany	/ Log		de: EDF to		ul Add	ress):								
Relinquished by:		Received	by:				_			-		Da	te		Tim	0		Tra	avel ar	id Si	te Tir	ne:	Milea	age:	- -	1	Misc	. Sup	plies	5:						
				_	_					_		_	_	-	1	_	_	<b>i</b>	-																	

Ľ





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

13 May 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Potable Well Work Order: 16E1210

Enclosed are the results of analyses for samples received by the laboratory on 05/12/16 14:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette Popli

Jeanette L. Poplin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/13/16 11:31

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	
EWS-5-11-16:42	16E1210-01	Water	05/11/16 16:42	05/12/16 14:15	
EWS-5-11-15:38	16E1210-02	Water	05/11/16 15:38	05/12/16 14:15	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking WaterProject Manager: Elizabeth Cargay8400 Windsor Rd.Project: Esposti Potable WellWindsor, CA 95492-0100Project Number: [none]								Reported: 05/13/16 11:31		
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note		
EWS-5-11-16:42 (16E1210-01)		Sample Type:	Water		Sample	d: 05/11/16 16:42				
Metals by EPA 200 Series Methods								P-02		
Iron	0.29 mg/L	0.10	1	AE63520	05/12/16 15:30	05/12/16 15:54	EPA 200.7			
Manganese	1.0 mg/L	0.020	1	AE63520	05/12/16 15:30	05/12/16 15:54	EPA 200.7			
Metals by EPA Method 200.8 ICP/MS								P-02		
Arsenic	41 ug/L	0.40	1	AE63373	05/12/16 15:30	05/13/16 10:26	EPA 200.8			
Metals (Dissolved) by EPA 200 Series Methods								FILT		
Iron, dissolved	ND mg/L	0.10	1	AE63518	05/12/16 15:11	05/12/16 15:44	EPA 200.7			
Manganese, dissolved	0.99 mg/L	0.020	1	AE63518	05/12/16 15:11	05/12/16 15:44	EPA 200.7			
Metals (Dissolved) by EPA Method 200.8 ICP/MS								FILT		
Arsenic, dissolved	41 ug/L	0.40	1	AE63517	05/12/16 14:15	05/13/16 10:39	EPA 200.8			
EWS-5-11-15:38 (16E1210-02)		Sample Type:	Water		Sample	d: 05/11/16 15:38				
Metals (Dissolved) by EPA 200 Series Methods								FILT		
Iron, dissolved	ND mg/L	0.10	1	AE63518	05/12/16 15:11	05/12/16 15:49	EPA 200.7			
Manganese, dissolved	0.97 mg/L	0.020	1	AE63518	05/12/16 15:11	05/12/16 15:49	EPA 200.7			
Metals (Dissolved) by EPA Method 200.8 ICP/MS								FILT		
Arsenic, dissolved	38 ug/L	0.40	1	AE63517	05/12/16 14:15	05/13/16 10:46	EPA 200.8			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/13/16 11:31

# Metals by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63520 - EPA 200 Series										
Blank (AE63520-BLK1)				Prepared &	Analyzed:	05/11/16				
Iron	ND	0.10	mg/L							
Manganese	ND	0.020	mg/L							
LCS (AE63520-BS1)				Prepared &	Analyzed:	05/11/16				
Iron	2.18	0.10	mg/L	2.00		109	85-115			
Manganese	0.213	0.020	mg/L	0.200		107	85-115			
Duplicate (AE63520-DUP1)	Sou	rce: 16E099	5-02	Prepared &	Analyzed:	05/11/16				
Iron	1.18	0.10	mg/L		1.06			11.2	20	
Manganese	0.995	0.020	mg/L		1.02			2.29	20	
Matrix Spike (AE63520-MS1)	Sou	rce: 16E099	5-02	Prepared &	Analyzed:	05/11/16				
Iron	3.22	0.10	mg/L	2.00	1.06	108	70-130			
Manganese	1.20	0.020	mg/L	0.200	1.02	93.3	70-130			
Matrix Spike Dup (AE63520-MSD1)	Sou	rce: 16E099	5-02	Prepared &	Analyzed:	05/11/16				
Iron	3.12	0.10	mg/L	2.00	1.06	103	70-130	3.35	20	
Manganese	1.20	0.020	mg/L	0.200	1.02	89.7	70-130	0.588	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/13/16 11:31

# Metals by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63373 - EPA 200 Series										
Blank (AE63373-BLK1)				Prepared: (	05/09/16 A	nalyzed: 05	/13/16			
Arsenic	ND	0.40	ug/L							
LCS (AE63373-BS1)				Prepared: (	05/09/16 A	nalyzed: 05	5/13/16			
Arsenic	21.5	0.40	ug/L	20.0		107	85-115			
Duplicate (AE63373-DUP1)	Sour	ce: 16E054	3-21	Prepared: (	05/09/16 A	nalyzed: 05	5/13/16			
Arsenic	ND	2.0	ug/L		ND			10.1	20	
Matrix Spike (AE63373-MS1)	Sour	ce: 16E054	3-21	Prepared: (	05/09/16 A	nalyzed: 05	5/13/16			
Arsenic	108	2.0	ug/L	100	ND	107	70-130			
Matrix Spike Dup (AE63373-MSD1)	Sour	ce: 16E054	3-21	Prepared: (	05/09/16 A	nalyzed: 05	5/13/16			
Arsenic	110	2.0	ug/L	100	ND	109	70-130	1.83	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/13/16 11:31

# Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63518 - EPA 200 Series										
Blank (AE63518-BLK1)				Prepared &	Analyzed:	05/11/16				
Iron, dissolved	ND	0.10	mg/L							
Manganese, dissolved	ND	0.020	mg/L							
LCS (AE63518-BS1)				Prepared &	Analyzed:	05/11/16				
Iron, dissolved	2.16	0.10	mg/L	2.00		108	85-115			
Manganese, dissolved	0.212	0.020	mg/L	0.200		106	85-115			
Duplicate (AE63518-DUP1)	Sou	ırce: 16E0997	7-02	Prepared &	Analyzed:	05/11/16				
Iron, dissolved	ND	0.10	mg/L		ND				20	
Manganese, dissolved	0.928	0.020	mg/L		0.937			0.958	20	
Matrix Spike (AE63518-MS1)	Sou	ırce: 16E0997	7-02	Prepared &	Analyzed:	05/11/16				
Iron, dissolved	2.19	0.10	mg/L	2.00	ND	109	70-130			
Manganese, dissolved	1.08	0.020	mg/L	0.200	0.937	70.1	70-130			
Matrix Spike Dup (AE63518-MSD1)	Sou	ırce: 16E0997	7-02	Prepared &	Analyzed:	05/11/16				
Iron, dissolved	2.31	0.10	mg/L	2.00	ND	116	70-130	5.56	20	
Manganese, dissolved	1.10	0.020	mg/L	0.200	0.937	79.0	70-130	1.64	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/13/16 11:31

# Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63517 - EPA 200 Series										
Blank (AE63517-BLK1)				Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	ND	0.40	ug/L							
LCS (AE63517-BS1)				Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	20.3	0.40	ug/L	20.0		102	85-115			
Duplicate (AE63517-DUP1)	Sour	ce: 16E099	7-01	Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	25.7	0.40	ug/L		25.6			0.443	20	
Matrix Spike (AE63517-MS1)	Sour	ce: 16E099	7-01	Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	48.0	0.40	ug/L	20.0	25.6	112	70-130			
Matrix Spike Dup (AE63517-MSD1)	Sour	ce: 16E099	7-01	Prepared &	Analyzed:	05/11/16				
Arsenic, dissolved	48.2	0.40	ug/L	20.0	25.6	113	70-130	0.268	20	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/13/16 11:31

#### **Notes and Definitions**

- FILT The sample was filtered in the lab prior to analysis.
- P-02 Sample was received with insufficient preservative. Sample was preserved and allowed to sit 24 hours before further processing.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- REC Recovery
- RPD Relative Percent Difference

Alpha Analytical Laboratories Inc. www.alpha-labs.com WATERS, SEDIMENTS, SOLIDS	208 Mas 707-4 clients	son S 68-0- servic Bay A arty R	treet, 401 F cos@ trea f coad,	) 707- alpha . <i>abora</i> #35, C	n, CA 468-5 -labs. atory Dublin,	9548 267 .com , CA	I	8	9	9090		oin Pa	ark V	Vy. #	113	abora Elk G 16-681	rove,	, CA 9	5624	Lab	Cł ∾	nai //					-	de dy	R	ecord	~	3.0	
Name:	Project	ID:	_							_	]	_		Sig	nature	e belc	w au	thorize	es wo	rk und	der te	rms s	ated	on rev	/erse	side,		-				ר	
Town of Windsor - Drinking Water		Es	ро	sti	Po	tat	ble	W	ell								Δ	na	hze	sie	R	٥n	116	het						TAT		]	
Mailing Address: 9291 Old Redwood Highway Building 400	Phase:							-		_	_			<del>_</del>	-	r	- -		יעי ד–		, <b>.</b>												
Windsor, CA 95492																	18	5				(ĉ								24  hr	÷		
Project Contact (Hardcopy or PDF to): Elizabeth Cargay	PO	H															loive					05,1									For Rush		
ecargay@townofwindsor.com		τ															Diss			z		z z							List	Lab	ed Fo		
Kent O'Brien kent.obrien@ghd.com	Bill to:		ma	onth	n en	id .t	oillii	ng				As (Dissolved)	200.7 Fe (Dissolved)	200.7 Mn (Dissolved)	(ved)	218.6 Cr6 (Dissolved)	Mg. K. Na (Dissolved)			N, Nitrite as N		Total Nitrogen (includes TKN, NO2, NO3)		ı - total			TPH G, BTEX, D/MO		Title 22 Scan (**Below List)	Approval Required	   Required		
Field Sampler - Print Name & Signature	- <b>I</b>	С	onta	iner	F	res	erva	ative	M	atri	x	isso	lisso	Disso	isso	Diss	- <u>P</u>	ñ		, Z		(inclu		200.8 Vanadium			X	2	*.) u		Ľab Approval		
	mple ection		Í		ΓŤ		Π		╈			Ns (D	e [1]	<u>1</u>   <del>2</del>	19	l eg			0	1 10		Lago.		'ana	ate		BTE	6010 As STLC	Sca	0	d A p		
Sample	conon			ž %	e Ocacak	200	ō	5	,			200.8 /	17.0	14	0.8	9.0	200.7 Ca. I	Alkalinity	Chloride	Nitrate as	Sulfate	al Nitr	ca	V 8.0	Phosphate	CAM 17	0 T	0 A:	9 22	2 wk (standard)	13		
Identification Date				Glass			NH4CI	<del>ă</del> 2	_	Soil			s S	-	20(	51	30	ÌĮ₹	ਤਿ	Ž	Sul	Tota	Silica	200	Ρř	S	ТР	601	Title	$\bigcirc$	L	1/1/1	1)
EWS-5-11-16:42 5/11	16:42	-	× ×						1	-		x	1	×					_											Totalo	+D;	suped (0 "	/
EUS-5-11-15:38 S/11	15:38	_	-	+		+-		┦	₽	+	-	لا	×_	2	-	+	-	-		-							_			\$5/1000	. h) .	whad (both) (disched)	
		┢		+	┠╼┠╸	╋		_	╀	+					-	+	+-		-		-					_						4	
					┝╌┠╴	1		+	╀╴						-					-		· · ·				-		-				1	
							$\square$		┢							+	1				-												
																																ł	
								_							_											_			_			1	
		┨╴╣		_	┝╺┠	╀	$\square$	+	╋						-	+		-			*	*7	-:1	1-	~	าก	C		<b>_</b> .	_			
	+		-+	+-		+		+	╞		-		_			-	-	-				*7	][	le	4	.2	3	C	a	n		1	
		┢		+	┝╶╋╴	+		+	╋	+		_			┢	+	-	644	22 0	Drima			nior	- 64	422	1. N/				49 A&B			
				+-		+			╈		•					+	┢											_		08, 515.1,			
	_						$\Box$		T			_				1	1					8.1,			1.001			, 00	1,0	<u></u>			
Relinquished by	Received	1	2	L	٣	0	4 .		•		Date		,	Time			СГ	) PH		-	,						Yes		5	No (	$\overline{}$		
Relinquighed by:	Received			$\int $	1a	Ka //	lis	n	/		S Date	1/2	/16		1;0					7							103		2		<u>ب</u> بر		
1 Val Giald.	1 COUNCE		Ì	/	H	/					Dati	° //	1	Time	۱/	5	Sta	ate S	sysi	tem	Nu	mbe	Γ:	-		<u> </u>	v			-	ی د چند ۲۰۰		
Relinquished by:	Received	i by,	/	+>	Ø						Date			Time			C ^	Geo	otro		ED	È P.					V	6	7	No	$\overline{}$		
Relinquished by:	Received	1 hvr									Date			Time													Yes	$\overline{\ }$		No (	~		
······································	I COEWED	<i>.</i> Uy.									Jat	6			ď			mplii obal I		om	pany	/ LOg	-	_	(Em-	il And	Jess);						
Relinquished by:	Received	d by:									Date	e		Time	9			vel ar		të Tir	ne:	Milea			_			plies	5:				
																																1	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

18 May 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Potable Well Work Order: 16E1515

Enclosed are the results of analyses for samples received by the laboratory on 05/17/16 15:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette Popli

Jeanette L. Poplin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/18/16 16:44

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESW-5-17-04:00	16E1515-01	Water	05/17/16 04:00	05/17/16 15:15

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100		ect Manager: Eliz Project: Esp ject Number: [nor	osti Pota	0,				Reported: /16 16:44
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-5-17-04:00 (16E1515-01)		Sample Type:	Water		Sample	d: 05/17/16 04:00		
Metals by EPA 200 Series Methods								P-02
Iron	ND mg/L	0.10	1	AE63520	05/18/16 07:30	05/18/16 11:15	EPA 200.7	
Manganese	0.88 mg/L	0.020	1	AE63520	05/18/16 07:30	05/18/16 11:15	EPA 200.7	
Metals by EPA Method 200.8 ICP/MS								P-02
Arsenic	53 ug/L	0.40	1	AE63743	05/18/16 07:46	05/18/16 10:57	EPA 200.8	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/18/16 16:44

# Metals by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63520 - EPA 200 Series										
Blank (AE63520-BLK1)				Prepared &	Analyzed:	05/11/16				
Iron	ND	0.10	mg/L							
Manganese	ND	0.020	mg/L							
LCS (AE63520-BS1)				Prepared &	Analyzed:	05/11/16				
Iron	2.18	0.10	mg/L	2.00		109	85-115			
Manganese	0.213	0.020	mg/L	0.200		107	85-115			
Duplicate (AE63520-DUP1)	Sou	ırce: 16E099	5-02	Prepared &	Analyzed:	05/11/16				
Iron	1.18	0.10	mg/L		1.06			11.2	20	
Manganese	0.995	0.020	mg/L		1.02			2.29	20	
Matrix Spike (AE63520-MS1)	Sou	Irce: 16E099	5-02	Prepared &	Analyzed:	05/11/16				
Iron	3.22	0.10	mg/L	2.00	1.06	108	70-130			
Manganese	1.20	0.020	mg/L	0.200	1.02	93.3	70-130			
Matrix Spike Dup (AE63520-MSD1)	Sou	ırce: 16E099	5-02	Prepared &	Analyzed:	05/11/16				
Iron	3.12	0.10	mg/L	2.00	1.06	103	70-130	3.35	20	
Manganese	1.20	0.020	mg/L	0.200	1.02	89.7	70-130	0.588	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/18/16 16:44

# Metals by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63743 - EPA 200 Series										
Blank (AE63743-BLK1)				Prepared &	Analyzed:	05/18/16				
Arsenic	ND	0.40	ug/L							
LCS (AE63743-BS1)				Prepared &	Analyzed:	05/18/16				
Arsenic	21.6	0.40	ug/L	20.0		108	85-115			
Duplicate (AE63743-DUP1)	Sour	ce: 16E151	5-01	Prepared &	Analyzed:	05/18/16				
Arsenic	53.7	0.40	ug/L		52.5			2.17	20	
Matrix Spike (AE63743-MS1)	Sour	ce: 16E151	5-01	Prepared &	Analyzed:	05/18/16				
Arsenic	75.8	0.40	ug/L	20.0	52.5	116	70-130			
Matrix Spike Dup (AE63743-MSD1)	Sour	ce: 16E151	5-01	Prepared &	Analyzed:	05/18/16				
Arsenic	75.5	0.40	ug/L	20.0	52.5	115	70-130	0.314	20	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	05/18/16 16:44

#### Notes and Definitions

- P-02 Sample was received with insufficient preservative. Sample was preserved and allowed to sit 24 hours before further processing.
- ND Analyte NOT DETECTED at or above the reporting limit
- Sample results reported on a dry weight basis dry
- REC Recovery
- RPD Relative Percent Difference



.

Corporate Laboratory 208 Mason Street, Ukiah, CA 95482 707-468-0401 F) 707-468-5267 clientservices@atpha-labs.com

Central Valley Laboratory 9090 Unioin Park Wy., #113. Elk Grove, CA 95624 916-686-5190 F) 916-686-5192

**Chain of Custody Record** NoF ISIS

Work Order

alaha	clientservices@aipha-labs.com				
Alples 7 Aux/Preced 1 after BAC SEUS IPC WWW, alpha-labs.com	<i>Bay Area Laboratory</i> 6398 Dougherty Road, #35, Dublin, CA 94568 のってっか ようろち りのたんの3番6319		Lab No. 16E1515	Pageot	
WATERS, SEDIMENTS, SOLUDS		Signature below au	Signature below authorizes work under terms stated on reverse side.		
Name: Town of Windsor - Drinking Water	Project ID: Source Chemical	A	Analysis Request	TAT See note	
Mailing Address: 9291 Oki Redwood Highway Building 400	Phase: Esposti Well			Haus The State The State T	/
Windsor, CA 95492 Project Contact (Hardcopy or PDF to): Elizabeth Cargay	PO# 200336		'zon 'ny.	tuired For F	æ,f
ecargay@townorwingsor.com Kent.OBrien kent.obrien@ghd.com	Bill to: month end billing		Nitrite a	Requiring	
Field Sampler - Print Name & Signature	Sample Container Preservative Matrix Collection	8 As 7 Fe 8 Cr 8 Cr 6 Cr6	7 Ca, Mg Jlinity ate as N, ate 1 Nitrogen ( 33 33 33 33 33 33 33 33 33 33 33 33 33	÷	
Sample	Date Lime	518 500 [°] 500 [°]	200 2011 2011 2011 2011 2013 2014 2014 2014	₩± <b>*</b>	THT THE
Z(11-5-18-13:00		×		* Cheserve in	·····································
00:81-9,				Ľ	
w-5-16-24:00					3 24-41
62W-5-12-04:00					
				an so my	
				A LING K	
			**Title 22 Scan	can	
				9 64440 A&H	
			64432 Primary Inorganics, 04432.1 NUCLINOS, 2012, 515, 1	507, 508, 515.1,	
			524.2. 531.1, 548.1, 549.2		
and the all	Reproved by August		CDPH Write On EDT Report? Yes (	) v (×	
Chairsinbuley	Ulla Pristikare	4	of the second	)	
· / Zid parsenteres	Recorded by:	Clair KSS			<del>.</del>
(1990 milele	Earle Received by	Date	CA Geotracker EDF Report	0 2 0	
Keithing was a	7				
Relinquished by:	Received by:	Date	Sampling Company Log Court. Global ID: EDF IA (Enail Actress):		
Relinquished by	Received by.	Date Time	Travel and Site Time: Mileage: Misc. Sup	- 2002	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

01 June 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Potable Well Work Order: 16E1580

Enclosed are the results of analyses for samples received by the laboratory on 05/17/16 15:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Robin C. Edens For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	06/01/16 10:45

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESW-5-16-13:00	16E1580-01	Water	05/16/16 13:00	05/17/16 15:15
ESW-5-16-18:00	16E1580-02	Water	05/16/16 18:00	05/17/16 15:15
ESW-5-16-24:00	16E1580-03	Water	05/17/16 00:00	05/17/16 15:15



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100		Project Manager: Elizabeth Cargay Project: Esposti Potable Well Project Number: [none]						Reported: 06/01/16 10:45	
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note	
ESW-5-16-13:00 (16E1580-01)		Sample Type:	: Water		Sample	d: 05/16/16 13:00			
Metals by EPA 200 Series Methods									
Iron	0.10 mg/L	0.10	1	AE64055	05/25/16 12:54	05/26/16 11:40	EPA 200.7		
Manganese	0.88 mg/L	0.020	1	AE64055	05/25/16 12:54	05/26/16 11:40	EPA 200.7		
Metals by EPA Method 200.8 ICP/MS									
Arsenic	44 ug/L	0.50	1	AE64103	05/26/16 14:54	05/28/16 01:01	EPA 200.8		
ESW-5-16-18:00 (16E1580-02)		Sample Type:	: Water		Sample	d: 05/16/16 18:00			
Metals by EPA 200 Series Methods									
Iron	ND mg/L	0.10	1	AE64055	05/25/16 12:54	05/26/16 14:42	EPA 200.7		
Manganese	0.87 mg/L	0.020	1	AE64055	05/25/16 12:54	05/26/16 14:42	EPA 200.7		
Metals by EPA Method 200.8 ICP/MS									
Arsenic	49 ug/L	0.50	1	AE64103	05/26/16 14:54	05/31/16 12:03	EPA 200.8		
ESW-5-16-24:00 (16E1580-03)		Sample Type:	: Water		Sample	d: 05/17/16 00:00			
Metals by EPA 200 Series Methods									
Iron	0.11 mg/L	0.10	1	AE64055	05/25/16 12:54	05/26/16 14:48	EPA 200.7		
Manganese	0.85 mg/L	0.020	1	AE64055	05/25/16 12:54	05/26/16 14:48	EPA 200.7		
Metals by EPA Method 200.8 ICP/MS									
Arsenic	52 ug/L	0.50	1	AE64103	05/26/16 14:54	05/31/16 12:11	EPA 200.8		





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	06/01/16 10:45

# Metals by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC	RPD		
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE64055 - Metals Digest										
Blank (AE64055-BLK1)				Prepared: (	)5/25/16 A	nalyzed: 05	/26/16			
Iron	ND	0.10	mg/L							
Manganese	ND	0.020	mg/L							
LCS (AE64055-BS1)				Prepared: (	)5/25/16 A	nalyzed: 05	/26/16			
Iron	1.96	0.10	mg/L	2.00		98.0	85-115			
Manganese	0.191	0.020	mg/L	0.200		95.4	85-115			
Duplicate (AE64055-DUP1)	Sour	ce: 16E1580	0-01	Prepared: (	)5/25/16 A	nalyzed: 05	/26/16			
Iron	0.102	0.10	mg/L		ND			2.08	20	
Manganese	0.891	0.020	mg/L		0.882			1.01	20	
Matrix Spike (AE64055-MS1)	Sour	ce: 16E1580	0-01	Prepared: (	)5/25/16 A	nalyzed: 05	/26/16			
Iron	1.97	0.10	mg/L	2.00	ND	93.3	70-130			
Manganese	1.06	0.020	mg/L	0.200	0.882	90.0	70-130			
Matrix Spike (AE64055-MS2)	Sour	ce: 16E1981	-02	Prepared: (	05/25/16 A	nalyzed: 05	/26/16			
Iron	2.09	0.10	mg/L	2.00	0.110	99.2	70-130			
Manganese	0.223	0.020	mg/L	0.200	0.0252	99.0	70-130			
Matrix Spike Dup (AE64055-MSD1)	Sour	ce: 16E1580	0-01	Prepared: (	05/25/16 A	nalyzed: 05	/26/16			
Iron	1.90	0.10	mg/L	2.00	ND	90.0	70-130	3.43	20	
Manganese	1.06	0.020	mg/L	0.200	0.882	86.9	70-130	0.589	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	06/01/16 10:45

# Metals by EPA Method 200.8 ICP/MS - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE64103 - EPA 200.8										
Blank (AE64103-BLK1)				Prepared: (	05/26/16 A	nalyzed: 05	/27/16			
Arsenic	ND	0.50	ug/L							
LCS (AE64103-BS1)	P ND 0.50 ug/L P 21.5 0.50 ug/L Source: 16E1994-01 P			Prepared: (	05/26/16 A	nalyzed: 05	/27/16			
Arsenic	21.5	0.50	ug/L	20.0		107	85-115			
Duplicate (AE64103-DUP1)	Sou	rce: 16E1994	4-01	Prepared: (	05/26/16 A	nalyzed: 05	/27/16			
Arsenic	ND	2.0	ug/L		ND				20	R-



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: [none]	06/01/16 10:45

#### **Notes and Definitions**

- R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- REC Recovery
- RPD Relative Percent Difference

Corporate Laboratory 208 Mason Street, Ukiah, CA 95482 707-468-0401 F) 707-468-5267 clientservices@atpha-fabs.com

Central Valley Laboratory 9090 Union Park WV , #113. Bik Grove: CA 05624 916-686-6150: F1 916-686-5152

**Chain of Custody Record** Work Order

Motion A Analysis of allowed says fix	14:10	Cirent Ser Vic dy System a value v Cire				
www.aipha-labs.com Waters, Sediments, Souds	6398 Dove 925	Bay Area Laboratory 6398 Dougherty Road R35, Dumin, CA 94568 925-828-6226 F) 925-828-6309		Late No. 166 1580	Parte. / of /	
Narie: Narie:	Project ID	ct ID:	Signature bolow.	Signature below authorizes work under terms stated on reverse side.		
Town of Windsor - Drinking Water		Source Chemical		Analysis Request	TAT Cor null	
Mailing Address: 9299 Otd Rerwood Highway Burlding 400	0 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Esposti Well				
Windson, UA Starts Project Contact (Hardcopy or PDF to): Etizabeth Cargay		PO# 200336		N' NOS'	₩ 2	2.L
ecargay@townorwindsor.com kent.0faren kent.obrien@ghd.com	Bill to:	month end billing		itrite as TXI sebuic	Atterovel Regurad 1 wk	
Field Sampler - Print Name & Signature	Sample Collection		As Fe Mn Cr	N 'N Se a ap	). <del>ne∋2.5(</del> )	
Sample Identification	Date	20ij Maset Jone Other Other HRO3 HRO3 HRO3 HRO3 HRC Glass HRO3 HRC HCC HCC HCC HCC HCC HCC HCC HCC HCC	218.6 200.8 200.8 200.8 200.8	Alkalii Chlori Nitrati Sulfal Iotal N Silica	ξų. V	747
1-(11-5-18-13:00			XXX			L Stender
- 19	11		ŧ		1/rejerie in	
N	10	XX 00:52	XXXX		1891	K 2 4.61
60-01-5-0	anho 21/5		X X X		*	
					* cr sepulo	æ
				**Title 22 Cran		
					OCAL	
				64432 Primary Inorganics, 64432 1 NO2/NO3, 64449 A&B	02/NO3, 64449 A&B	
				Asbestos, Perchlorate, Gross Alpha, 504.1, 507, 508, 515.1	04.1, 507, 508, 515.1.	
				524.2, 531.1, 548.1, 549.2		
Relinquested of	Rec	Press 20 hand a Cherin	Sair Time	CDPH Write On EDT Report?	Yes 🔨 No 🔘	
Fundayistic by 2	Rec	Received by.		State System Number:		
(dellar herela	2240		5/17/11/11/5/5			
Reingurned by	Х <del>е</del> с	and the second sec			Yes ( No (	
xeadushed by	1 A	Geceived by	Cate Tume	OCC: EDF to (Emi	(\$\$\$);	
Resinquished by:	ŭ ŭ	Received by.	Date	Travel and Site Time: Mileage: Misc	Misc Supplies:	
						_





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

03 June 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Potable Well Work Order: 16E1535

Enclosed are the results of analyses for samples received by the laboratory on 05/17/16 15:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Chelseah Sandehin

Chelsea L. Sandelin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESW-5-17-10:00	16E1535-01	Water	05/17/16 10:00	05/17/16 15:15

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100		Project Manager: Elizabeth Cargay Project: Esposti Potable Well Project Number: 4910017 / Esposti Well						
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-5-17-10:00 (16E1535-01)		Sample Type:	: Water		Sample	d: 05/17/16 10:00		
Metals (Drinking Water) by EPA 200 Series Methods								
Calcium	22 mg/L	1.0	1	AE64104	05/26/16 15:05	05/27/16 15:08	EPA 200.7	
Iron	ND ug/L	100	1	AE64104	05/26/16 15:05	05/27/16 15:08	EPA 200.7	
Magnesium	16 mg/L	1.0	1	AE64104	05/26/16 15:05	05/27/16 15:08	EPA 200.7	
Mercury	ND ug/L	1.0	1	AE64068	05/26/16 05:57	05/26/16 12:30	EPA 245.1	
Sodium	53 mg/L	1.0	1	AE64104	05/26/16 15:05	05/27/16 15:08	EPA 200.7	
Metals by EPA 200 Series Methods								
Chromium, hexavalent	ND ug/L	1.0	1	AE63824	05/19/16 20:55	05/19/16 20:55	EPA 218.6	
Metals by EPA Method 200.8 ICP/MS								
Aluminum	ND ug/L	50	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Antimony	ND ug/L	6.0	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Arsenic	57 ug/L	2.0	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Barium	150 ug/L	100	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Beryllium	ND ug/L	1.0	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Cadmium	ND ug/L	1.0	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Chromium	ND ug/L	10	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Copper	ND ug/L	50	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Lead	ND ug/L	5.0	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Manganese	860 ug/L	20	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Nickel	ND ug/L	10	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Selenium	ND ug/L	5.0	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Silver	ND ug/L	10	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Thallium	ND ug/L	1.0	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Uranium	ND pCi/l	1.0	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Vanadium	ND ug/L	3.0	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	
Zinc	ND ug/L	50	4	AE64054	05/25/16 12:49	05/26/16 11:53	EPA 200.8	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100		ect Manager: Eliz Project: Esp ject Number: 491	oosti Pota	able Well	ell			Reported: 06/03/16 16:35	
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note	
ESW-5-17-10:00 (16E1535-01)		Sample Type:	Water		Sample	d: 05/17/16 10:00			
Conventional Chemistry Parameters by APHA/	EPA Methods								
Aggressive Index	11.68 NU	2.00	1	AE64104	05/26/16 15:05	05/31/16 13:55	AWWA		
Ammonia as NH3	ND mg/L	0.50	1	AE63917	05/23/16 08:13	05/23/16 17:00	SM4500NH3C		

Aggressive Index	11.68 NU	2.00	1	AE64104	05/26/16 15:05	05/31/16 13:55	AWWA	
Ammonia as NH3	ND mg/L	0.50	1	AE63917	05/23/16 08:13	05/23/16 17:00	SM4500NH3C	
Bicarbonate	270 mg/L	5.0	1	AE63838	05/23/16 10:00	05/23/16 12:08	SM2320B	
Carbonate	ND mg/L	5.0	1	AE63838	05/23/16 10:00	05/23/16 12:08	SM2320B	
Color	ND CU	5.0	1	AE63720	05/18/16 09:40	05/18/16 09:40	SM2120B	
Hydroxide	ND mg/L	5.0	1	AE63838	05/23/16 10:00	05/23/16 12:08	SM2320B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AE63736	05/19/16 10:00	05/20/16 16:00	SM5540C	
Odor	ND T.O.N.	1.0	1	AE63720	05/18/16 09:15	05/18/16 09:15	EPA 140.1	
Perchlorate	ND ug/L	4.0	1	AE63921	05/23/16 17:34	05/23/16 17:34	EPA 314.0	
pH	7.60 pH Units	1.68	1	AE63882	05/18/16 17:00	05/18/16 17:00	SM4500-H+ B	T-14
Phosphate, Total	1.4 mg/L	0.20	2	AE63977	05/24/16 08:00	05/24/16 12:10	SM4500-P E	
Specific Conductance (EC)	520 umhos/cm	20	1	AE63882	05/18/16 17:00	05/18/16 17:00	SM2510B	
Sulfide	ND mg/L	0.10	1	AE63936	05/23/16 13:30	05/23/16 15:00	SM4500SD	
Total Dissolved Solids	350 mg/L	10	1	AE63820	05/19/16 09:07	05/23/16 09:22	SM2540C	
Turbidity	0.26 NTU	0.10	1	AE63882	05/18/16 17:00	05/18/16 17:00	SM2130B	
Silica	50 mg/L	5.0	5	AE63850	05/19/16 14:00	05/19/16 16:00	SM4500-SiO2 C	
Total Alkalinity as CaCO3	220 mg/L	5.0	1	AE63838	05/23/16 10:00	05/23/16 12:08	SM2320B	
Hardness, Total	120 mg/L	5	1	AE64104	05/26/16 15:05	05/27/16 15:08	SM2340B	
Miscellaneous Physical/Conventional Chemi	istry Parameters							
Cyanide (total)	ND mg/L	0.10	1	AE64032	05/25/16 16:00	05/26/16 10:55	10-204-00-1X	
Anions by EPA Method 300.0								
Chloride	21 mg/L	0.50	1	AE63804	05/18/16 19:56	05/18/16 19:56	EPA 300.0	
Fluoride	0.15 mg/L	0.10	1	AE63804	05/18/16 19:56	05/18/16 19:56	EPA 300.0	
Nitrate as N	ND mg/L	0.40	1	AE63804	05/18/16 19:40	05/18/16 19:40	EPA 300.0	
Nitrite as N	ND mg/L	0.40	1	AE63804	05/18/16 19:56	05/18/16 19:56	EPA 300.0	
Sulfate as SO4	14 mg/L	0.50	1	AE63804	05/18/16 19:56	05/18/16 19:56	EPA 300.0	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-5-17-10:00 (16E1535-01)		Sample Type:	Water		Sample	d: 05/17/16 10:00		
Volatile Organic Compounds by EPA Method 524.2								
Benzene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Carbon tetrachloride	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Chlorobenzene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
1,2-Dichlorobenzene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
1,4-Dichlorobenzene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
1,1-Dichloroethane	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
1,2-Dichloroethane	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
1,1-Dichloroethene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
cis-1,2-Dichloroethene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
trans-1,2-Dichloroethene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
1,2-Dichloropropane	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
1,3-Dichloropropene (total)	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Ethylbenzene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Methyl tert-butyl ether	ND ug/L	3.0	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Methylene chloride	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Styrene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
1,1,2,2-Tetrachloroethane	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Tetrachloroethene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Toluene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
1,2,4-Trichlorobenzene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
1,1,1-Trichloroethane	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
1,1,2-Trichloroethane	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Trichloroethene	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Trichlorofluoromethane	ND ug/L	5.0	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Trichlorotrifluoroethane	ND ug/L	10	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Vinyl chloride	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Xylenes (total)	ND ug/L	0.50	1	AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Surrogate: Bromofluorobenzene	94.1 %	70-130		AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Surrogate: Dibromofluoromethane	78.0 %	70-130		AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	
Surrogate: Toluene-d8	89.2 %	70-130		AE64140	05/27/16 12:18	05/27/16 22:06	EPA 524.2	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100	-	ect Manager: Eliz Project: Esp oject Number: 491	oosti Pota	able Well	ell			Reported: /16 16:35
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-5-17-10:00 (16E1535-01)		Sample Type:	Water		Sample	d: 05/17/16 10:00		
Nitrogen- and Phosphorus- Pesticides by EPA M	ethod 507							
Alachlor	ND ug/L	1.0	1	AE64018	05/24/16 14:02	05/28/16 07:01	EPA 507	
Atrazine	ND ug/L	0.50	1	AE64018	05/24/16 14:02	05/28/16 07:01	EPA 507	
Molinate	ND ug/L	2.0	1	AE64018	05/24/16 14:02	05/28/16 07:01	EPA 507	
Simazine	ND ug/L	1.0	1	AE64018	05/24/16 14:02	05/28/16 07:01	EPA 507	
Thiobencarb	ND ug/L	1.0	1	AE64018	05/24/16 14:02	05/28/16 07:01	EPA 507	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	88.1 %	70-130		AE64018	05/24/16 14:02	05/28/16 07:01	EPA 507	
Organic Analytes by EPA Method 504.1								
1,2-Dibromo-3-chloropropane	ND ug/L	0.010	1	AE63739	05/18/16 07:30	05/19/16 07:38	EPA 504.1	
1,2-Dibromoethane (EDB)	ND ug/L	0.020	1	AE63739	05/18/16 07:30	05/19/16 07:38	EPA 504.1	
Chlorinated Acids by EPA Method 515.1								
Bentazon	ND ug/L	2.0	1	AE64076	05/26/16 07:26	05/28/16 20:49	EPA 515.1	
2,4-D	ND ug/L	10	1	AE64076	05/26/16 07:26	05/28/16 20:49	EPA 515.1	
Dalapon	ND ug/L	10	1	AE64076	05/26/16 07:26	05/28/16 20:49	EPA 515.1	
Dinoseb	ND ug/L	2.0	1	AE64076	05/26/16 07:26	05/28/16 20:49	EPA 515.1	
Pentachlorophenol	ND ug/L	0.20	1	AE64076	05/26/16 07:26	05/28/16 20:49	EPA 515.1	
Picloram	ND ug/L	1.0	1	AE64076	05/26/16 07:26	05/28/16 20:49	EPA 515.1	
2,4,5-TP (Silvex)	ND ug/L	1.0	1	AE64076	05/26/16 07:26	05/28/16 20:49	EPA 515.1	
Surrogate: DCAA	99.8 %	70-130		AE64076	05/26/16 07:26	05/28/16 20:49	EPA 515.1	
Glyphosate by EPA Method 547								
Glyphosate	ND ug/L	25	1	AE63749	05/18/16 08:59	05/19/16 06:44	EPA 547	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100		ect Manager: Eliz Project: Esp ject Number: 491	osti Pota	able Well	ell			Reported: 16 16:35
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-5-17-10:00 (16E1535-01) Diquat by EPA Method 549.2		Sample Type:	Water		Sample	d: 05/17/16 10:00		
Diquat	ND ug/L	4.0	1	AE63821	05/19/16 09:12	05/19/16 21:08	EPA 549.2	
Semivolatile Organic Compounds by EPA Metho	od 525.2							
Benzo (a) pyrene	ND ug/L	0.10	1	AE64017	05/25/16 06:00	06/02/16 22:43	EPA 525.2	
Di(2-ethylhexyl)adipate	ND ug/L	5.0	1	AE64017	05/25/16 06:00	06/02/16 22:43	EPA 525.2	
Di(2-ethylhexyl)phthalate	ND ug/L	3.0	1	AE64017	05/25/16 06:00	06/02/16 22:43	EPA 525.2	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	100 %	70-130		AE64017	05/25/16 06:00	06/02/16 22:43	EPA 525.2	
Surrogate: Triphenyl phosphate	124 %	70-130		AE64017	05/25/16 06:00	06/02/16 22:43	EPA 525.2	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Metals (Drinking Water) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE64068 - EPA 245.1 Hg Water										
Blank (AE64068-BLK1)				Prepared &	k Analyzed:	05/26/16				
Mercury	ND	1.0	ug/L							
LCS (AE64068-BS1)				Prepared &	a Analyzed:	05/26/16				
Mercury	2.41	1.0	ug/L	2.50		96.4	85-115			
Duplicate (AE64068-DUP1)	Sou	rce: 16E181:	3-01	Prepared &	analyzed:	05/26/16				
Mercury	ND	1.0	ug/L		ND				20	
Matrix Spike (AE64068-MS1)	Sou	rce: 16E181	3-01	Prepared & Analyzed: 05/26/16						
Mercury	2.53	1.0	ug/L	2.50	ND	101	70-130			
Matrix Spike (AE64068-MS2)	Sou	rce: 16E153	5-01	Prepared & Analyzed: 05/26/16						
Mercury	2.23	1.0	ug/L	2.50	ND	89.2	70-130			
Matrix Spike Dup (AE64068-MSD1)	Sou	rce: 16E181	3-01	Prepared & Analyzed: 05/26/16						
Mercury	2.53	1.0	ug/L	2.50	ND	101	70-130	0.00	20	
Batch AE64104 - Metals Digest										
Blank (AE64104-BLK1)				Prepared: (	05/26/16 A	nalyzed: 05	/27/16			
Calcium	ND	1.0	mg/L							
Iron	ND	100	ug/L							
Magnesium	ND	1.0	mg/L							
Sodium	ND	1.0	mg/L							
LCS (AE64104-BS1)				Prepared: (	05/26/16 A	nalyzed: 05	/27/16			
Calcium	7.22	1.0	mg/L	8.00		90.2	85-115	-		
Iron	1880	100	ug/L	2000		93.8	85-115			
Magnesium	7.10	1.0	mg/L	8.00		88.7	85-115			
Sodium	7.52	1.0	mg/L	8.00		94.0	85-115			



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Metals (Drinking Water) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE64104 - Metals Digest										
Duplicate (AE64104-DUP1)	Sou	rce: 16E164 [,]	1-01	Prepared: (	05/26/16 A	nalyzed: 05	/27/16			
Calcium	26.6	1.0	mg/L		26.4			0.622	20	
Iron	ND	100	ug/L		ND				20	
Magnesium	19.4	1.0	mg/L		19.3			0.0967	20	
Sodium	19.6	1.0	mg/L		19.5			0.891	20	
Matrix Spike (AE64104-MS1)	Sou	Source: 16E1641-01 Pre			05/26/16 A					
Calcium	33.8	1.0	mg/L	8.00	26.4	92.6	70-130			
Iron	1880	100	ug/L	2000	ND	93.8	70-130			
Magnesium	27.1	1.0	mg/L	8.00	19.3	97.2	70-130			
Sodium	26.7	1.0	mg/L	8.00	19.5	90.6	70-130			
Matrix Spike (AE64104-MS2)	Sou	rce: 16E1684	4-01	Prepared: (	05/26/16 A					
Calcium	57.6	1.0	mg/L	8.00	50.0	95.4	70-130			
Iron	1900	100	ug/L	2000	ND	95.1	70-130			
Magnesium	16.9	1.0	mg/L	8.00	9.53	92.6	70-130			
Sodium	34.0	1.0	mg/L	8.00	26.6	93.2	70-130			
Matrix Spike Dup (AE64104-MSD1)	Sou	rce: 16E164 ⁻	1-01	Prepared: (	05/26/16 A	nalyzed: 05	/27/16			
Calcium	34.7	1.0	mg/L	8.00	26.4	104	70-130	2.69	20	
Iron	1880	100	ug/L	2000	ND	94.2	70-130	0.354	20	
Magnesium	26.7	1.0	mg/L	8.00	19.3	91.8	70-130	1.58	20	
Sodium	27.5	1.0	mg/L	8.00	19.5	100	70-130	2.85	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Metals by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
atch AE63824 - General Preparation										
Blank (AE63824-BLK1)				Prepared &	Analyzed:	05/19/16				
Chromium, hexavalent	ND	1.0	ug/L							
LCS (AE63824-BS1)				Prepared &	Analyzed:	05/19/16				
Chromium, hexavalent	9.67	1.0	ug/L	10.0		96.7	90-110			
Duplicate (AE63824-DUP1)	Sou	rce: 16E126	3-01	Prepared &	Analyzed:	05/19/16				
Chromium, hexavalent	ND	1.0	ug/L		ND			3.21	20	
Matrix Spike (AE63824-MS1)	Sou	rce: 16E126	3-01	Prepared &	Analyzed:	05/19/16				
Chromium, hexavalent	10.2	1.0	ug/L	10.0	ND	97.0	90-110			
Matrix Spike (AE63824-MS2)	Sou	rce: 16E170	7-05	Prepared &	Analyzed:	05/20/16				
Chromium, hexavalent	9.56	1.0	ug/L	10.0	ND	95.6	90-110			
Matrix Spike Dup (AE63824-MSD1)	Sou	rce: 16E126	3-01	Prepared &	Analyzed:	05/19/16				
Chromium, hexavalent	10.2	1.0	ug/L	10.0	ND	97.4	90-110	0.421	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Metals by EPA Method 200.8 ICP/MS - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE64054 - EPA 200.8										
Blank (AE64054-BLK1)				Prepared: (	05/25/16 A	nalyzed: 05	/26/16			
Aluminum	ND	50	ug/L	1						
Antimony	ND	6.0	ug/L							
Arsenic	ND	2.0	ug/L							
Barium	ND	100	ug/L							
Beryllium	ND	1.0	ug/L							
Cadmium	ND	1.0	ug/L							
Chromium	ND	10	ug/L							
Copper	ND	50	ug/L							
Lead	ND	5.0	ug/L							
Manganese	ND	20	ug/L							
Nickel	ND	10	ug/L							
Selenium	ND	5.0	ug/L							
Silver	ND	10	ug/L							
Thallium	ND	1.0	ug/L							
Uranium	ND	1.0	pCi/l							
Vanadium	ND	3.0	ug/L							
Zinc	ND	50	ug/L							
LCS (AE64054-BS1)				Prepared: (	05/25/16 A	nalyzed: 05	/26/16			
Aluminum	539	50	ug/L	520		104	85-115			
Antimony	20.9	6.0	ug/L	20.0		104	85-115			
Arsenic	21.7	2.0	ug/L	20.0		109	85-115			
Barium	20.6	100	ug/L	20.0		103	85-115			
Beryllium	22.5	1.0	ug/L	20.0		113	85-115			
Cadmium	21.2	1.0	ug/L	20.0		106	85-115			
Chromium	20.9	10	ug/L	20.0		105	85-115			
Copper	21.3	50	ug/L	20.0		106	85-115			
Lead	21.4	5.0	ug/L	20.0		107	85-115			
Manganese	20.8	20	ug/L	20.0		104	85-115			
Nickel	20.8	10	ug/L	20.0		104	85-115			
Selenium	20.8	5.0	ug/L	20.0		104	85-115			
Silver	20.5	10	ug/L	20.0		103	85-115			
Thallium	21.8	1.0	ug/L	20.0		109	85-115			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Metals by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE64054 - EPA 200.8										
LCS (AE64054-BS1)				Prepared: 0	)5/25/16 A	nalyzed: 05	/26/16			
Uranium	14.0	1.0	pCi/l	13.4		105	85-115			
Vanadium	20.7	3.0	ug/L	20.0		104	85-115			
Zinc	107	50	ug/L	100		107	85-115			
Duplicate (AE64054-DUP1)	Soι	rce: 16E153	5-01	Prepared: 0	)5/25/16 A	nalyzed: 05	/26/16			
Aluminum	ND	50	ug/L		ND			6.19	20	
Antimony	ND	6.0	ug/L		ND			19.8	20	
Arsenic	55.4	2.0	ug/L		56.5			2.03	20	
Barium	150	100	ug/L		151			0.834	20	
Beryllium	ND	1.0	ug/L		ND				20	
Cadmium	ND	1.0	ug/L		ND				20	
Chromium	ND	10	ug/L		ND			43.8	20	
Copper	ND	50	ug/L		ND			91.6	20	
Lead	ND	5.0	ug/L		ND				20	
Manganese	848	20	ug/L		861			1.61	20	
Nickel	ND	10	ug/L		ND			114	20	
Selenium	ND	5.0	ug/L		ND				20	
Silver	ND	10	ug/L		ND				20	
Thallium	ND	1.0	ug/L		ND				20	
Jranium	ND	1.0	pCi/l		ND			2.61	20	
Vanadium	ND	3.0	ug/L		ND				20	
Zinc	ND	50	ug/L		ND			15.7	20	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63736 - General Preparation										
Blank (AE63736-BLK1)				Prepared: (	05/18/16 A	nalyzed: 05	5/20/16			
MBAS, calculated as LAS, mw 340	ND	0.050	mg/L							
LCS (AE63736-BS1)				Prepared: (	05/18/16 A	nalyzed: 05	5/20/16			
MBAS, calculated as LAS, mw 340	0.192	0.050	mg/L	0.200		96.2	80-120			
LCS Dup (AE63736-BSD1)				Prepared: (	05/18/16 A	nalyzed: 05	5/20/16			
MBAS, calculated as LAS, mw 340	0.197	0.050	mg/L	0.200		98.7	80-120	2.60	20	
Duplicate (AE63736-DUP1)	Sou	1		Prepared: (	05/19/16 A	nalyzed: 05	5/20/16			
MBAS, calculated as LAS, mw 340	ND	0.050	mg/L		ND				20	
Matrix Spike (AE63736-MS1)	Sou	rce: 16E158	8-02	Prepared: (	Prepared: 05/19/16 Analyzed: 05/20/16					
MBAS, calculated as LAS, mw 340	0.206	0.050	mg/L	0.200	ND	103	80-120			
Matrix Spike (AE63736-MS2)	Sou	rce: 16E158	8-02	Prepared: (	05/19/16 A	nalyzed: 05	5/20/16			
MBAS, calculated as LAS, mw 340	0.204	0.050	mg/L	0.200	ND	102	80-120			
Batch AE63820 - General Preparation										
Blank (AE63820-BLK1)				Prepared: (	05/19/16 A	nalyzed: 05	5/23/16			
Total Dissolved Solids	ND	10	mg/L	*						
Duplicate (AE63820-DUP1)	Sou	rce: 16E153	5-01	Prepared: (	05/19/16 A	nalyzed: 05	5/23/16			
Total Dissolved Solids	348	10	mg/L		352			1.14	15	
Duplicate (AE63820-DUP2)	Sou	rce: 16E165	3-02	Prepared: (	05/19/16 A	nalyzed: 05	5/23/16			
Total Dissolved Solids	388	10	mg/L	-	373	-		3.85	15	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

	Reporting			Spike Source			%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63838 - General Preparation										
Duplicate (AE63838-DUP1)	Sour	ce: 16E172	25-01	Prepared &	Analyzed:	05/23/16				
Hydroxide	ND	5.0	mg/L		ND				5	
Carbonate	ND	5.0	mg/L		ND				20	
Bicarbonate	190	5.0	mg/L		189			0.643	20	
Total Alkalinity as CaCO3	156	5.0	mg/L		155			0.643	20	
Batch AE63850 - General Preparation										
Blank (AE63850-BLK1)				Prepared & Analyzed: 05/19/1						
Silica	ND	1.0	mg/L							
LCS (AE63850-BS1)				Prepared & Analyzed: 05/19/16 10.0 99.3						
Silica	9.93	1.0	mg/L	10.0		99.3	85-115			
LCS Dup (AE63850-BSD1)				Prepared & Analyzed: 05/19/16           mg/L         10.0         99.3         85-115           Prepared & Analyzed: 05/19/16           mg/L         10.0         98.9         85-115         0.366         20           S-01         Prepared & Analyzed: 05/19/16						
Silica	9.89	1.0	mg/L	10.0		98.9	85-115	0.366	20	
Duplicate (AE63850-DUP1)	Sour	ce: 16E153	5-01	Prepared &	Analyzed:	05/19/16				
Silica	51.5	5.0	mg/L		50.4			2.14	20	
Matrix Spike (AE63850-MS1)	Sour	ce: 16E153	5-01	Prepared 8	Analyzed:	05/19/16				
Silica	93.6	5.0	mg/L	50.0	50.4	86.4	80-120			
Matrix Spike Dup (AE63850-MSD1)	Sour	ce: 16E153	5-01	Prepared 8	Analyzed:	05/19/16				
Silica	94.5	5.0	mg/L	50.0	50.4	88.2	80-120	0.965	20	
Batch AE63882 - General Preparation										
Duplicate (AE63882-DUP1)	Sour	ce: 16E153	5-01	Prepared &	Analyzed:	05/18/16				
Specific Conductance (EC)	520	20	umhos/cm		515			0.966	5	
pH	7.61	1.68	pH Units		7.60			0.131	20	T-
Turbidity	0.260	0.10	NTU		0.260			0.00	15	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63917 - General Preparation										
Blank (AE63917-BLK1)				Prepared &	k Analyzed:	05/23/16				
Ammonia as NH3	ND	0.50	mg/L							
LCS (AE63917-BS1)				Prepared &	k Analyzed:	05/23/16				
Ammonia as NH3	5.85	0.50	mg/L	6.10		96.0	90-110			
LCS Dup (AE63917-BSD1)				Prepared 8	د Analyzed	05/23/16				
Ammonia as NH3	5.96	0.50	mg/L	6.10		97.7	90-110	1.81	10	
Matrix Spike (AE63917-MS1)	Sou	Irce: 16E177	5-02	Prepared & Analyzed: 05/23/16						
Ammonia as NH3	5.96	0.50	mg/L	6.10	ND	97.7	85-115			
Matrix Spike Dup (AE63917-MSD1)	Sou	Irce: 16E177	5-02	Prepared &	k Analyzed:	05/23/16				
Ammonia as NH3	5.75	0.50	mg/L	6.10	ND	94.2	85-115	3.64	20	
Batch AE63921 - General Preparation										
Blank (AE63921-BLK1)				Prepared &	k Analyzed:	05/23/16				
Perchlorate	ND	4.0	ug/L							
LCS (AE63921-BS1)				Prepared &	k Analyzed:	05/23/16				
Perchlorate	25.6	4.0	ug/L	25.0		102	85-115			
Duplicate (AE63921-DUP1)	Sou			Prepared &	k Analyzed:	05/23/16				
Perchlorate	ND	4.0	ug/L	-	ND				15	
Matrix Spike (AE63921-MS1)	Sou	ırce: 16E109	5-01	Prepared &	k Analyzed:	05/23/16				
Perchlorate	24.9	4.0	ug/L	25.0	ND	99.6	70-130			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63921 - General Preparation										
Matrix Spike Dup (AE63921-MSD1)	Sou	rce: 16E109	5-01	Prepared &	Analyzed:	05/23/16				
Perchlorate	24.2	4.0	ug/L	25.0	ND	96.9	70-130	2.76	15	
Batch AE63936 - General Preparation										
Blank (AE63936-BLK1)				Prepared &	Analyzed:	05/23/16				
Sulfide	ND	0.10	mg/L							
LCS (AE63936-BS1)				Prepared &	Analyzed:	05/23/16				
Sulfide	0.420	0.10	mg/L	0.400		105	85-115			
Duplicate (AE63936-DUP1)	Sou	rce: 16E171 [,]	1-05	Prepared &	Analyzed:	05/23/16				
Sulfide	ND	0.10	mg/L		ND				15	
Matrix Spike (AE63936-MS1)	Sou	rce: 16E171 [,]	1-05	Prepared &	Analyzed:	05/23/16				
Sulfide	0.203	0.10	mg/L	0.400	ND	50.8	80-120			QM-05
Matrix Spike Dup (AE63936-MSD1)	Sou	rce: 16E171 [,]	1-05	Prepared &	Analyzed:	05/23/16				
Sulfide	0.202	0.10	mg/L	0.400	ND	50.5	80-120	0.494	15	QM-05
Batch AE63977 - General Prep										
Blank (AE63977-BLK1)				Prepared &	Analyzed:	05/24/16				
Phosphate, Total	ND	0.10	mg/L							
LCS (AE63977-BS1)				Prepared &	Analyzed:	05/24/16				
Phosphate, Total	0.582	0.10	mg/L	0.600		97.0	85-115			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63977 - General Prep										
Duplicate (AE63977-DUP1)	Sour	ce: 16E188	6-01	Prepared &	k Analyzed:	05/24/16				
Phosphate, Total	0.118	0.10	mg/L		0.122			3.32	20	
Matrix Spike (AE63977-MS1)	Sour	ce: 16E188	6-01	Prepared &	analyzed:	05/24/16				
Phosphate, Total	0.666	0.10	mg/L	0.600	0.122	90.6	70-130			
Matrix Spike Dup (AE63977-MSD1)	Sour	Source: 16E1886-01 Prepar		Prepared &	Prepared & Analyzed: 05/24/16					
Phosphate, Total	0.670	0.10	mg/L	0.600	0.122	91.3	70-130	0.599	20	
Batch AE64104 - Metals Digest										
Blank (AE64104-BLK1)				Prepared:	05/26/16 A	nalyzed: 05	/27/16			
Hardness, Total	ND	5	mg/L							
Duplicate (AE64104-DUP1)	Sour	ce: 16E164	1-01	Prepared: (	05/26/16 A	nalyzed: 05	/27/16			
Hardness, Total	146	5	mg/L		146			0.335	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Miscellaneous Physical/Conventional Chemistry Parameters - Quality Control

		D (		0.1	0		0/DEC		DDD	
Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE64032 - General Preparation										
Blank (AE64032-BLK1)		Prepared: 05/25/16 Analyzed: 05/26/16								
Cyanide (total)	ND	0.10	mg/L							
LCS (AE64032-BS1)	Prepared: 05/25/16 Analyzed: 05/26/16									
Cyanide (total)	0.214	0.10	mg/L	0.200		107	85-115			
Duplicate (AE64032-DUP1)	Sou	rce: 16E1234	4-01	Prepared: (	05/25/16 A	nalyzed: 05				
Cyanide (total)	ND	0.10	mg/L		ND				25	
Matrix Spike (AE64032-MS1)	Sou	rce: 16E1234	4-01	Prepared: (	05/25/16 A	nalyzed: 05	/26/16			
Cyanide (total)	0.209	0.10	mg/L	0.200	ND	105	85-115			
Matrix Spike (AE64032-MS2)	Sou	rce: 16E208	5-02	Prepared: (	05/25/16 A	nalyzed: 05	/26/16			
Cyanide (total)	0.173	0.10	mg/L	0.200	ND	84.6	85-115			QM-07
Matrix Spike Dup (AE64032-MSD1)	Sou	rce: 16E1234	4-01	Prepared: (	Prepared: 05/25/16 Analyzed: 05/26/16					
Cyanide (total)	0.210	0.10	mg/L	0.200	ND	105	85-115	0.534	25	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Anions by EPA Method 300.0 - Quality Control

	Reporting			Spike Source			%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
atch AE63804 - General Preparation										
Blank (AE63804-BLK1)				Prepared &	Analyzed:	05/18/16				
Nitrite as N	ND	0.40	mg/L							
Nitrate as N	ND	0.40	mg/L							
Chloride	ND	0.50	mg/L							
Fluoride	ND	0.10	mg/L							
Sulfate as SO4	ND	0.50	mg/L							
LCS (AE63804-BS1)	Prepared & Analyzed: 05/18/16									
Fluoride	5.29	0.10	mg/L	5.56		95.2	90-110			
Nitrate as N	5.79	0.40	mg/L	5.56		104	90-110			
Nitrite as N	5.70	0.40	mg/L	5.56		103	90-110			
Sulfate as SO4	23.1	0.50	mg/L	22.2		104	90-110			
Chloride	11.5	0.50	mg/L	11.1		103	90-110			
Duplicate (AE63804-DUP1)	Sour	ce: 16E152	5-01	Prepared &	Analyzed:	05/18/16				
Nitrate as N	0.434	0.40	mg/L		0.405			6.94	20	
luoride	0.147	0.10	mg/L		0.145			1.37	20	
Sulfate as SO4	0.778	0.50	mg/L		0.769			1.16	20	
Nitrite as N	ND	0.40	mg/L		ND				20	
Chloride	0.664	0.50	mg/L		0.649			2.28	20	
Matrix Spike (AE63804-MS1)	Sour	ce: 16E152	5-01	Prepared &	Analyzed:	05/18/16				
Chloride	12.4	0.50	mg/L	11.1	0.649	106	80-120			
Nitrate as N	6.39	0.40	mg/L	5.56	0.405	108	80-120			
Fluoride	5.53	0.10	mg/L	5.56	0.145	97.0	80-120			
Nitrite as N	5.90	0.40	mg/L	5.56	ND	105	80-120			
Sulfate as SO4	24.4	0.50	mg/L	22.2	0.769	106	80-120			
Matrix Spike (AE63804-MS2)	Sour	ce: 16E1518	8-02	Prepared &	Analyzed:	05/18/16				
Nitrate as N	6.11	0.40	mg/L	5.56	ND	107	80-120			
Nitrite as N	5.89	0.40	mg/L	5.56	ND	105	80-120			
Sulfate as SO4	40.1	0.50	mg/L	22.2	17.9	100	80-120			
Chloride	20.1	0.50	mg/L	11.1	8.98	99.8	80-120			
Fluoride	5.59	0.10	mg/L	5.56	0.113	98.6	80-120			



Chloride



Alpha Analytical Laboratories Inc.

12.4

e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
atch AE63804 - General Preparation										
Matrix Spike Dup (AE63804-MSD1)	Source: 16E1525-01		Prepared &	Analyzed	05/18/16					
				i repuied e	c / maryzeu.	05/10/10				
1 1 /	24.3	0.50	mg/L	22.2	0.769	106	80-120	0.387	20	
Sulfate as SO4	24.3 6.37			1	5		80-120 80-120	0.387 0.338	20 20	
Sulfate as SO4 Nitrate as N Fluoride		0.50	mg/L	22.2	0.769	106				

mg/L

11.1

0.649

105

80-120

0.197

20

0.50





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Volatile Organic Compounds by EPA Method 524.2 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE64140 - VOAs in Water GCMS		2		20101	reourt	, viae	Biinto			0
				D 10						
Blank (AE64140-BLK1)	ND	0.50	/T	Prepared &	a Analyzed:	05/27/16				
Benzene	ND	0.50	ug/L							
Carbon tetrachloride	ND	0.50	ug/L							
Chlorobenzene	ND	0.50	ug/L							
1,2-Dichlorobenzene	ND	0.50	ug/L							
1,4-Dichlorobenzene	ND	0.50	ug/L							
1,1-Dichloroethane	ND	0.50	ug/L							
1,2-Dichloroethane	ND	0.50	ug/L							
1,1-Dichloroethene	ND	0.50	ug/L							
cis-1,2-Dichloroethene	ND	0.50	ug/L							
trans-1,2-Dichloroethene	ND	0.50	ug/L							
1,2-Dichloropropane	ND	0.50	ug/L							
1,3-Dichloropropene (total)	ND	0.50	ug/L							
Ethylbenzene	ND	0.50	ug/L							
Methyl tert-butyl ether	ND	3.0	ug/L							
Methylene chloride	ND	0.50	ug/L							
Styrene	ND	0.50	ug/L							
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L							
Tetrachloroethene	ND	0.50	ug/L							
Toluene	ND	0.50	ug/L							
1,2,4-Trichlorobenzene	ND	0.50	ug/L							
1,1,1-Trichloroethane	ND	0.50	ug/L							
1,1,2-Trichloroethane	ND	0.50	ug/L							
Trichloroethene	ND	0.50	ug/L							
Trichlorofluoromethane	ND	5.0	ug/L							
Trichlorotrifluoroethane	ND	10	ug/L							
Vinyl chloride	ND	0.50	ug/L							
Xylenes (total)	ND	0.50	ug/L							
Surrogate: Bromofluorobenzene	23.2		ug/L	25.0		92.8	70-130			
Surrogate: Dibromofluoromethane	19.7		ug/L	25.0		78.7	70-130			
Surrogate: Toluene-d8	22.0		ug/L	25.0		88.2	70-130			



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Volatile Organic Compounds by EPA Method 524.2 - Quality Control

	D I	Reporting	<b>*</b> * *.	Spike	Source	ACREC	%REC	DDD	RPD	EI
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE64140 - VOAs in Water GCMS										
LCS (AE64140-BS1)				Prepared &	Analyzed:	05/27/16				
Benzene	5.02	0.50	ug/L	5.00		100	70-130			
Carbon tetrachloride	4.29	0.50	ug/L	5.00		85.8	70-130			
Chlorobenzene	5.18	0.50	ug/L	5.00		104	70-130			
1,2-Dichlorobenzene	4.96	0.50	ug/L	5.00		99.2	70-130			
1,4-Dichlorobenzene	4.82	0.50	ug/L	5.00		96.4	70-130			
1,1-Dichloroethane	5.34	0.50	ug/L	5.00		107	70-130			
1,2-Dichloroethane	5.35	0.50	ug/L	5.00		107	70-130			
1,1-Dichloroethene	4.84	0.50	ug/L	5.00		96.8	70-130			
cis-1,2-Dichloroethene	5.33	0.50	ug/L	5.00		107	70-130			
trans-1,2-Dichloroethene	5.19	0.50	ug/L	5.00		104	70-130			
1,2-Dichloropropane	5.11	0.50	ug/L	5.00		102	70-130			
Ethylbenzene	5.12	0.50	ug/L	5.00		102	70-130			
Methyl tert-butyl ether	5.00	3.0	ug/L	5.00		100	70-130			
Methylene chloride	4.81	0.50	ug/L	5.00		96.2	70-130			
Styrene	5.23	0.50	ug/L	5.00		105	70-130			
1,1,2,2-Tetrachloroethane	5.44	0.50	ug/L	5.00		109	70-130			
Tetrachloroethene	4.93	0.50	ug/L	5.00		98.6	70-130			
Toluene	4.99	0.50	ug/L	5.00		99.8	70-130			
1,2,4-Trichlorobenzene	5.20	0.50	ug/L	5.00		104	70-130			
1,1,1-Trichloroethane	4.64	0.50	ug/L	5.00		92.8	70-130			
1,1,2-Trichloroethane	5.29	0.50	ug/L	5.00		106	70-130			
Trichloroethene	5.05	0.50	ug/L	5.00		101	70-130			
Trichlorofluoromethane	4.81	5.0	ug/L	5.00		96.2	70-130			
Trichlorotrifluoroethane	5.08	10	ug/L	5.00		102	70-130			
Vinyl chloride	5.43	0.50	ug/L	5.00		109	70-130			
Xylenes (total)	15.4	0.50	ug/L	15.0		102	70-130			
Surrogate: Bromofluorobenzene	24.5		ug/L	25.0		98.1	70-130			
Surrogate: Dibromofluoromethane	21.6		ug/L	25.0		86.4	70-130			
Surrogate: Toluene-d8	22.2		ug/L	25.0		88.6	70-130			



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Volatile Organic Compounds by EPA Method 524.2 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
	Kesun	Liiiit	Units	Level	Kesuit	70KEC	Lillins	KI D	Liiiit	The
<b>Batch AE64140 - VOAs in Water GCMS</b>										
LCS Dup (AE64140-BSD1)				Prepared &	Analyzed:	05/27/16				
Benzene	5.24	0.50	ug/L	5.00		105	70-130	4.29	30	
Carbon tetrachloride	4.65	0.50	ug/L	5.00		93.0	70-130	8.05	30	
Chlorobenzene	5.42	0.50	ug/L	5.00		108	70-130	4.53	30	
1,2-Dichlorobenzene	5.36	0.50	ug/L	5.00		107	70-130	7.75	30	
1,4-Dichlorobenzene	5.19	0.50	ug/L	5.00		104	70-130	7.39	30	
1,1-Dichloroethane	5.30	0.50	ug/L	5.00		106	70-130	0.752	30	
1,2-Dichloroethane	5.49	0.50	ug/L	5.00		110	70-130	2.58	30	
1,1-Dichloroethene	4.87	0.50	ug/L	5.00		97.4	70-130	0.618	30	
cis-1,2-Dichloroethene	5.19	0.50	ug/L	5.00		104	70-130	2.66	30	
trans-1,2-Dichloroethene	5.16	0.50	ug/L	5.00		103	70-130	0.580	30	
1,2-Dichloropropane	5.43	0.50	ug/L	5.00		109	70-130	6.07	30	
Ethylbenzene	5.45	0.50	ug/L	5.00		109	70-130	6.24	30	
Methyl tert-butyl ether	5.04	3.0	ug/L	5.00		101	70-130	0.797	30	
Methylene chloride	4.71	0.50	ug/L	5.00		94.2	70-130	2.10	30	
Styrene	5.51	0.50	ug/L	5.00		110	70-130	5.21	30	
1,1,2,2-Tetrachloroethane	5.76	0.50	ug/L	5.00		115	70-130	5.71	30	
Tetrachloroethene	5.39	0.50	ug/L	5.00		108	70-130	8.91	30	
Toluene	5.30	0.50	ug/L	5.00		106	70-130	6.03	30	
1,2,4-Trichlorobenzene	5.30	0.50	ug/L	5.00		106	70-130	1.90	30	
1,1,1-Trichloroethane	4.68	0.50	ug/L	5.00		93.6	70-130	0.858	30	
1,1,2-Trichloroethane	5.61	0.50	ug/L	5.00		112	70-130	5.87	30	
Trichloroethene	5.33	0.50	ug/L	5.00		107	70-130	5.39	30	
Trichlorofluoromethane	5.05	5.0	ug/L	5.00		101	70-130	4.87	30	
Trichlorotrifluoroethane	5.18	10	ug/L	5.00		104	70-130	1.95	30	
Vinyl chloride	6.03	0.50	ug/L	5.00		121	70-130	10.5	30	
Xylenes (total)	16.2	0.50	ug/L	15.0		108	70-130	5.38	30	
Surrogate: Bromofluorobenzene	23.8		ug/L	25.0		95.2	70-130			
Surrogate: Dibromofluoromethane	20.3		ug/L	25.0		81.1	70-130			
Surrogate: Toluene-d8	21.9		ug/L	25.0		87.8	70-130			



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Volatile Organic Compounds by EPA Method 524.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

#### Batch AE64140 - VOAs in Water GCMS

Matrix Spike (AE64140-MS1)	Sour	Source: 16E1420-01		Prepared &	Analyzed:	05/27/16		
Benzene	5.20	0.50	ug/L	5.00	ND	104	70-130	
Carbon tetrachloride	4.50	0.50	ug/L	5.00	ND	90.0	70-130	
Chlorobenzene	5.18	0.50	ug/L	5.00	ND	104	70-130	
1,2-Dichlorobenzene	5.02	0.50	ug/L	5.00	ND	100	70-130	
1,4-Dichlorobenzene	4.79	0.50	ug/L	5.00	ND	95.8	70-130	
1,1-Dichloroethane	5.34	0.50	ug/L	5.00	ND	107	70-130	
1,2-Dichloroethane	5.04	0.50	ug/L	5.00	ND	101	70-130	
1,1-Dichloroethene	4.94	0.50	ug/L	5.00	ND	98.8	70-130	
cis-1,2-Dichloroethene	5.17	0.50	ug/L	5.00	ND	103	70-130	
trans-1,2-Dichloroethene	5.21	0.50	ug/L	5.00	ND	104	70-130	
1,2-Dichloropropane	5.11	0.50	ug/L	5.00	ND	102	70-130	
Ethylbenzene	5.38	0.50	ug/L	5.00	ND	108	70-130	
Methyl tert-butyl ether	4.98	3.0	ug/L	5.00	ND	99.6	70-130	
Methylene chloride	5.03	0.50	ug/L	5.00	ND	101	70-130	
Styrene	5.06	0.50	ug/L	5.00	ND	101	70-130	
1,1,2,2-Tetrachloroethane	5.11	0.50	ug/L	5.00	ND	102	70-130	
Tetrachloroethene	5.38	0.50	ug/L	5.00	ND	108	70-130	
Toluene	5.20	0.50	ug/L	5.00	ND	104	70-130	
1,2,4-Trichlorobenzene	4.70	0.50	ug/L	5.00	ND	94.0	70-130	
1,1,1-Trichloroethane	4.96	0.50	ug/L	5.00	ND	99.2	70-130	
1,1,2-Trichloroethane	4.93	0.50	ug/L	5.00	ND	98.6	70-130	
Trichloroethene	5.32	0.50	ug/L	5.00	ND	106	70-130	
Trichlorofluoromethane	5.22	5.0	ug/L	5.00	ND	104	70-130	
Trichlorotrifluoroethane	5.40	10	ug/L	5.00	ND	108	70-130	
Vinyl chloride	7.57	0.50	ug/L	5.00	ND	151	70-130	QM-05
Xylenes (total)	15.8	0.50	ug/L	15.0	ND	105	70-130	
Surrogate: Bromofluorobenzene	23.8		ug/L	25.0		95.2	70-130	
Surrogate: Dibromofluoromethane	20.1		ug/L	25.0		80.3	70-130	
Surrogate: Toluene-d8	22.3		ug/L	25.0		89.1	70-130	



Thiobencarb

Surrogate: 1,3-Dimethyl-2-nitrobenzene



Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Nitrogen- and Phosphorus- Pesticides by EPA Method 507 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE64018 - SVOAs in Water GC										
Blank (AE64018-BLK1)				Prepared: (	05/24/16 A	nalyzed: 05	/27/16			
Alachlor	ND	1.0	ug/L							
Atrazine	ND	0.50	ug/L							
Molinate	ND	2.0	ug/L							
Simazine	ND	1.0	ug/L							
Thiobencarb	ND	1.0	ug/L							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	1.61		ug/L	2.00		80.3	70-130			
LCS (AE64018-BS1)				Prepared: (	)5/24/16 A	nalyzed: 05	/28/16			
Alachlor	1.81	1.0	ug/L	2.00		90.5	62-128			
Atrazine	1.85	0.50	ug/L	2.00		92.3	62-122			
Molinate	1.88	2.0	ug/L	2.00		94.2	44-137			
Simazine	1.88	1.0	ug/L	2.00		93.9	70-130			
Thiobencarb	1.80	1.0	ug/L	2.00		90.1	69-129			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	1.75		ug/L	2.00		87.4	70-130			
LCS Dup (AE64018-BSD1)				Prepared: (	)5/24/16 A	nalyzed: 05	/28/16			
Alachlor	2.11	1.0	ug/L	2.00		105	62-128	15.3	30	
Atrazine	2.11	0.50	ug/L	2.00		105	62-122	13.2	30	
Molinate	1.90	2.0	ug/L	2.00		95.2	44-137	1.05	30	
Simazine	2.11	1.0	ug/L	2.00		106	70-130	11.9	30	
Thiobencarb	2.03	1.0	ug/L	2.00		101	69-129	11.7	30	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	1.87		ug/L	2.00		93.6	70-130			
Matrix Spike (AE64018-MS1)	So	urce: 16E142	5-01	Prepared: (	)5/24/16 A	nalyzed: 05	/28/16			
Alachlor	2.16	1.0	ug/L	2.00	ND	108	62-128			
Atrazine	1.91	0.50	ug/L	2.00	ND	95.5	62-122			
Molinate	1.89	2.0	ug/L	2.00	ND	94.3	44-137			
Simazine	1.96	1.0	ug/L	2.00	ND	98.1	70-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ug/L

ug/L

2.00

2.00

94.3

93.7

ND

69-129

70-130

1.0

1.89

1.87





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Organic Analytes by EPA Method 504.1 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE63739 - EPA 504.1	Ttoburt	Linin	emis	Lever	itesuit	/utile	Linito	10.0	2	
Blank (AE63739-BLK1)				Prepared &	Analyzed:	05/18/16				
1,2-Dibromo-3-chloropropane	ND	0.010	ug/L							
1,2-Dibromoethane (EDB)	ND	0.020	ug/L							
LCS (AE63739-BS1)				Prepared &	Analyzed:	05/18/16				
1,2-Dibromo-3-chloropropane	0.220	0.010	ug/L	0.250		88.1	70-130			
1,2-Dibromoethane (EDB)	0.197	0.020	ug/L	0.250		78.9	70-130			
LCS Dup (AE63739-BSD1)				Prepared &	Analyzed:	05/18/16				
1,2-Dibromo-3-chloropropane	0.193	0.010	ug/L	0.250		77.2	70-130	13.1	25	
1,2-Dibromoethane (EDB)	0.205	0.020	ug/L	0.250		81.9	70-130	3.66	25	
Matrix Spike (AE63739-MS1)	So	urce: 16E1119	9-01	Prepared &	Analyzed:	05/18/16				
1,2-Dibromo-3-chloropropane	0.190	0.010	ug/L	0.250	ND	75.9	70-130			
1,2-Dibromoethane (EDB)	0.193	0.020	ug/L	0.250	ND	77.4	70-130			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Chlorinated Acids by EPA Method 515.1 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
atch AE64076 - Herbicides										
Blank (AE64076-BLK1)				Prepared: (	)5/26/16 Ai	nalyzed: 05	/28/16			
Bentazon	ND	2.0	ug/L							
2,4-D	ND	10	ug/L							
Dalapon	ND	10	ug/L							
Dinoseb	ND	2.0	ug/L							
Pentachlorophenol	ND	0.20	ug/L							
Picloram	ND	1.0	ug/L							
2,4,5-TP (Silvex)	ND	1.0	ug/L							
Surrogate: DCAA	12.9		ug/L	14.2		90.6	70-130			
LCS (AE64076-BS1)				Prepared: (	)5/26/16 Ai	nalyzed: 05	/28/16			
Bentazon	1.67	2.0	ug/L	1.92		87.0	70-130			
2,4-D	1.52	10	ug/L	1.92		78.9	48-124			
Dalapon	11.5	10	ug/L	12.5		92.1	40-112			
Dinoseb	3.79	2.0	ug/L	6.42		59.1	20-105			
Pentachlorophenol	0.819	0.20	ug/L	0.960		85.3	70-130			
Picloram	0.941	1.0	ug/L	0.960		98.1	70-130			
2,4,5-TP (Silvex)	0.846	1.0	ug/L	0.960		88.1	70-130			
Surrogate: DCAA	14.1		ug/L	14.2		99.4	70-130			
LCS Dup (AE64076-BSD1)				Prepared: (	)5/26/16 Ai	nalyzed: 05	/28/16			
Bentazon	1.79	2.0	ug/L	1.92		93.3	70-130	6.95	50	
2,4-D	1.56	10	ug/L	1.92		81.1	48-124	2.71	50	
Dalapon	11.3	10	ug/L	12.5		90.6	40-112	1.59	50	
Dinoseb	4.64	2.0	ug/L	6.42		72.3	20-105	20.1	50	
Pentachlorophenol	0.831	0.20	ug/L	0.960		86.6	70-130	1.56	50	
Picloram	1.08	1.0	ug/L	0.960		113	70-130	13.9	50	
2,4,5-TP (Silvex)	0.857	1.0	ug/L	0.960		89.3	70-130	1.33	50	
Surrogate: DCAA	13.5		ug/L	14.2		95.0	70-130			



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Chlorinated Acids by EPA Method 515.1 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE64076 - Herbicides										
Matrix Spike (AE64076-MS1)	Sou	rce: 16E1438	3-01	Prepared: (	)5/26/16 A	nalyzed: 05	/28/16			
Bentazon	1.59	2.0	ug/L	1.92	ND	82.9	70-130			
2,4-D	1.90	10	ug/L	1.92	ND	98.9	48-124			
Dalapon	11.0	10	ug/L	12.5	ND	87.8	40-112			
Dinoseb	3.32	2.0	ug/L	6.42	ND	51.8	20-105			
Pentachlorophenol	0.385	0.20	ug/L	0.960	ND	40.1	70-130			QM-07
Picloram	0.913	1.0	ug/L	0.960	ND	95.1	70-130			
2,4,5-TP (Silvex)	0.709	1.0	ug/L	0.960	ND	73.9	70-130			
Surrogate: DCAA	12.1		ug/L	14.2		85.1	70-130			
Matrix Spike Dup (AE64076-MSD1)	Sou	rce: 16E1438	3-01	Prepared: (	05/26/16 A	nalyzed: 05	/28/16			
Bentazon	1.64	2.0	ug/L	1.92	ND	85.2	70-130	2.75	50	
2,4-D	1.91	10	ug/L	1.92	ND	99.7	48-124	0.758	50	
Dalapon	12.1	10	ug/L	12.5	ND	96.7	40-112	9.66	50	
Dinoseb	4.07	2.0	ug/L	6.42	ND	63.4	20-105	20.2	50	
Pentachlorophenol	0.617	0.20	ug/L	0.960	ND	64.2	70-130	46.2	50	QM-07
Picloram	0.978	1.0	ug/L	0.960	ND	102	70-130	6.84	50	
2,4,5-TP (Silvex)	0.784	1.0	ug/L	0.960	ND	81.6	70-130	9.98	50	
Surrogate: DCAA	12.6		ug/L	14.2		88.5	70-130			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Glyphosate by EPA Method 547 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63749 - HPLC										
Blank (AE63749-BLK1)				Prepared &	Analyzed:	05/18/16				
Glyphosate	ND	25	ug/L							
LCS (AE63749-BS1)				Prepared &	Analyzed:	05/18/16				
Glyphosate	105	25	ug/L	120		87.8	70-130			
LCS Dup (AE63749-BSD1)				Prepared &	Analyzed:	05/18/16				
Glyphosate	102	25	ug/L	120		84.6	70-130	3.63	30	
Matrix Spike (AE63749-MS1)	Sour	ce: 16E119	3-01	Prepared: (	)5/18/16 A	nalyzed: 05	5/19/16			
Glyphosate	120	25	ug/L	120	ND	100	70-130			
Matrix Spike Dup (AE63749-MSD1)	Sour	ce: 16E119	3-01	Prepared: (	)5/18/16 A	nalyzed: 05	5/19/16			
Glyphosate	138	25	ug/L	120	ND	115	70-130	13.5	30	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Diquat by EPA Method 549.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE63821 - HPLC										
Blank (AE63821-BLK1)				Prepared &	Analyzed:	05/19/16				
Diquat	ND	4.0	ug/L							
LCS (AE63821-BS1)				Prepared &	Analyzed:	05/19/16				
Diquat	16.2	4.0	ug/L	20.0		80.9	70-130			
Matrix Spike (AE63821-MS1)	Sour	ce: 16E1456	6-01	Prepared &	Analyzed:	05/19/16				
Diquat	21.8	4.0	ug/L	20.0	ND	109	70-130			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### Semivolatile Organic Compounds by EPA Method 525.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AE64017 - EPA 525.2										
Blank (AE64017-BLK1)				Prepared: (	05/25/16 A	nalyzed: 06	/02/16			
Benzo (a) pyrene	ND	0.10	ug/L							
Di(2-ethylhexyl)adipate	ND	5.0	ug/L							
Di(2-ethylhexyl)phthalate	ND	3.0	ug/L							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.82		ug/L	5.00		96.4	70-130			
Surrogate: Triphenyl phosphate	5.60		ug/L	5.00		112	70-130			
LCS (AE64017-BS1)				Prepared: (	)5/25/16 A	nalyzed: 06	/02/16			
Benzo (a) pyrene	3.10	0.10	ug/L	3.00		103	70-130			
Di(2-ethylhexyl)adipate	5.76	5.0	ug/L	6.00		96.0	70-130			
Di(2-ethylhexyl)phthalate	5.45	3.0	ug/L	6.00		90.8	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.89		ug/L	5.00		97.8	70-130			
Surrogate: Triphenyl phosphate	6.06		ug/L	5.00		121	70-130			
LCS Dup (AE64017-BSD1)				Prepared: (	05/25/16 A	nalyzed: 06	/02/16			
Benzo (a) pyrene	3.10	0.10	ug/L	3.00		103	70-130	0.00	20	
Di(2-ethylhexyl)adipate	5.71	5.0	ug/L	6.00		95.2	70-130	0.872	20	
Di(2-ethylhexyl)phthalate	5.59	3.0	ug/L	6.00		93.2	70-130	2.54	20	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.89		ug/L	5.00		97.8	70-130			
Surrogate: Triphenyl phosphate	6.13		ug/L	5.00		123	70-130			
Matrix Spike (AE64017-MS1)	So	urce: 16E142	5-01	Prepared: (	05/25/16 A	nalyzed: 06	/03/16			
Benzo (a) pyrene	3.47	0.10	ug/L	3.00	ND	116	70-130			
Di(2-ethylhexyl)adipate	6.51	5.0	ug/L	6.00	ND	108	70-130			
Di(2-ethylhexyl)phthalate	6.02	3.0	ug/L	6.00	ND	100	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.93		ug/L	5.00		98.6	70-130			
Surrogate: Triphenyl phosphate	6.47		ug/L	5.00		129	70-130			



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Potable Well	Reported:
Windsor, CA 95492-0100	Project Number: 4910017 / Esposti Well	06/03/16 16:35

#### **Notes and Definitions**

- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- T-14 Residual chlorine, dissolved oxygen, and pH must be analyzed in the field to meet the EPA specified 15 minute hold time.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- REC Recovery
- RPD Relative Percent Difference

Ceres Analytical Laboratory, Inc. 4919 Windplay Dr., Suite 1 El Dorado Hills, CA 95762

May 23, 2016

Ceres ID: 11002

Alpha Analytical Laboratories, Inc. 208 Mason St. Ukiah, CA 95482

Enclosed please find the results for the one drinking water sample received on May 19, 2016. This sample was analyzed for 2,3,7,8-TCDD by EPA method 1613B. Routine turn-around time was provided for this work.

This work was authorized under Alpha Analytical Laboratories' project # 16E1535.

The report consists of a Cover Letter, Sample Inventory (Section I), Data Summary (Section II), Sample Tracking (Section VI), and Qualifiers/Abbreviations (Section VII). Raw Data (Section III), Continuing Calibration (Section IV), and Initial Calibration (Section V) are available in a full report (.pdf format) upon request.

If you have any questions regarding this report, please feel free to contact me at (916)932-5011.

Sincerely,

mhan

James M. Hedin Director of Operations/CEO <u>jhedin@ceres-lab.com</u>

# Section I: Sample Inventory

<u>Ceres Sample ID:</u>	<u>Sample ID</u>	Date Received	Collection Date & Time
11002-001	16E1535-01	5/19/2016	5/17/2016 10:00
	ESW-5-17-10:00		

# Section II: Data Summary



## EPA Method 1613B

Quality Assurance Sample					Date Receive		
Meth	od Blank	QC Batch #: 1451 Matrix: Drinking Water			Date Extracted: 5/20/2016 ZB-5MS Analysis: 5/21/2016		
Projec	t ID: 16E1535	Sample Siz	<b>e:</b> 1.000 L				
Analyte	Conc. (pg/L)	Qualifiers	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 2.06		13C-2378-TCDD	84.4	31-137		
			CRS 37Cl4-2378-TCDD	92.2	35-197		
			DL - Signifies Non-Detect ( EMPC - Estimated Maximu ratio failure. (a) - Lower control limit - U	um Possible (	Concentration due to		

Analyst: JMH

Reviewed by: BS



### EPA Method 1613B

Quality Assurance Sample				Date R	eceived: NA
Ongoing Precision and Recovery		QC Batch #	: 1451	Date Ex	ctracted: 5/20/2016
		Matrix	: Drinking Water	ZB-5MS A	Analysis: 5/21/2016
Project	t ID: 16E1535	Sample Size	: 1.000 L		
Analyte	Conc. (ng/mL)	Limits (a)	Labeled Standards	% Rec.	Limits (a)
2,3,7,8-TCDD	8.32	7.3-14.6	13C-2378-TCDD	89.2	25-141
			<u>CRS</u> 37Cl4-2378-TCDD	89.5	37-158
			(a) Limits based on method	acceptance criteria.	

Analyst: JMH

Reviewed by: BS



## EPA Method 1613B

Project ID: 16E1535		Ceres Sample ID: 11002-001 QC Batch #: 1451			Date Received: 5/19/20 Date Extracted: 5/20/20		
Date Collect Time Collect	ed: 5/17/2016 ed: 10:00 AM	Matri Sample Siz	<b>x:</b> Drinking Water <b>e:</b> 1.004 L		ZB-5MS Analysi	<b>s:</b> 5/21/2016	
Analyte	Conc. (pg/L)	Qualifiers	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 1.88		13C-2378-TCDD	69.4	31-137		
			CRS 37Cl4-2378-TCDD	75.8	42-164		
			DL - Signifies Non-Detect ( EMPC - Estimated Maximu ratio failure. (a) - Lower control limit - U	um Possible (	Concentration due to		

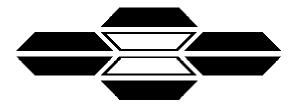
Analyst: JMH

Reviewed by: BS

## Section VI: Sample Tracking

### SUBCONTRACT ORDER

#### Alpha Analytical Laboratories, Inc.


### 16E1535

		10	DE1555	
SENDING LABOR	ATORY:		RECEIVING LABORATORY:	
Alpha Analytical Laboratories, Inc. 208 Mason St. Ukiah, CA 95482 Phone: (707)468-0401 Fax: (707)468-5267 Project Manager: Robbie C. Phillips				
Analysis	Due	Expires	Comments	
16E1535-01 ESW	-5-17-10:00 [Water] San	npled 05/17/16 10:	00 Pacific	
Containers Supplied	DW 1613 06/01/16 12:00	05/17/17 10:00 s. (AI)		
Report to State				
System Name:		Employed by:		
User ID:		Sampler:		
System Number:		_	/	
	w/ac			

Received By 5/18/16 Charles 19-16 5-Date Released By

## Section VII: Qualifiers/Abbreviations

J	Concentration found below the lower quantitation limit but greater than zero.
В	Analyte present in the associated Method Blank.
Е	Concentration found exceeds the Calibration range of the HRGC/HRMS.
D	This analyte concentration was calculated from a dilution.
X	The concentration found is the estimated maximum possible concentration due to chlorinated diphenyl ethers present in the sample.
н	Recovery limits exceeded. See cover letter.
*	Results taken from dilution.
I	Interference. See cover letter.
Conc.	Concentration Found
DL	Calculated Detection Limit
ND	Non-Detect
% Rec.	Percent Recovery



## **ASBESTOS TEM LABORATORIES, INC.**

## Modified Drinking Water Transmission Electron Microscopy Analytical Report

Laboratory Job # 1288-01013

600 Bancroft Way, Ste. A Berkeley, CA 94710 (510) 704-8930 FAX (510) 704-8429



Certified by CA DPH ELAP Lab No. 1866

Jun 01 2016

Robbie C. Phillips Alpha Analytical Laboratories, Inc. 208 Mason Street Ukiah, CA 95482

RE: <u>LABORATORY JOB # 1288-01013</u> Transmission electron microscopy analytical results for 1 water sample(s). Job Site: Job No.: 16E1535

Enclosed please find results for the TEM analysis of one or more water samples. The analytical procedures were performed according to a Modified EPA Method 100.2 which, while similar in analytical technique, does not meet or fulfill the rigorous requirements of the EPA Drinking Water Standard for various reasons (i.e. hold time exceeded 48 hours, unrefrigerated shipping, analytical sensitivity >0.2 MFL due to particulate overloading, etc.).

Prior to analysis, samples are checked for damage, disruption of any chain-of-custody seals, and completeness of accompanying paperwork. If no problems are found, samples are then logged-in, each given a unique laboratory number, and a hard copy containing all pertinent information is generated. This, and all other relevant paper work are kept with each sample throughout the analytical procedures to assure proper analysis.

Preparation of water samples is performed within a HEPA filtered, Class 100 air, laminar flow clean bench environment. Prior to filtration, water sample containers are ultrasonicated, and if necessary, treated with UV light while and ozone gas for three hours to kill and oxidize all organisms and organic materials contained in the water. An aliquot of the water sample is pipetted into a special filtration apparatus where contained particulate is collected onto a mixed cellulose ester (MCE) or polycarbonate (PC) filter. The filters are removed from the apparatus and dried. A portion of each sample filter is sectioned, placed onto a glass microscope slide, and carbon coated. The filters are further sectioned and placed carbon side up onto 200-mesh copper TEM sample grids in a solvent bath until all filter material is dissolved. The TEM grids are removed and placed into labeled grid storage boxes.

TEM analysis is performed on a Philips EM-300 or CM-12 transmission electron microscope operating at 80 or 100 kV. Initially, the grid is scanned at low and medium magnifications to insure proper sample loading, and coherence of the carbon support film. Then TEM grid openings are analyzed at a magnification of ~10,000X. All fibers >10 um in length and exhibiting an aspect ratio >3:1 are analyzed. Scanning continues until either 100 asbestiform fibers >10um in length are counted, 20 grid openings are analyzed, or an analytical sensitivity of 0.2 million fibers per liter (MFL) is achieved. Analyzed fibers are subjected to detailed morphological and selected area diffraction (SAED) analysis. Fibers indicated as asbestos, or potentially asbestos, are further analyzed by energy dispersive X-ray (EDX) analysis as needed. The number of asbestos fibers detected, and other analytical parameters, are then used to calculate the concentration of asbestos in MFL. The results are entered into a standard report format and reviewed by the analyst and the laboratory manager before release to the client.

Sincerely Yours,

R me Poi

--- These results relate only to the samples tested and must not bereproduced, except in full, with the approval of the laboratory. This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government. ---

## TRANSMISSION ELECTRON MICROSCOPY ANALYTICAL REPORT

Contact:	Robbie C.	Phillips								
Address:							Report	No.:	<u>341142</u>	
	208 Mason Street Ukiah, CA 95482							Date:	<u>Jun-01-16</u>	
Job Site /	UKIAII, CA	99482				]	Fotal Samples Anal	yzed:	<u>1</u>	
No.										
CLIENT SAMPLE # 16E1535-01 SAMPLE LOCATION/DESCRIPTION										
Laboratory	Sample #	1288-010					ESQ-5-17	7		
, , , , , , , , , , , , , , , , , , ,	<u>I</u>				AMPLE DA'	ГА				-
		-							11	
Date/Time C				):00 am			ume Submitted (ml)	)	liter	
Date/Time L				:22 am			ume Filtered (ml)		15	
Date/Time F			, ,	:09 am	—		er & Pore Size		CE0.22 YES	
Date/Time A	Analyzed	Jur	-01-16 / 11	:00 am	_	UV,	/Ozone Treated:			
IDENT	IFIED STI	RUCTURE	ES (>10um)	] [	CA	LC	CULATED ASB	ESTC	DS	
ASBES	STOS	07	THER	1	STRUCTU	JRI	E CONCENTR	ATIO	N (>10um)	
CHRYS	AMPH	AMBIG	NON-ASB	JL	CHRYS	5	AMPH	Τ	OTAL	
NSD	NSD	NSD	NSD	] [	< 0.2 MFI	_	< 0.2 MFL	<	0.2 MFL	
	N.	Asbestos Det	( . 1		<b>F</b> ² <b>1</b> 4 <b>T</b>			7		
CONNE		Aspestos Det	ected				ing: <u>MODERATE</u>	2		
COMME	2N12				SAED P	hote	o ID Nos.			
			TEM / ANA	LYTI	CAL PARA	MF	ETERS	-		
Grid Open	ings Scanned	at 10,000X	8		Analytical	Sens	sitivity (	).2 MFI		
G	rid Opening A	Area (mm2)	0.0090			959	% UCL	0.69	MFL	
	Scan A	rea (mm2)	0.0720			95	% LCL	0	MFL	
		V	VATER SAM	IPLE I	LAB BLAN	K R	RESULTS	_		
		Lab ID#	TLB-17470		Aı	naly	tical Sensitivity	0.0	1 MFL	
Grid Open	ings Scanned	at 10,000X Filtered (ml)	8 300			•	e Concentration	<0.0	1 MFL	
	volume 1	Intered (IIII)								
	NOTATION	VEV				1	Jan		7	
Chrys Chrysotile	NOTATION Asbestos		icron = 0.001  mr	n			Analyzed by Yang	<u> </u>	/	
Amph Amphibol	e Asbestos	MFL = Mill	ions of Fibers pe	er Liter	(		1 0 M		0	
NSD - No Structur 1 mm = 1 millimet			er Confidence L er Confidence L			ry	piax kep	Kog	re	
	.01	202 - 20W				R	eviewed by Crystal	Replog	gle	
ASBESTOS TE www.asbe	M LABORAT		. 600 BA				ERKELEY, CA 94 0, NV (775) 359-33		704-8930	

## SUBCONTRACT ORDER

## Alpha Analytical Laboratories, Inc.

			16E1535		341142	
SENDING LABORATO	)RY:		RECEIVING LAB	ORATORY:		
Alpha Analytical Labor 208 Mason St. Ukiah, CA 95482 Phone: (707)468-0401 Fax: (707)468-5267	ratories, Inc.		Asbestos TEM La 630 Bancroft Way Berkeley, CA 947 Phone (510) 704- Fax; (510) 704-84 Terms: Net 30			
	_		5. A	C		
Analysis	Due	Expires	<u> </u>	Coniments		
16E1535-01 ESW-5-	17-10:00 [Water] :	Sampled 05/17/16/1	10:00 Pacific			
Asbestos-DW SUB Containers Supplied: 11, Amber- Unitres, (N		)		· · ·		
Report to State	4		· · · · · · · · · · · · · · · · · · ·			
System Name:		Employed	by:			
Oser 10:		Sampler:		····		
System Number;	/		1			
	w/a	2				
		· .				·
	5 5/181	116	Au	ATEM "	lan 5/19	
Released By		)ate	Received By	1 Ministra	Distr	
Released By		ate	Received By		Daic	
					57	age 1 of t

June 3, 2016

Alpha Analytical Laboratories, Inc.	Lab ID	: SP 1605717
208 Mason St.	Customer	: 2-20626
Ukiah, CA 95482		

**ENVIRONMENTAL** 

#### **Laboratory Report**

GL

Analytical Chemists

AGRICULTURAL

Introduction: This report package contains total of 9 pages divided into 3 sections:

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(5 pages) : Supporting Quality Control (QC) results.

#### **Case Narrative**

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
ESW-5-17-10:00	05/17/2016	05/19/2016	SP 1605717-001	W

**Sampling and Receipt Information:** All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 5 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

**Organic QC** 

Quality Control: All samples were prepared and analyzed according to the following tables:

505	05/20/2016:206932 All analysis quality controls are within established criteria, except:					
505	The following note applies to Hexachlorocyclopentadiene:					
	360 CCV above Acceptance Range (AR). Samples which were non detect for this analyte were accepted.					
	05/20/2016:207219 All analysis quality controls are within established criteria, except:					
	The following note applies to Tetrachloro-m-xylene:					
362 Surrogates are qualified on Control Chart Limits, these are CCV limits. See individual samp						
	05/19/2016:205764 All preparation quality controls are within established criteria.					
531.1	06/03/2016:207802 All analysis quality controls are within established criteria.					
	06/02/2016:206486 All preparation quality controls are within established criteria, except:					
	The following note applies to Aldicarb Sulfone/Sulfoxide, Oxamyl:					
	435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.					

Page 1 of 9 Office & Laboratory **Corporate Offices & Laboratory** Office & Laboratory Office & Laboratory Office & Laboratory 2500 Stagecoach Road 3442 Empresa Drive, Suite D 9415 W. Goshen Avenue 853 Corporation Street 563 E. Lindo Avenue Visalia, CA 93291 Santa Paula, CA 93060 Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (805)392-2000 TEL: (209)942-0182 TEL: (530)343-5818 TEL: (805)783-2940 TEL: (559)734-9473 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 FAX: (530)343-3807 FAX: (805)783-2912 FAX: (559)734-8435 CA ELAP Certification No. 1573 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

June 3, 2016	Lab ID	: SP 1605717
Alpha Analytical Laboratories, Inc.	Customer	: 2-20626

## **Organic QC**

548.1	05/27/2016:207526 All analysis quality controls are within established criteria.
	05/19/2016:205874 All preparation quality controls are within established criteria.

### Radio QC

900.0	05/30/2016:207789 All analysis quality controls are within established criteria.							
	05/26/2016:206157 All preparation quality controls are within established criteria.							
Ra - 05	05/29/2016:207557 All analysis quality controls are within established criteria.							
	05/26/2016:206021 All preparation quality controls are within established criteria.							

**Certification::** I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Digitally signed by Kelly A. Dunnahoo, B.S. Title: Laboratory Director Date: 2016-06-06



June 3, 2016

#### Alpha Analytical Laboratories, Inc.

208 Mason St. Ukiah, CA 95482

#### Lab ID : SP 1605717-001 Customer ID : 2-20626

Sampled On : May 17, 2016-10:00 : Not Available Sampled By Received On : May 19, 2016-11:15 : Water Matrix

Description	: ESW-5-17-10:00
Project	: 16E1535

#### **Sample Result - Organic**

Constituent	Result	PQL	Units	Note	Sample	Preparation	Sample Analysis	
	Kesult	FQL	Units	Note	Method Date/ID		Method	Date/ID
EPA 505 ^{AGT:1}								
Tetrachloro-m-xylene [‡]	126	70-130	%		505	05/19/16:205764	505	05/20/16:207219
Alachlor	ND	0.2	ug/L		505	05/19/16:205764	505	05/20/16:206932
Aldrin	ND	0.075	ug/L		505	05/19/16:205764	505	05/20/16:206932
Chlordane	ND	0.1	ug/L		505	05/19/16:205764	505	05/20/16:206932
Dieldrin	ND	0.01	ug/L		505	05/19/16:205764	505	05/20/16:206932
Endrin	ND	0.01	ug/L		505	05/19/16:205764	505	05/20/16:206932
Heptachlor	ND	0.01	ug/L		505	05/19/16:205764	505	05/20/16:206932
Heptachlor Epoxide	ND	0.01	ug/L		505	05/19/16:205764	505	05/20/16:206932
Hexachlorobenzene	ND	0.01	ug/L		505	05/19/16:205764	505	05/20/16:206932
Hexachlorocyclopentadiene	ND	0.1	ug/L		505	05/19/16:205764	505	05/20/16:206932
Lindane (Gamma BHC)	ND	0.05	ug/L		505	05/19/16:205764	505	05/20/16:206932
Methoxychlor	ND	0.1	ug/L		505	05/19/16:205764	505	05/20/16:206932
Toxaphene	ND	0.5	ug/L		505	05/19/16:205764	505	05/20/16:206932
PCB 1016	ND	0.5	ug/L		505	05/19/16:205764	505	05/20/16:206932
PCB 1221	ND	0.5	ug/L		505	05/19/16:205764	505	05/20/16:206932
PCB 1232	ND	0.5	ug/L		505	05/19/16:205764	505	05/20/16:206932
PCB 1242	ND	0.5	ug/L		505	05/19/16:205764	505	05/20/16:206932
PCB 1248	ND	0.5	ug/L		505	05/19/16:205764	505	05/20/16:206932
PCB 1254	ND	0.5	ug/L		505	05/19/16:205764	505	05/20/16:206932
PCB 1260	ND	0.5	ug/L		505	05/19/16:205764	505	05/20/16:206932
EPA 531.1 ^{AGT:1'8}								
Aldicarb	ND	3	ug/L		531.1	06/02/16:206486	531.1	06/03/16:207802
Aldicarb Sulfone	ND	2	ug/L		531.1	06/02/16:206486	531.1	06/03/16:207802
Aldicarb Sulfoxide	ND	3	ug/L		531.1	06/02/16:206486	531.1	06/03/16:207802
Carbaryl	ND	5	ug/L		531.1	06/02/16:206486	531.1	06/03/16:207802
Carbofuran	ND	5	ug/L		531.1	06/02/16:206486	531.1	06/03/16:207802
3-Hydroxycarbofuran	ND	3	ug/L		531.1	06/02/16:206486	531.1	06/03/16:207802
Methomyl	ND	2	ug/L		531.1	06/02/16:206486	531.1	06/03/16:207802
Oxamyl	ND	5	ug/L		531.1	06/02/16:206486	531.1	06/03/16:207802
EPA 548.1 ^{AGT:1}								
Endothall	ND	40	ug/L		548.1	05/19/16:205874	548.1	05/27/16:207526

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic Preservatives: Monochloracetic Buffer, HNO3 pH < 2 ‡Surrogate. * PQL adjusted for dilution.

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 3 of 9

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810



June 3, 2016

#### Alpha Analytical Laboratories, Inc.

208 Mason St. Ukiah, CA 95482

#### Lab ID : SP 1605717-001 Customer ID : 2-20626

Sampled On : May 17, 2016-10:00 Sampled By : Not Available Received On : May 19, 2016-11:15 : Water Matrix

#### Description : ESW-5-17-10:00 Project :16E1535

### Sample Result - Radio

Constituent	Result ± Error	MDA	MDA Units MCL/A		Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Enor	MDA	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1'5}								
Gross Alpha	$0.818 \pm 1.44$	1.91	pCi/L	15/5	900.0	05/26/16-08:00 2P1606157	900.0	05/30/16-07:00 2A1607789
Ra 228	$0.049 \pm 0.560$	0.200	pCi/L	2	Ra - 05	05/26/16-19:30 2P1606021	Ra - 05	05/29/16-11:40 2A1607557

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic Preservatives: Monochloracetic Buffer, HNO3 pH < 2 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance: Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 4 of 9

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810



Lab ID Customer : SP 1605717 : 2-20626

#### **Quality Control - Organic**

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Alachlor	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.2	
	000	00,19,10,200,010,010	LCS	ug/L	5.802	88.5 %	84-135	
			MS	ug/L	5.596	83.1 %	73-137	
		(SP 1605533-001)	MSD	ug/L	5.729	92.4 %	73-137	
			MSRPD	ug/L	5.729	12.9%	≤30	
	505	05/20/16:206932VRG	CCV	ug/L	100.0	111 %	70-130	
		0540460055647036	CCV	ug/L	100.0	89.5 %	70-130	
Aldrin	505	05/19/16:205764JOM	Blank LCS	ug/L	0.5902	ND 87.5 %	<0.075 69-134	
			MS	ug/L ug/L	0.5802 0.5596	87.3 % 84.9 %	21-166	
		(SP 1605533-001)	MSD	ug/L ug/L	0.5729	90.3 %	21-166	
		(51 1005555 001)	MSRPD	ug/L	5.729	8.5%	≤30	
	505	05/20/16:206932VRG	CCV	ug/L	10.00	118 %	70-130	
			CCV	ug/L	10.00	96.5 %	70-130	
Chlordane	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.1	
Dieldrin	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.01	
			LCS	ug/L	0.5802	83.9 %	82-131	
			MS	ug/L	0.5596	82.0 %	66-141	
		(SP 1605533-001)	MSD	ug/L	0.5729	84.4 %	66-141	
			MSRPD	ug/L	5.729	5.2%	<u>≤</u> 30	
	505	05/20/16:206932VRG	CCV	ug/L	10.00	113 %	70-130	
Endrin	505	05/19/16:205764JOM	CCV Blank	ug/L	10.00	86.8 % ND	70-130	
Endrin	505	05/19/16:205/64JOM	LCS	ug/L ug/L	0.5802	ND 85.1 %	<0.01 83-120	
			MS	ug/L ug/L	0.5802	83.1 % 84.6 %	58-120 58-134	
		(SP 1605533-001)	MSD	ug/L	0.5729	87.4 %	58-134	
		( ,	MSRPD	ug/L	5.729	5.6%	≤30	
	505	05/20/16:206932VRG	CCV	ug/L	10.00	117 %	70-130	
			CCV	ug/L	10.00	90.4 %	70-130	
Heptachlor	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.01	
			LCS	ug/L	0.5802	88.2 %	71-131	
		(00.1.005500.001)	MS	ug/L	0.5596	89.5 %	73-135	
		(SP 1605533-001)	MSD MSRPD	ug/L	0.5729	93.4 % 6.6%	73-135	
	505	05/20/16:206932VRG	CCV	ug/L	5.729 10.00	123 %	≤30 70-130	
	505	05/20/10:200952VKG	CCV	ug/L ug/L	10.00	123 % 99.5 %	70-130	
Heptachlor Epoxide	505	05/19/16:205764JOM	Blank	ug/L ug/L	10.00	ND	<0.01	
	505	05/19/10.205/045000	LCS	ug/L	0.5802	89.0 %	75-129	
			MS	ug/L	0.5596	85.8 %	65-134	
		(SP 1605533-001)	MSD	ug/L	0.5729	88.0 %	65-134	
			MSRPD	ug/L	5.729	4.9%	≤30	
	505	05/20/16:206932VRG	CCV	ug/L	10.00	118 %	70-130	
			CCV	ug/L	10.00	90.4 %	70-130	
Hexachlorobenzene	505	05/19/16:205764JOM		ug/L	0.5000	ND	< 0.01	
			LCS	ug/L	0.5802	88.6 %	69-134 71-136	
		(SP 1605533-001)	MS MSD	ug/L ug/L	0.5596 0.5729	85.8 % 85.9 %	71-136	
		(31 1003335-001)	MSD MSRPD	ug/L ug/L	5.729	2.5%	$\leq 30$	
	505	05/20/16:206932VRG	CCV	ug/L ug/L	10.00	116 %	70-130	
	2.00		CCV	ug/L	10.00	90.2 %	70-130	
Hexachlorocyclopentadiene	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.1	
~ 1			LCS	ug/L	0.5802	94.3 %	48-144	
			MS	ug/L	0.5596	87.1 %	60-152	
		(SP 1605533-001)	MSD	ug/L	0.5729	91.2 %	60-152	
			MSRPD	ug/L	5.729	6.9%	≤30	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 5 of 9

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

### : SP 1605717 : 2-20626

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Hexachlorocyclopentadiene	505	05/20/16:206932VRG	CCV	ug/L	10.00	133 %	70-130	360
rienaemoroeyeropenaarene	505	05/20/10.200952 (103	CCV	ug/L	10.00	104 %	70-130	500
Lindane	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.05	
			LCS	ug/L	0.5802	92.3 %	76-131	
			MS	ug/L	0.5596	90.2 %	72-132	
		(SP 1605533-001)	MSD	ug/L	0.5729	89.2 %	72-132	
			MSRPD	ug/L	5.729	1.2%	≤30	
	505	05/20/16:206932VRG		ug/L	10.00	124 %	70-130	
			CCV	ug/L	10.00	92.2 %	70-130	
Methoxychlor	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.1	
			LCS	ug/L	2.901	90.0 %	73-137	
			MS	ug/L	2.798	89.1 %	59-145	
		(SP 1605533-001)	MSD	ug/L	2.865	95.7 %	59-145	
			MSRPD	ug/L	5.729	9.5%	<u>≤</u> 30	
	505	05/20/16:206932VRG		ug/L	50.00	125 %	70-130	
		05/10/14 00/25 4702 5	CCV	ug/L	50.00	99.9 %	70-130	
PCB 1016/1242 - 1	505	05/19/16:205764JOM	Blank	ug/L		ND	<0.5	
PCB 1221 - 1	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.5	
PCB 1232 - 1	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.5	
PCB 1242	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.5	
PCB 1248 - 1	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.5	
PCB 1254 - 1	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.5	
PCB 1260 - 1	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.5	
Tetrachloro-m-xylene	505	05/19/16:205764JOM	Blank	ug/L	1.144	119 %	70-130	
			LCS	ug/L	1.162	118 %	70-130	
			MS	ug/L	1.120	106 %	N/A	
		(SP 1605533-001)	MSD	ug/L	1.147	117 %	N/A	
			MSRPD	ug/L	5.729	12.5%	≤30.0	
	505	05/20/16:207219VRG		ug/L	20.02	146 %	70-130	362
			CCV	ug/L	20.02	111 %	70-130	
Toxaphene	505	05/19/16:205764JOM	Blank	ug/L		ND	< 0.5	
3-Hydroxycarbofuran	531.1	06/02/16:206486SG	Blank	ug/L		ND	<3	
			LCS	ug/L	20.00	99.4 %	80-120	
		(17.1641604.001)	MS	ug/L	20.00	76.0 %	65-135	
		(VI 1641694-001)	MSD MSRPD	ug/L	20.00 20.00	81.2 % 6.6%	65-135	
	531.1	06/03/16:207802SG	CCV	ug/L	10.00	113 %	≤16.8 80-120	
	551.1	00/05/10:20/80250	CCV	ug/L ug/L	20.00	89.6 %	80-120 80-120	
Aldicarb	531.1	06/02/16:206486SG	Blank	ug/L ug/L	20.00	89.0 % ND	<3	
Aldicalo	551.1	00/02/10.20048050	LCS	ug/L ug/L	20.00	94.2 %	80-120	
			MS	ug/L ug/L	20.00	92.8 %	65-135	
		(VI 1641694-001)	MSD	ug/L ug/L	20.00	97.9 %	65-135	
		(1110410)4 001)	MSRPD	ug/L	20.00	5.4%	≤11.2	
	531.1	06/03/16:207802SG	CCV	ug/L	10.00	120 %	80-120	
	551.1	20,00,10,20,00200	CCV	ug/L ug/L	20.00	98.8 %	80-120	
Aldicarb Sulfone	531.1	06/03/16:207802SG	CCV	ug/L ug/L	10.00	92.2 %	80-120	
			CCV	ug/L	20.00	94.6 %	80-120	
Aldicarb Sulfone/Sulfoxide	531.1	06/02/16:206486SG	Blank	ug/L		ND	<2	
			Blank	ug/L		ND	<3	
			LCS	ug/L	20.00	104 %	80-120	
			LCS	ug/L	20.00	100 %	80-120	
			MS	ug/L	20.00	94.6 %	65-135	
			MS	ug/L	20.00	80.8 %	65-135	
		(VI 1641694-001)	MSD	ug/L	20.00	107 %	65-135	

## **Quality Control - Organic**

### : SP 1605717 : 2-20626

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic									
Aldicarb Sulfone	Sulforide	531.1	(VI 1641694-001)	MSD	ug/L	20.00	110 %	65-135	
Alucato Suttone/	Suitoxide	551.1	(11041094-001)	MSRPD	ug/L ug/L	20.00	27.8%	≤7.28	435
				MSRPD	ug/L ug/L	20.00	14.6%	≤13.8	435
Aldicarb Sulfoxid	P	531.1	06/03/16:207802SG	CCV	ug/L ug/L	10.00	104 %	80-120	155
i naiculo Bullovia		551.1	00/05/10.20/00250	CCV	ug/L	20.00	100 %	80-120	
Carbaryl		531.1	06/03/16:207802SG	CCV	ug/L	10.00	109 %	80-120	
, j				CCV	ug/L	20.00	106 %	80-120	
Carbaryl/Naphtho	ol	531.1	06/02/16:206486SG	Blank	ug/L		ND	<5	
				LCS	ug/L	20.00	99.6 %	80-120	
				MS	ug/L	20.00	99.4 %	65-135	
			(VI 1641694-001)	MSD	ug/L	20.00	106 %	65-135	
				MSRPD	ug/L	20.00	1.4	≤5	
Carbofuran		531.1	06/02/16:206486SG	Blank	ug/L	20.00	ND	<5	
				LCS	ug/L	20.00	99.0 %	80-120	
			(VI 1641604 001)	MS MSD	ug/L	20.00 20.00	90.0 %	65-135	
			(VI 1641694-001)	MSD	ug/L ug/L	20.00	101 % 2.2	65-135 ≤5	
		531.1	06/03/16:207802SG	CCV	ug/L ug/L	10.00	83.0 %	80-120	
		551.1	00/03/10.20/80230	CCV	ug/L ug/L	20.00	109 %	80-120	
Methomyl		531.1	06/02/16:206486SG	Blank	ug/L ug/L	20.00	ND	<2	
Wiethomy		551.1	00/02/10.20040050	LCS	ug/L ug/L	20.00	104 %	80-120	
				MS	ug/L	20.00	100 %	65-135	
			(VI 1641694-001)	MSD	ug/L	20.00	101 %	65-135	
			````	MSRPD	ug/L	20.00	0.5%	≤53.1	
		531.1	06/03/16:207802SG	CCV	ug/L	10.00	98.5 %	80-120	
				CCV	ug/L	20.00	107 %	80-120	
Oxamyl		531.1	06/02/16:206486SG	Blank	ug/L		ND	<5	
				LCS	ug/L	20.00	90.6 %	80-120	
			GTT 1 5 1 1 50 1 00 1)	MS	ug/L	20.00	122 %	65-135	
			(VI 1641694-001)	MSD	ug/L	20.00	86.8 %	65-135	125
		531.1	06/02/16:20780286	MSRPD	ug/L	20.00	7.0 83.9 %	≤5 80-120	435
		551.1	06/03/16:207802SG	CCV CCV	ug/L	10.00 20.00	83.9 % 86.6 %	80-120 80-120	
Endothall		548.1	05/19/16:205874SG	Blank	ug/L ug/L	20.00	80.0 % ND	<40	
Liidotilali		546.1	03/19/10.2038/450	LCS	ug/L ug/L	83.33	58.8 %	30-96	
				MS	ug/L	83.33	65.6 %	15-87	
			(STK1635948-001)	MSD	ug/L	83.33	51.6 %	15-87	
			````	MSRPD	ug/L	83.33	12	≤40	
		548.1	05/27/16:207526SG	CCV	ug/L	2500	116 %	70-130	
				CCV	ug/L	1000	115 %	70-130	
Definition									
CCV	: Continuing Cal	ibration Verifica	ation - Analyzed to veri	fy the instru	nent calibrati	on is within	criteria.		
Blank			rify that the preparation						
LCS			ample - Prepared to veri						
MS	1		ple is spiked with a know	wn amount o	of analyte. The	e recoveries	are an indication	on of how th	at sample
	matrix affects an		MCD as in the 1	1- 1 1				1. <i>4</i> 1. 771	
MSD			MSD pair - A random s			with a know	n amount of ar	halyted. The	recoveries
			pple matrix affects analy ference (RPD) - The MS			oo ic on indi	ration of pracis	ion for the n	renaration
MSRPD	and analysis.	ive reicent Dill	cicice (KrD) - The MS	s relative per	cent unierent	le is an mult	auon or precis	ion for the p	reparation
ND		esult was below	the DQO listed for the a	analyte					
	. I ton acteer . Re								
	: Data Quality O	biective - This is	s the criteria against wh	ich the auali	ty control dat	a is comnare	d.		
DQO Explanation	: Data Quality O	bjective - This is	s the criteria against wh	ich the quali	ty control dat	a is compare	d.		

## **Quality Control - Organic**

Lab ID Customer : SP 1605717 : 2-20626

## **Quality Control - Organic**

Explanation	
362	: Surrogates are qualified on Control Chart Limits, these are CCV limits. See individual sample reports.
435	: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

Lab ID	
Customer	

### : SP 1605717 : 2-20626

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	05/30/16:207789caa	CCV	cpm	8661	42.1 %	38 - 47	
-				CCB	cpm		0.100	0.18	
Gross Alpha		900.0	05/26/16:206157ELC	Blank	pCi/L		1.12	3	
				LCS	pCi/L	107.4	107 %	75-125	
				MS	pCi/L	107.4	91.2 %	60-140	
			(SP 1605903-001)	MSD	pCi/L	107.4	98.8 %	60-140	
				MSRPD	pCi/L	107.4	7.9%	≤30	
Beta		Ra - 05	05/29/16:207557caa	CCV	cpm	9051	97.8 %	88 - 107	ļ
				CCB	cpm		0.3800	0.49	
Ra 228		Ra - 05	05/26/16:206021emv	RgBlk	pCi/L		-0.05	3	
				LRS	pCi/L	81.13	50.9 %	27-59	
				BS	pCi/L	81.13	108 %	75-125	
				BSD	pCi/L	81.13	111 %	75-125	
				BSRPD	pCi/L	81.13	3.1%	≤25	
Definition									
CCV			tion - Analyzed to verif				criteria.		
CCB			Analyzed to verify the				• • •	1	
Blank			ify that the preparation				ion to the sam	pies.	
RgBlk LCS			ed to correct for any rea imple - Prepared to veri				ffacting analyt		
LRS			- Prepared to establish t					e recovery.	
LKS			ble is spiked with a know					on of how the	ot comple
MS	matrix affects ana		he is spiked with a know		analyte. The	e recoveries a	are all indication	JI OI HOW UIA	a sample
			MSD pair - A random sa	ample duplic	ate is spiked	with a know	n amount of ar	alvted The	recoveries
MSD			ple matrix affects analy			with a know	in annount of a	laryted. The	leeoveries
			d with a known amount			to verify that	t the preparatio	n process is	not
BS	affecting analyte r	1		or unurjuer .	a is propuled	to verify the	i ino propulation	in process is	
			SD pair - A blank dupli	cate is spike	d with a know	n amount of	analyte. It is r	prepared to v	erify that
BSD			ecting analyte recovery.						
MODDO			erence (RPD) - The MS		cent differenc	e is an indic	ation of precis	ion for the p	reparation
MSRPD	and analysis.			I.			1	· r	
BSRPD		e Percent Diffe	rence (RPD) - The BS r	elative perco	ent difference	is an indicat	ion of precisio	n for the pre	paration
DSKPD	and analysis.						-	1	
DQO	: Data Quality Obj	jective - This is	the criteria against whi	ch the quali	ty control data	a is compare	d.		

## **Quality Control - Radio**

Alpha Analytical Laboratorics Inc.		C 208 Mas 707-4 clients	68-04	treet, 01 F)	Ukiah 707-	1, CA 468-{	9548 267	2		ę	9090		oin P	arģ M	l Valle Vy., # 5190	113, 6	ik Gr	ove, I		5624					of	С	us		dy	Re	ecor	-	-	
WWW.alpha-labs.com WATERS, SEDIMENTS, SOLIDS	6398	8 3 Doughe 925-82		oad, f	<b>/3</b> 5, E	Jublin	, CA	94568						1							Lab	No	16	E	15	35	• 		_	Page		, Ž	s E	ม
Name:		Project I	D:		_		_			_		_		İ	Sign	nature	belov	v aut	horize	es wo			_		_									•
Town of Windsor - Drinking Water			S	δοι	irce	эC	he	mi	ca	1				,			-	Α	na	lvs	sis	R	ec	3110	es	t					ТА	 T		
Malilng Address: 9291 Old Redwood Highway Building 400 Windsor, CA 95492		Phase:		E	isp	os [.]	ti V	Vel						    					Γ				<del></del>			T	Τ	Т	Τ		241	<b>`</b>	ų,	36
Project Contact (Hardcopy or PDF to): Elizabeth Cargay ecargay@townofwindsor.com		PO#	<b>#</b> 2	200	)33	36								ľ							z		N, NO2,							List)	48 1 	יי )	quired For Rush	~; †
Kent O'Brien kent.obrien@ghd.com		Bill to:		mc	nth	ı er	nd b	oillir	ng			_						K, Na			N, Nitrite as		Total Nitrogen (includes TKN, NO2, NO3)		n - total					Scan (**Below List)	Appro Roquii 1 w	red	2	
Field Sampler - Print Name & Signature	•		C	onta	iner		Pres	erva	tive	N	latri	ix						Mg,			Ż		l ij		diur						Ĉ	5	Ρō	
	Sam Colle	ple ction	A0			Π	Τ			T	Ι	Γ	As	e.	200.7 Mn	ර්	218.6 Cr6	200.7 Ca, N	ιţ	e B		0	trogen		200.8 Vanadium	Phosohate					2 w.	ĸ	Lab Approval	
Sample					ន		_ 8	ថ្ន	ъ				200.8 /	200.7 Fe	0.1	200.8 Cr	8.6	0.7	Alkalinity	Chloride	Nitrate	Sulfate	al Ü	Silica	0.8					e 22	(standa			
	ate	Time		Poty			E NO	NH4CI	5 z	N N	Soil		20	50	5	20	21	Š	₹	ਠਿ	ž	Su	Ĕ	1	20	<u>او</u>				Title	Ø			
ESW-5-17-10:00 5/	/17	14:00	"×	x x		;	<u> </u>	<u> </u>	< x	×																Ĺ	· [			x	See	Ati	12	ched Verify a Mus
			$\square$							_									_		_											24	- }	ienty
																				<u> </u>				L							a	<u>11 a</u>		NEI
								$\square$										_										-				21.		L
																											_							
			$\square$					$\square$																										
			$\downarrow$		_		_				_													$\vdash$			_		┢					
· · · · · · · · · · · · · · · · · · ·			$\downarrow$				_	$\square$			4_			<b> </b>																	_			
			$\left  \right $	╉	+					+	+-		-					_				*	**	Γi	tle	; ć	22	2 5	30	ar	า			
										Т								_						•••							•			
																			644	32 F	^{&gt;} rima	ary I	norg	janio	s, 6	443	2.1	NO2/	NO3	, 644	49 <b>A</b> &B	,		
																		_	Ast	esto	os, P	erch	nlora	te, C	Gros	s Al	pha,	504.	.1, 50	07, 50	08, 515.	.1,		
																			524	.2, :	531.1	1, 54	18.1,	549	.2							-		
Relinquished by		Received		, 1)/	h	``	Û			-		Dat	۱ 7//	 []	Time /ζ	; 15		CD	PH '	Wŗil	e Ò	n El		Rep	ort?			Yes	5 (	×	No	$\bigcirc$	)	
Relipenshed by:	-	Received	1 by:	70	_	$\sim$						Dat	י <u>ן י</u> ופ		Time	;	,,	Sta	ate S	Sys	tem	Nu	mb	er:		: <del></del> :		<u> </u>	<u></u>				_	
Relinquished by:	~~	Received	1 by:	1	7	74						Dat			Time			CA	Ger	, otra	cker	ED	FR	еро	rt			Yes		<u> </u>	No	$\overline{}$	5	
Relinquished by:		Received	i by:									Dat	te		Time			Sai		ng C	Com			-	ođe	_	- mail A	ddress)		_				
Relinquished by:		Received	d by:									Dat	ie		Time	3					te Tir	nė:	Mile	eage		(Cl		sc.`Su	-	is:	<u> </u>		-	

____

۾ ،

J.

ç,

- -

- - 1

____

Alpha Analytical Laboratories Inc.		Ci 208 Mas 707-48 cilents	38-040	eet, L 1.F) :	Jkiah, 707-4	CA 9 68-52	267	2,		g	9090		in Pa	ark W	/y.,#	oy Lai 113, E F) 910	ik Gr	ove,	CA 9! 2	56 <b>2</b> 4					of	Ċı	ust		iy I	Re	cord			
WWW.alpha-labs.com Waters, Sediments, Solids	639	<i>B</i> 8 Doughei 925-82		id, #3	35, Du	ıblin,		94568	8					ł							Lat	<b>N</b> o	14	Ē,	15	35	5		ł	Page_	∠	3 <u>+U</u>	<u>g</u> w	<b>,</b> ≱.
Name:		Project II	D:				_					Т		<u>}.</u>	Sigr	ature	be!o\	w aut	horize	es wo	ork ur	ider te	erms	stated	l on re	everse	side.							7
Town of Windsor - Drinking Water	r		S	ou	rce	C	he	mi	cal	1								٨	na	h.			) 		~~	•								
Mailing Address: 9291 Old Redwood Highway Building 400		Phase:		F	spo	neti							<u> </u>	<u> </u>		<u> </u>	Γ		na T	iy: T	12					L 		<b>—</b> _T	- <b>T</b>		7AT .24 hr		4	·
Windsor, CA 95492 Project Contact (Hardcopy or PDF to):		ļ			spc					_		_	H	ί																	$\odot$	2	ç	4 L
Elizabeth Cargay ecargay@townofwindsor.com		PO#	# 2	20	03	36	i						10-0																			(       	Approval Required For Rush	2.4
Kent O'Brien		Bill to:										-r	יא ע	ĺ								İ									Арргоча	1		
kent.obrien@ghd.com			Г	noi	nth	en	d b	oillir	ng				Ż	ł,					33											┝	Required	<u> </u>	I.Rec	
Field Sampler - Print Name & Signature			Cor	ntai	ner	Τp	rese	erva	tive	M	atri		Ϋ́Υ				_		Reć	ate	18													
		nple	Ť	Τ	ΠT	Ť	Ť		T	<u> </u>			∦				۵	228	≥	ļ	3 Dioxin DW				1						_		Ă	
Sample	Colle	ection	ð					4					8	ğ	e	≷	ide	Ē		5	١ă										2 wk			
Identification	Date	Time	40ml V 201 V	mber	ass	ដ្ឋ	NO3	H2SO4	Other	Vater	Soil		<del>/1 8 11 6/</del>	Ammonia	Sulfide	Cr6 DW	Cyanide DW	Radium 228	525.2 DDW Reg	547 Glyphosate	1613			1							(standard		_	
Esposti ESU				. <u> </u>			x		x x			-,	f	X	x	x	x	v v	x	x	x			╉─	+			┢──╋	_				-	
ESW-5-17-10:00)			++	<del> ^-</del>	╏┼	Ê	Ê	<u> </u>		Ť			7		Ê	Â	^	Ê	ŕ	Ê	Ê		1	┢	+		$\left  \right $	┢──┼╴					-	
				+-	┦─┼		+			╋										$\square$			+		+			<u> </u>		-+				
		<u> </u>		╀			+-	$\square$		╀					-					-	┢	1		┢	-			-+					-	
· · · ·				+		╈		╞╌┞						!								+		+		+		ſ <del></del> +	-+-				-	
· · ·				╈			+			╈			-	+	-						┼──	+	-	-		-			-+	+			-	
<u> </u>			╉┼┼	╈						t					-					1		┥		+		-							-	
				┢			+			╉			-	-					-		+	╎	+		+			$\rightarrow$		-+-	_		-	
·				┼─				╞┼		┢	+		-	T						5		1 1		/	1	·			ر مرجعه ا				-	
				-		╁			_									_		d	ve	to .	íha	VVP	HS Ct	Sam	SF de C	pec <b>é</b> Cont	atio Time	n 7-				
						+	+	$\left  \right $		╀	┦─┤	_		<u> </u>	_	-			_								Ø	<u>9</u>					4	
			┠╌┼╴	-		+	+	$\square$		╀	┼┤	+	_						<u> </u>						-	_					_			
				+			╉┤	$\vdash$	+	-	┼┤	+	_		-					_														
Relinquished by:	1	Received		7			لىل مەر		⊥ [_		-	Date	1		Time	<u> </u>		CD	Ë PH i	Ŵŗi	te O	n E	DTI	Repo	ort?	π.		Yes	×	$\overline{)}$	"Ňo (	$\overline{\mathbb{C}}$	<b>I</b> .	
Reingunshes by	ie	Received	бу:				2-7	~		~		Date 6	- 1	-	Time			Sta	ite S	Sys	tem	Nu	mb	er:			-	۲						
Relinquiched by	- <u></u>	Received	by:			55	<	_	>-		1	Date	;		Time			СА	Geo	otra	ckei	r ED	FR	epoi	rt –		•-	Yes	$\subset$	$\sum$	No (	$\Box$	,	
Relinquished by:	1	Received	by:									Date	<u> </u>	<u> </u>	Time	 !			npli bal		Com	pan	ý Lo	g C			- ail Addr		ĸ	_				
Relinquished by:		Received	by:				_	_				Date			Time		-		/el ar		te Ti	me:	Mile	age:				. Supp	plies:		ı.		,	
							_	-	_					_		_									-	_			_	-		<u> </u>	_	

16E1535

-

_

Provide analysis for each of the compounds listed below:

ŝ.

.

•

		м — — — — — — — — — — — — — — — — — — —		Well W	ater Ana	lysis*	-		
tà	pH	6.67	]		Anions		Metals & F	Radionuc	lides
P1	Temperature	66	۳F	Aikalinity	230	mg/L. CaCO ₃	Antimony		μg/L Sb
**	ORP (EMF)	4	m∨	Bicarbonate	280	mg/L CaCO ₃	Total Arsenic	56.0	µg/L As
Ľ	Conductivity	458	μS/cm	Carbonate	<1.0	mg/L CaCO3	Reduced As(III)		µg/LAs(II)
**	<b>Dissolved Solids</b>	300	mg/L TDS	Chloride	17	mg/L Cl	Copper	<50	μց/∟ Ըս
53	Suspended Solids		mg/L TSS	Fluoride	0.37	mg/L F	Iron	<100	μg/L Fe
**	Turbidity	354.0	NTU	Nitrate	<2.0	mg/L NO₃	Lead	<5.0	μg/L Pb
Į	C	ations		Phosphate		mg/L PO₄	Manganese	750	µg/L Mn
	Hardness	120	mg/L CaCO ₃	***Silica	87.0	mg/L SiO ₂	Mercury	<1.0	µg/L Hg
***	Ammonia	0.30	mg/L NH3	Sulfate	12	mg/L SO.	Selenium	<5.0	µg/L Se
	Calcium	22	mg/L. Ca	Sulfide		mg/LS	Uranium		μց/∟ Ս
	Magnesium	15	mg/L Mg			mg/L	Vanadium		μ <b>g/L V</b>
	Sodium	54	mg/L Na	<u> </u>		mg/L			μg/L

Dad Water Annhuin are aritical for basis design estimates

3 3 2 3 3 3

з**н**.



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

22 September 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Feasibility Study Work Order: 16I0423

Enclosed are the results of analyses for samples received by the laboratory on 09/06/16 16:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette Popli

Jeanette L. Poplin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

#### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Esposti Irrigation Well	16I0423-01	Water	09/06/16 10:45	09/06/16 16:00



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100	,	ect Manager: Eliz Project: Esp ject Number: #25	oosti Fea	0,	udy		Re 09/22/1	eported: 6 13:21
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
Esposti Irrigation Well (16I0423-01)		Sample Type:	Water		Sample	d: 09/06/16 10:45		
Metals (Drinking Water) by EPA 200 Series Me	thods	1 .1						
Calcium	19 mg/L	1.0	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7	
Iron	ND ug/L	100	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7	
Magnesium	19 mg/L	1.0	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7	
Manganese	1500 ug/L	20	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7	
Potassium	7.1 mg/L	1.0	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7	
Sodium	31 mg/L	1.0	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7	
Metals by EPA 200 Series Methods								
Chromium, hexavalent	ND ug/L	1.0	1	AI63521	09/19/16 15:44	09/19/16 15:44	EPA 218.6	
Metals by EPA Method 200.8 ICP/MS								
Arsenic	13 ug/L	2.0	4	AI63407	09/19/16 06:35	09/20/16 12:21	EPA 200.8	
Chromium	ND ug/L	10	4	AI63407	09/19/16 06:35	09/20/16 12:21	EPA 200.8	R-0
Vanadium	ND ug/L	3.0	4	AI63407	09/19/16 06:35	09/20/16 12:21	EPA 200.8	R-0
Conventional Chemistry Parameters by APHA/	EPA Methods							
Phosphate, Total	0.95 mg/L	0.10	1	AI63455	09/19/16 07:45	09/19/16 12:57	SM4500-P E	
Silica	85 mg/L	5.0	5	AI63462	09/19/16 08:14	09/19/16 11:30	SM4500-SiO2 C	
Total Alkalinity as CaCO3	150 mg/L	5.0	1	AI63242	09/13/16 08:00	09/13/16 16:13	SM2320B	
Total Kjeldahl Nitrogen	ND mg/L	1.0	1	AI63268	09/14/16 06:19	09/15/16 09:57	SM4500-Norg B	
Total Nitrogen	ND mg/L	1.0	1	AI63246	09/12/16 10:47	09/19/16 16:38	SM4500-N	
Anions by EPA Method 300.0								
Chloride	27 mg/L	2.5	5	AI63111	09/08/16 03:04	09/08/16 03:04	EPA 300.0	
Nitrate as N	ND mg/L	0.20	1	AI63111	09/08/16 03:20	09/08/16 03:20	EPA 300.0	
Nitrite as N	ND mg/L	0.20	1	AI63111	09/08/16 03:04	09/08/16 03:04	EPA 300.0	
Sulfate as SO4	9.2 mg/L	0.50	1	AI63111	09/08/16 03:20	09/08/16 03:20	EPA 300.0	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

#### Metals (Drinking Water) by EPA 200 Series Methods - Quality Control

		Reporting	<b>.</b>	Spike	Source		%REC		RPD	E1
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63409 - Metals Digest										
Blank (AI63409-BLK1)				Prepared &	Analyzed:	09/20/16				
Calcium	ND	1.0	mg/L							
Iron	ND	100	ug/L							
Magnesium	ND	1.0	mg/L							
Manganese	ND	20	ug/L							
Potassium	ND	1.0	mg/L							
Sodium	ND	1.0	mg/L							
LCS (AI63409-BS1)				Prepared &	Analyzed:	09/20/16				
Calcium	7.31	1.0	mg/L	8.00	-	91.4	85-115			
Iron	1930	100	ug/L	2000		96.5	85-115			
Magnesium	7.39	1.0	mg/L	8.00		92.4	85-115			
Manganese	192	20	ug/L	200		96.1	85-115			
Potassium	7.74	1.0	mg/L	8.00		96.8	85-115			
Sodium	6.88	1.0	mg/L	8.00		86.0	85-115			
Duplicate (AI63409-DUP1)	Sour	ce: 1610351	-01	Prepared 8	Analyzed:	09/20/16				
Calcium	24.8	1.0	mg/L		24.3			1.77	20	
Iron	ND	100	ug/L		ND			3.83	20	
Magnesium	17.2	1.0	mg/L		17.1			0.696	20	
Manganese	ND	20	ug/L		ND			4.49	20	
Potassium	32.1	1.0	mg/L		31.7			1.28	20	
Sodium	93.5	1.0	mg/L		91.8			1.86	20	
Matrix Spike (AI63409-MS1)	Sour	ce: 1610351	-01	Prepared 8	Analyzed:	09/20/16				
Calcium	32.5	1.0	mg/L	8.00	24.3	103	70-130			
Iron	2020	100	ug/L	2000	ND	97.5	70-130			
Magnesium	24.5	1.0	mg/L	8.00	17.1	92.2	70-130			
Manganese	203	20	ug/L	200	ND	98.6	70-130			
Potassium	38.4	1.0	mg/L	8.00	31.7	83.8	70-130			
Sodium	98.7	1.0	mg/L	8.00	91.8	86.7	70-130			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

#### Metals (Drinking Water) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63409 - Metals Digest										
Matrix Spike (AI63409-MS2)	Sour	ce: 1610318	-01	Prepared &	k Analyzed:	09/20/16				
Calcium	48.0	1.0	mg/L	8.00	37.1	135	70-130			QM-4X
Iron	32300	100	ug/L	2000	30200	107	70-130			
Magnesium	36.2	1.0	mg/L	8.00	27.1	113	70-130			
Manganese	6030	20	ug/L	200	5760	137	70-130			QM-4X
Potassium	9.63	1.0	mg/L	8.00	1.14	106	70-130			
Sodium	28.2	1.0	mg/L	8.00	18.5	121	70-130			
Matrix Spike Dup (AI63409-MSD1)	Sour	ce: 1610351	-01	Prepared &	analyzed:	09/20/16				
Calcium	33.3	1.0	mg/L	8.00	24.3	112	70-130	2.22	20	
Iron	2160	100	ug/L	2000	ND	105	70-130	6.72	20	
Magnesium	24.8	1.0	mg/L	8.00	17.1	96.4	70-130	1.34	20	
Manganese	217	20	ug/L	200	ND	106	70-130	6.75	20	
Potassium	38.7	1.0	mg/L	8.00	31.7	87.7	70-130	0.806	20	
Sodium	102	1.0	mg/L	8.00	91.8	123	70-130	2.89	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

#### Metals by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63521 - General Preparation										
Blank (AI63521-BLK1)				Prepared & Analyzed: 09/19/16						
Chromium, hexavalent	ND	1.0	ug/L							
LCS (AI63521-BS1)				Prepared &	Analyzed:	09/19/16				
Chromium, hexavalent	9.93	1.0	ug/L	10.0		99.3	90-110			
Duplicate (AI63521-DUP1)	Sou	rce: 16l0423	-01	Prepared & Analyzed: 09/19/16						
Chromium, hexavalent	ND	1.0	ug/L		ND				20	
Matrix Spike (AI63521-MS1)	Sou	rce: 16l0423	-01	Prepared 8	Analyzed:	09/19/16				
Chromium, hexavalent	9.72	1.0	ug/L	10.0	ND	97.2	90-110			
Matrix Spike (AI63521-MS2)	Sou	rce: 16 1463	-01	Prepared 8	Analyzed:	09/19/16				
Chromium, hexavalent	9.83	1.0	ug/L	10.0	ND	98.3	90-110			
Matrix Spike Dup (AI63521-MSD1)	Sou	rce: 16l0423	-01	Prepared 8	Analyzed:	09/19/16				
Chromium, hexavalent	9.60	1.0	ug/L	10.0	ND	96.0	90-110	1.15	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

#### Metals by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63407 - EPA 200.8										
Blank (AI63407-BLK1)				Prepared: (	09/19/16 A	nalyzed: 09	/20/16			
Arsenic	ND	2.0	ug/L							
Chromium	ND	10	ug/L							
Vanadium	ND	3.0	ug/L							
LCS (AI63407-BS1)				Prepared: (	09/19/16 A	nalyzed: 09	/20/16			
Arsenic	21.9	2.0	ug/L	20.0		110	85-115			
Chromium	20.9	10	ug/L	20.0		104	85-115			
Vanadium	21.0	3.0	ug/L	20.0		105	85-115			
Duplicate (AI63407-DUP1)	Sou	urce: 1610351	-01	Prepared: (	09/19/16 A	nalyzed: 09	/20/16			
Arsenic	6.08	2.0	ug/L		6.63			8.57	20	
Chromium	ND	10	ug/L		ND				20	
Vanadium	ND	30	ug/L		ND				20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

#### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63242 - General Preparation										
Duplicate (AI63242-DUP1)	Sou	ırce: 1610603	-01	Prepared &	Analyzed:	09/13/16				
Total Alkalinity as CaCO3	11.0	5.0	mg/L		11.0			0.00	20	
Batch AI63268 - General Prep										
LCS (AI63268-BS1)				Prepared: (	09/13/16 A	nalyzed: 09	/14/16			
Total Kjeldahl Nitrogen	2.95	1.0	mg/L	2.98		99.0	80-120			
LCS Dup (AI63268-BSD1)				Prepared: (	09/13/16 A	nalyzed: 09	/14/16			
Total Kjeldahl Nitrogen	2.95	1.0	mg/L	2.98		99.0	80-120	0.00	20	
Matrix Spike (AI63268-MS1)	Sou	ırce: 1610737	-03	Prepared: 09/13/16 Analyzed: 09/14/16						
Total Kjeldahl Nitrogen	3.13	1.0	mg/L	2.98	ND	105	75-125			
Matrix Spike Dup (AI63268-MSD1)	Sou	ırce: 1610737	-03	Prepared: (	09/13/16 A	nalyzed: 09	/14/16			
Total Kjeldahl Nitrogen	3.13	1.0	mg/L	2.98	ND	105	75-125	0.00	20	
Batch AI63455 - General Prep										
Blank (AI63455-BLK1)				Prepared &	Analyzed:	09/19/16				
Phosphate, Total	ND	0.10	mg/L							
LCS (AI63455-BS1)				Prepared &	Analyzed:	09/19/16				
Phosphate, Total	0.590	0.10	mg/L	0.600		98.4	85-115			
Duplicate (AI63455-DUP1)	Soι	ırce: 16l1150	-01	Prepared &	Analyzed:	09/19/16				
Phosphate, Total	ND	0.10	mg/L		ND			6.35	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

#### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

	Reporting		Spike	Spike Source				RPD		
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63455 - General Prep										
Matrix Spike (AI63455-MS1)	Sour	ce: 16 1150	-01	Prepared &	Analyzed:	09/19/16				
Phosphate, Total	0.607	0.10	mg/L	0.600	ND	90.7	70-130			
Matrix Spike Dup (AI63455-MSD1)			Prepared &	Analyzed:	09/19/16					
Phosphate, Total	0.607	0.10	mg/L	0.600	ND	90.7	70-130	0.00	20	
Batch AI63462 - General Preparation										
Blank (A163462-BLK1)				Prepared &	Analyzed:	09/19/16				
Silica	ND	1.0	mg/L							
LCS (AI63462-BS1)				Prepared &	Analyzed:	09/19/16				
Silica	9.57	1.0	mg/L	10.0		95.7	85-115			
LCS Dup (AI63462-BSD1)				Prepared & Analyzed: 09/19/16						
Silica	9.61	1.0	mg/L	10.0		96.1	85-115	0.411	20	
Duplicate (AI63462-DUP1)	Sour	ce: 1610685	-01	Prepared &	Analyzed:	09/19/16				
Silica	34.3	5.0	mg/L		35.8			4.50	20	
Matrix Spike (AI63462-MS1)	Source: 1610685-01		Prepared &	Analyzed:	09/19/16					
Silica	56.1	5.0	mg/L	25.0	35.8	81.3	80-120			
Matrix Spike Dup (AI63462-MSD1)	Sour	ce: 1610685	-01	Prepared &	Analyzed:	09/19/16				
Silica	56.5	5.0	mg/L	25.0	35.8	82.8	80-120	0.700	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

#### Anions by EPA Method 300.0 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AI63111 - General Preparation	Result	Linit	Onito	Level	result	JUILLE	Linito	NI D	Linit	8
Blank (AI63111-BLK1)				Prenared &	Analyzed:	09/07/16				
Nitrate as N	ND	0.20	mg/L	Tieparea a	er maryzea.	0)/0//10				
Sulfate as SO4	ND	0.50	mg/L							
Nitrite as N	ND	0.20	mg/L							
Chloride	ND	0.50	mg/L							
LCS (AI63111-BS1)				Prepared &	Analyzed:	09/07/16				
Sulfate as SO4	23.4	0.50	mg/L	22.2	-	105	90-110			
Nitrite as N	5.85	0.20	mg/L	5.56		105	90-110			
Nitrate as N	5.86	0.20	mg/L	5.56		105	90-110			
Chloride	11.6	0.50	mg/L	11.1		104	90-110			
Duplicate (AI63111-DUP1)	Sou	rce: 16l0425	-04	Prepared &	Analyzed:	09/08/16				
Nitrate as N	ND	0.20	mg/L		ND				20	
Nitrite as N	ND	0.20	mg/L		ND				20	
Chloride	ND	0.50	mg/L		ND				20	
Sulfate as SO4	ND	0.50	mg/L		ND				20	
Matrix Spike (AI63111-MS1)	Sou	rce: 16l0425	-04	Prepared &	Analyzed:	09/08/16				
Nitrite as N	5.58	0.20	mg/L	5.56	ND	100	80-120			
Chloride	11.4	0.50	mg/L	11.1	ND	102	80-120			
Nitrate as N	5.76	0.20	mg/L	5.56	ND	104	80-120			
Sulfate as SO4	22.8	0.50	mg/L	22.2	ND	103	80-120			
Matrix Spike (AI63111-MS2)	Sou	rce: 1610362	-03	Prepared &	Analyzed:	09/08/16				
Chloride	15.9	2.5	mg/L	11.1	5.03	98.2	80-120			
Nitrate as N	5.32	1.0	mg/L	5.56	ND	95.7	80-120			
Nitrite as N	5.29	1.0	mg/L	5.56	ND	95.2	80-120			
Sulfate as SO4	32.0	2.5	mg/L	22.2	11.1	93.9	80-120			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

#### Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

#### **Batch AI63111 - General Preparation**

Matrix Spike Dup (AI63111-MSD1)	Source: 16I0425-04		Prepared & Analyzed: 09/08/16						
Chloride	11.6	0.50	mg/L	11.1	ND	104	80-120	1.65	20
Nitrate as N	5.85	0.20	mg/L	5.56	ND	105	80-120	1.65	20
Nitrite as N	5.59	0.20	mg/L	5.56	ND	101	80-120	0.139	20
Sulfate as SO4	23.1	0.50	mg/L	22.2	ND	104	80-120	1.48	20



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

#### **Notes and Definitions**

- QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- REC Recovery
- RPD Relative Percent Difference



# Certificate of Analysis

FINAL REPORT

Work Orders:	6109025	Report Date:	9/13/2016
		Received Date:	9/9/2016
Project:	1610423	Turnaround Time:	Normal
		Phones:	(925) 828-6226
		Fax:	(925) 828-6309
Attn:	Robbie Phillips	P.O. #:	
Client:	Alpha Analytical Laboratories - Ukiah 208 Mason St Ukiah, CA 95482		

Dear Robbie Phillips,

Enclosed are the results of analyses for samples received 9/09/16 with the Chain-of-Custody document. The samples were received in good condition, at 3.3 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Sample:	16I0423-01, Alias: Esposti Irrigation WellSampled:						ampled: 09/06/16 1	0:45 by Client
	6109025-01 (Water)							
Analyte			Result	MRL	Units	Dil	Analyzed	Qualifier
Method: IC-I	CP/MS	Batch ID: W6I0467	Instr: Inst		Prepa	red: 09/11/	16 08:36	Analyst: apa
Arsenic III	l		0.52	0.40	ug/l	1	09/11/16 16:57	
Arsenic V			13	4.0	ug/l	10	09/11/16 16:57	



### WECK LABORATORIES, INC.

## Quality Control Results

FINAL REPORT

Metals by EPA 200 Series Methods										
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W6I0467 - Direct Injection										
Blank (W6I0467-BLK1)				Prepared & A	Analyzed: 09/1	1/16				
Arsenic III	ND	0.40	ug/l							
Arsenic V	ND	0.40	ug/l							
LCS (W6I0467-BS1)				Prepared & A	Analyzed: 09/1	1/16				
Arsenic III	9.56	0.40	ug/l	10.0		96	85-115			
Arsenic V	8.92	0.40	ug/l	10.0		89	85-115			
Matrix Spike (W6I0467-MS1)	Source: 6H260	26-01		Prepared & Analyzed: 09/11/16						
Arsenic III	118	4.0	ug/l	100	ND	118	70-130			
Arsenic V	119	4.0	ug/l	100	5.42	114	70-130			
Matrix Spike (W6I0467-MS2)	Source: 610800	4-01		Prepared & Analyzed: 09/11/16						
Arsenic III	112	4.0	ug/l	100	0.260	112	70-130			
Arsenic V	139	4.0	ug/l	100	28.7	110	70-130			
Matrix Spike Dup (W6I0467-MSD1)	Source: 6H260	26-01		Prepared & A	Analyzed: 09/1	1/16				
Arsenic III	109	4.0	ug/l	100	ND	109	70-130	8	30	
Arsenic V	114	4.0	ug/l	100	5.42	108	70-130	4	30	
Matrix Spike Dup (W6I0467-MSD2)	Source: 610800	4-01		Prepared & A	Analyzed: 09/1	1/16				
Arsenic III	110	4.0	ug/l	100	0.260	110	70-130	2	30	
Arsenic V	140	4.0	ug/l	100	28.7	112	70-130	1	30	



## **Certificate of Analysis**

FINAL REPORT

#### WECK LABORATORIES, INC.

## Notes and Definitions

#### Item Definition

ntem	Definition
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
Dil	Dilution
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
% Rec	Percent Recovery
Source	Sample that was matrix spiked or duplicated.
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) and Detection Limit for Reporting (DLR)
MDA	Minimum Detectable Activity
NR	Not Reportable
TIC	Tentatively Identified Compound (TIC) using mass spectrometry. The reported concentration is relative concentration based on the nearest internal standard. If the library search produces no matches at, or above 85%, the compound is reported as unknown.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance. An Absence of Total Coliform meets the drinking water standards as established by the California State Water Resources Control Board (SWRCB) All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS 002.

## Not Certified Analyses Summary

Analyte	CAS #	Not Accredited By
IC-ICP/MS in Water		
Arsenic III	22541-54-4	NELAP
Arsenic V	17428-41-0	NELAP
Reviewed by:		

Reviewed by:

Kim In

Kim G. Tu Project Manager

#### DoD-ELAP #L15-366 ELAP-CA #1132 EPA-UCMR #CA00211 HW-DOH # ISO 17025 #L15-365 NELAP-OR #4047 NJ-DEP #CA015 NV-DEP #NAC 445A SCAQMD #93LA1006

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Alpha Analytical Laboratories Inc.		Central Valley Laboratory In Park Wy., #113, Elk Grove, CA 95624 916-686-5190 F) 916-686-5192	Work Order Chain of Custody Record			
www.alpha-labs.com	Bay Area Laboratory 38 Dougherty Road, #35, Dublin, CA 94568 925-828-6228 F) 925-828-6309	ł	Lab No. 1670423 Pag	• <u> </u>		
Name:	Project ID:	Signature below authorizes wor	k under terms stated on reverse side,			
Town of Windsor - Brinking Water FERSTBICK TY	#25-1310	Analys	is Request	TAT		
Mailing Address: 9291 Old Redwood Highway Building 400 Windsor, CA 95492	Esposti Well			124'hr		
Project Contact (Hardcopy or PDP to): Elizabeth Cargay ecargay@townofwindsor.com	PO# 200336		4, NO2, 1			
KUBRIEN EHAZEN AND FAWYER	Bill to: month end billing	Alu C Na	(includes TKN Itium - total sub Weck			
Field Sampler, Print Name & Standarte CID	mple ection	<b>200.8 45</b> <b>200.8 Cr</b> 218.6 Cr6 200.7 Ca, Mg, K, Na Alkalinity Chloride	e Vanac Dhate As5 -	2 wfx (standerg)		
Identification Date Esposti Irrigation Well	Amber         Amber           X         X         X         Amber           X         X         X         Amber           X         X         X         X           X         X         X         X           X         X         X         X           X         X         X         X           X         X         X         X           X         X         X         X           X         X         X         X           X         X         X         X	X         Zeo.           X         200.8           X         200.8           X         200.8           X         200.7           X         Alkalli           X         Chlorit	x Sulfat x Total N x 200.8 x 200.8 x As3 8			
BOTTLE KIT ORDER for Esposti Irrigation Ryan Crawford 2235 Mercury Way, Suite 150, Santa Rosa, CA 95407	on Well placed 9/1/2016, deliver kit on Friday	9/2/20016 in a cooler to:				
		3 X				
	· .					
		ſ				
		, V				
		Į		-		
			EDF lo (Emsil Address);	(		
Relinquisher by:	Received to: An Bulleline	Le Time Travel and Si	e Time: Mileage: Misc Supplies:			
Willow, Grander	. 114	1- 1600				

.

•

۲

-

1



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

30 September 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Feasibility Study - Weeks Work Order: 16I2059

Enclosed are the results of analyses for samples received by the laboratory on 09/22/16 16:06. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sheri Speaks

Sheri L. Speaks For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study - Weeks	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	09/30/16 14:14

#### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESW-9-21-7:01	16I2059-01	Water	09/21/16 07:01	09/22/16 16:06
ESW-9-21-7:05	16I2059-02	Water	09/21/16 07:05	09/22/16 16:06
ESW-9-21-8:00	16I2059-03	Water	09/21/16 08:00	09/22/16 16:06
ESW-9-21-11:00	16I2059-04	Water	09/21/16 11:00	09/22/16 16:06
ESW-9-21-15:00	1612059-05	Water	09/21/16 15:00	09/22/16 16:06





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100	Project Manager: Elizabeth Cargay Project: Esposti Feasibility Study - Weeks Project Number: 25-1310					Reported: 09/30/16 14:14		
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-9-21-7:01 (16I2059-01)		Sample Type:	Water		Sample	d: 09/21/16 07:01		
Metals (Drinking Water) by EPA 200 Series Methods								
Iron	1700 ug/L	100	1	AI63684	09/28/16 13:45	09/28/16 14:45	EPA 200.7	
Manganese	860 ug/L	20	1	AI63684	09/28/16 13:45	09/28/16 14:45	EPA 200.7	
Metals by EPA Method 200.8 ICP/MS								
Arsenic	58 ug/L	1.6	1	AI63725	09/28/16 15:30	09/29/16 08:22	EPA 200.8	
ESW-9-21-7:05 (16I2059-02)		Sample Type: Water			Sample			
Metals (Drinking Water) by EPA 200 Series Methods								
Iron	3400 ug/L	100	1	AI63684	09/28/16 13:45	09/28/16 14:50	EPA 200.7	
Manganese	1100 ug/L	20	1	AI63684	09/28/16 13:45	09/28/16 14:50	EPA 200.7	
Metals by EPA Method 200.8 ICP/MS								
Arsenic	52 ug/L	1.6	1	AI63725	09/28/16 15:30	09/29/16 08:34	EPA 200.8	
ESW-9-21-8:00 (1612059-03)		Sample Type:	Water		Sample	d: 09/21/16 08:00		
Metals (Drinking Water) by EPA 200 Series Methods								
Iron	260 ug/L	100	1	AI63684	09/28/16 13:45	09/28/16 14:54	EPA 200.7	
Manganese	860 ug/L	20	1	AI63684	09/28/16 13:45	09/28/16 14:54	EPA 200.7	
Metals by EPA Method 200.8 ICP/MS								
Arsenic	43 ug/L	1.6	1	AI63725	09/28/16 15:30	09/29/16 08:47	EPA 200.8	
ESW-9-21-11:00 (1612059-04)		Sample Type:	Water		Sample	d: 09/21/16 11:00		
Metals (Drinking Water) by EPA 200 Series Methods								
Iron	190 ug/L	100	1	AI63684	09/28/16 13:45	09/28/16 14:58	EPA 200.7	
Manganese	910 ug/L	20	1	AI63684	09/28/16 13:45	09/28/16 14:58	EPA 200.7	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100	Project Manager: Elizabeth Cargay Project: Esposti Feasibility Study - Weeks Project Number: 25-1310	Reported: 09/30/16 14:14
<b>-</b>		

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-9-21-11:00 (16I2059-04)		Sample Type:	: Water		Sample	d: 09/21/16 11:00		
Metals by EPA Method 200.8 ICP/MS								
Arsenic	38 ug/L	1.6	1	AI63725	09/28/16 15:30	09/29/16 09:00	EPA 200.8	
ESW-9-21-15:00 (16I2059-05)		Sample Type:	: Water		Sample	d: 09/21/16 15:00		
Metals (Drinking Water) by EPA 200 Series M	ethods							
Calcium	23 mg/L	1.0	1	AI63684	09/28/16 13:45	09/28/16 15:03	EPA 200.7	
Iron	140 ug/L	100	1	AI63684	09/28/16 13:45	09/28/16 15:03	EPA 200.7	
Magnesium	18 mg/L	1.0	1	AI63684	09/28/16 13:45	09/28/16 15:03	EPA 200.7	
Manganese	910 ug/L	20	1	AI63684	09/28/16 13:45	09/28/16 15:03	EPA 200.7	
Potassium	14 mg/L	1.0	1	AI63684	09/28/16 13:45	09/28/16 15:03	EPA 200.7	
Sodium	52 mg/L	1.0	1	AI63684	09/28/16 13:45	09/28/16 15:03	EPA 200.7	
Metals by EPA 200 Series Methods								
Chromium, hexavalent	ND ug/L	1.0	1	AI63833	09/28/16 11:53	09/28/16 15:40	EPA 218.6	
Metals by EPA Method 200.8 ICP/MS								
Arsenic	35 ug/L	1.6	1	AI63725	09/28/16 15:30	09/29/16 09:13	EPA 200.8	
Chromium	ND ug/L	8.0	1	AI63725	09/28/16 15:30	09/29/16 15:40	EPA 200.8	
Conventional Chemistry Parameters by APHA	/EPA Methods							
Phosphate, Total	1.2 mg/L	0.10	1	AI63857	09/29/16 08:00	09/29/16 10:34	SM4500-P E	
Silica	86 mg/L	5.0	5	AI63840	09/28/16 14:00	09/28/16 16:10	SM4500-SiO2 C	
Total Alkalinity as CaCO3	220 mg/L	5.0	1	AI63828	09/28/16 10:34	09/28/16 12:20	SM2320B	
Total Kjeldahl Nitrogen	ND mg/L	1.0	1	AI63778	09/28/16 06:15	09/28/16 09:54	SM4500-Norg B	
Total Nitrogen	ND mg/L	1.0	1	AI63774	09/26/16 16:38	09/29/16 08:41	SM4500-N	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water 8400 Windsor Rd. Windsor, CA 95492-0100		oject Manager: Eli Project: Es _l roject Number: 25-		Reported: /16 14:14				
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note

ESW-9-21-15:00 (16I2059-05)		Sample Type: Wate	r		Sampleo	l: 09/21/16 15:00	
Anions by EPA Method 300.0							
Chloride	22 mg/L	<b>0.50</b> 1	1	AI63687	09/23/16 16:34	09/23/16 16:34	EPA 300.0
Nitrate as N	ND mg/L	0.20 1	1	AI63687	09/23/16 16:50	09/23/16 16:50	EPA 300.0
Nitrite as N	ND mg/L	0.20 1	1	AI63687	09/23/16 16:50	09/23/16 16:50	EPA 300.0
Sulfate as SO4	14 mg/L	0.50 1	1	AI63687	09/23/16 16:50	09/23/16 16:50	EPA 300.0





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study - Weeks	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	09/30/16 14:14

## Metals (Drinking Water) by EPA 200 Series Methods - Quality Control

		Reporting	<b>.</b>	Spike	Source	ANDEC	%REC	DDD	RPD	Els s
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63684 - EPA 200 Series										
Blank (AI63684-BLK1)				Prepared &	Analyzed:	09/23/16				
Calcium	ND	1.0	mg/L	1	<b>y</b>					
Iron	ND	100	ug/L							
Magnesium	ND	1.0	mg/L							
Manganese	ND	20	ug/L							
Potassium	ND	1.0	mg/L							
Sodium	ND	1.0	mg/L							
LCS (AI63684-BS1)				Prepared &	Analyzed:	09/23/16				
Calcium	7.30	1.0	mg/L	6.80		107	85-115			
Iron	1810	100	ug/L	1700		107	85-115			
Magnesium	7.18	1.0	mg/L	6.80		106	85-115			
Manganese	193	20	ug/L	200		96.5	85-115			
Potassium	7.67	1.0	mg/L	7.60		101	85-115			
Sodium	7.36	1.0	mg/L	6.80		108	85-115			
Duplicate (AI63684-DUP1)	Sour	ce: 16l1992	-02	Prepared &	Analyzed:	09/23/16				
Calcium	35.3	1.0	mg/L		32.1			9.29	20	
Iron	ND	100	ug/L		ND				20	
Magnesium	11.4	1.0	mg/L		11.0			3.26	20	
Manganese	ND	20	ug/L		ND				20	
Potassium	3.59	1.0	mg/L		3.41			5.15	20	
Sodium	23.8	1.0	mg/L		21.8			8.77	20	
Matrix Spike (AI63684-MS1)	Sour	ce: 16l1992	-02	Prepared &	Analyzed:	09/23/16				
Calcium	42.9	1.0	mg/L	6.80	32.1	158	70-130			QM-4X
Iron	1830	100	ug/L	1700	ND	108	70-130			
Magnesium	18.5	1.0	mg/L	6.80	11.0	110	70-130			
Manganese	203	20	ug/L	200	ND	102	70-130			
Potassium	10.7	1.0	mg/L	7.60	3.41	96.1	70-130			
Sodium	30.9	1.0	mg/L	6.80	21.8	133	70-130			QM-01





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study - Weeks	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	09/30/16 14:14

## Metals (Drinking Water) by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
atch AI63684 - EPA 200 Series	itebuit	Linin	Onto	Lever	Result	/ulle	Linits	Id D	Linnt	8
Matrix Spike (AI63684-MS2)	Sour	ce: 16l2059	-01	Prepared &	Analyzed:	09/28/16				
Calcium	28.4			6.80	21.9	96.1	70-130			
Iron	3360	100	ug/L	1700	1700	98.1	70-130			
Magnesium	23.2	1.0	mg/L	6.80	15.9	107	70-130			
Manganese	1030	20	ug/L	200	856	88.1	70-130			
Potassium	24.3	1.0	mg/L	7.60	17.6	88.4	70-130			
Sodium	60.2	1.0	mg/L	6.80	56.0	61.9	70-130			QM-4
Matrix Spike Dup (Al63684-MSD1)	Sour	ce: 16l1992	-02	Prepared &	Analyzed:	09/23/16				
Calcium	42.3	1.0	mg/L	6.80	32.1	149	70-130	1.40	20	QM-42
Iron	1770	100	ug/L	1700	ND	104	70-130	3.42	20	
Magnesium	19.2	1.0	mg/L	6.80	11.0	121	70-130	3.81	20	
Manganese	197	20	ug/L	200	ND	98.5	70-130	3.22	20	
Potassium	10.4	1.0	mg/L	7.60	3.41	91.6	70-130	3.30	20	
Sodium	30.6	1.0	mg/L	6.80	21.8	129	70-130	0.810	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study - Weeks	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	09/30/16 14:14

## Metals by EPA 200 Series Methods - Quality Control

		D ci		G . 1	G		A/DEC		DDD	
Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
• •	rtesuit	Linit	enne	Lever	itesuit	/mee	Linits	iu p	Linit	
Batch AI63833 - General Preparation										
Blank (AI63833-BLK1)				Prepared &	Analyzed:	09/28/16				
Chromium, hexavalent	ND	1.0	ug/L							
LCS (A163833-BS1)				Prepared &	Analyzed:	09/28/16				
Chromium, hexavalent	9.44	1.0	ug/L	10.0		94.4	90-110			
Duplicate (AI63833-DUP1)	Sou	Source: 16l2059-05 Pro		Prepared &	Prepared & Analyzed: 09/28/16					
Chromium, hexavalent	ND	1.0	ug/L		ND				20	
Matrix Spike (AI63833-MS1)	Sou	ce: 16l2059	-05	Prepared &	Analyzed:	09/28/16				
Chromium, hexavalent	9.54	1.0	ug/L	10.0	ND	95.4	90-110			
Matrix Spike (AI63833-MS2)	Sou	ce: 16 2319	-01	Prepared 8	Analyzed:	09/28/16				
Chromium, hexavalent	14.2	1.0	ug/L	10.0	4.56	96.1	90-110			
Matrix Spike Dup (AI63833-MSD1)	Sou	ce: 16l2059	-05	Prepared &	Analyzed:	09/28/16				
Chromium, hexavalent	9.32	1.0	ug/L	10.0	ND	93.2	90-110	2.36	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study - Weeks	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	09/30/16 14:14

## Metals by EPA Method 200.8 ICP/MS - Quality Control

	Reporting			Spike	Source		%REC	%REC RPI			
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag	
Batch AI63725 - EPA 200 Series											
Blank (AI63725-BLK1)				Prepared &	Analyzed:	09/26/16					
Arsenic	ND	1.6	ug/L								
Chromium	ND	8.0	ug/L								
LCS (AI63725-BS1)				Prepared &	Analyzed:	09/26/16					
Arsenic	20.8	1.6	ug/L	20.0		104	85-115				
Chromium	21.1	8.0	ug/L	20.0		105	85-115				
Duplicate (AI63725-DUP1)	Source: 16l2160-01 Prepared		Prepared &	Analyzed:	09/26/16						
Arsenic	2.01	1.6	ug/L		2.05			2.09	20		
Chromium	ND	8.0	ug/L		ND				20		
Matrix Spike (AI63725-MS1)	Sou	rce: 16l2160	-01	Prepared &	Analyzed:	09/26/16					
Arsenic	107	1.6	ug/L	100	2.05	105	70-130				
Chromium	101	8.0	ug/L	100	ND	101	70-130				
Matrix Spike (AI63725-MS2)	Sou	rce: 16l2162	-01	Prepared &	Analyzed:	09/26/16					
Arsenic	106	1.6	ug/L	100	2.03	104	70-130				
Matrix Spike Dup (AI63725-MSD1)	Sou	rce: 16l2160	-01	Prepared &	Analyzed:	09/26/16					
Arsenic	106	1.6	ug/L	100	2.05	104	70-130	1.08	20		
Chromium	104	8.0	ug/L	100	ND	104	70-130	2.65	20		





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study - Weeks	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	09/30/16 14:14

## Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63778 - General Prep										
LCS (AI63778-BS1)				Prepared: (	09/27/16 A	nalyzed: 09	/28/16			
Total Kjeldahl Nitrogen	3.04	1.0	mg/L	2.98		102	80-120			
LCS Dup (A163778-BSD1)				Prepared: (	09/27/16 A	nalyzed: 09	/28/16			
Total Kjeldahl Nitrogen	3.04	1.0	mg/L	2.98		102	80-120	0.00	20	
Matrix Spike (A163778-MS1)	Sou	rce: 16l2096	-02	Prepared: (	09/27/16 A	nalyzed: 09	/28/16			
Total Kjeldahl Nitrogen	3.13	1.0	mg/L	2.98	ND	105	75-125			
Matrix Spike Dup (Al63778-MSD1)	Sou	rce: 16l2096	-02	Prepared: (	09/27/16 A	nalyzed: 09	/28/16			
Total Kjeldahl Nitrogen	3.13	1.0	mg/L	2.98	ND	105	75-125	0.00	20	
Batch AI63828 - General Preparation										
Duplicate (AI63828-DUP1)	Sou	rce: 16l2104	-01	Prepared &	k Analyzed:	09/28/16				
Total Alkalinity as CaCO3	190	5.0	mg/L	190			0.00	20		
Batch AI63840 - General Preparation										
Blank (AI63840-BLK1)				Prepared & Analyzed: 09/28/16						
Silica	ND	1.0	mg/L							
LCS (AI63840-BS1)				Prepared &	k Analyzed:	09/28/16				
Silica	10.0	1.0	mg/L	10.0		100	85-115			
LCS Dup (AI63840-BSD1)				Prepared &	analyzed:	09/28/16				
Silica	9.98	1.0	mg/L	10.0	-	99.8	85-115	0.355	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study - Weeks	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	09/30/16 14:14

## Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		~ .		~	~					
		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63857 - General Prep										
Blank (AI63857-BLK1)				Prepared &	Analyzed:	09/29/16				
Phosphate, Total	ND	0.10	mg/L							
LCS (AI63857-BS1)				Prepared &	Analyzed:	09/29/16				
Phosphate, Total	0.604	0.10	mg/L	0.600		101	85-115			
Duplicate (AI63857-DUP1)	Sour	ce: 16l2098	-01	Prepared &	Analyzed:	09/29/16				
Phosphate, Total	ND	0.10	mg/L	g/L ND				20		
Matrix Spike (AI63857-MS1)	Sour	Source: 16i2098-01 Prepared & Analyzed: 09/29/16								
Phosphate, Total	0.600	0.10	mg/L	0.600	ND	100	70-130			
Matrix Spike Dup (AI63857-MSD1)	Sour	ce: 16l2098	-01	Prepared &	Analyzed:	09/29/16				
Phosphate, Total	0.604	0.10	mg/L	0.600	ND	101	70-130	0.672	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study - Weeks	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	09/30/16 14:14

## Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63687 - General Preparation										
Blank (AI63687-BLK1)				Prepared &	Analyzed:	09/23/16				
Nitrate as N	ND	0.20	mg/L							
Sulfate as SO4	ND	0.50	mg/L							
Nitrite as N	ND	0.20	mg/L							
Chloride	ND	0.50	mg/L							
LCS (A163687-BS1)				Prepared 8	Analyzed:	09/23/16				
Chloride	11.4	0.50	mg/L	11.1		102	90-110			
Nitrate as N	5.91	0.20	mg/L	5.56		106	90-110			
Sulfate as SO4	22.6	0.50	mg/L	22.2		102	90-110			
Nitrite as N	5.23	0.20	mg/L	5.56		94.1	90-110			
Duplicate (AI63687-DUP1)	Sou	rce: 16l2096	-01	Prepared &	Analyzed:	09/23/16				
Chloride	5.34	0.50	mg/L		5.30			0.677	20	
Nitrite as N	ND	0.20	mg/L		ND				20	
Nitrate as N	ND	0.20	mg/L		ND				20	
Sulfate as SO4	11.3	0.50	mg/L		11.1			1.45	20	
Matrix Spike (Al63687-MS1)	Sou	Source: 16l2096-01 Pro		Prepared &	Prepared & Analyzed: 09/23/16					
Sulfate as SO4	34.1	0.50	mg/L	22.2	11.1	103	80-120			
Chloride	16.6	0.50	mg/L	11.1	5.30	102	80-120			
Nitrite as N	5.74	0.20	mg/L	5.56	ND	103	80-120			
Nitrate as N	6.02	0.20	mg/L	5.56	ND	108	80-120			
Matrix Spike (A163687-MS2)	Sou	rce: 16l2098	-01	Prepared &	Analyzed:	09/24/16				
Sulfate as SO4	34.2	0.50	mg/L	22.2	10.8	105	80-120			
Chloride	16.7	0.50	mg/L	11.1	5.17	104	80-120			
Nitrate as N	6.19	0.20	mg/L	5.56	ND	111	80-120			
Nitrite as N	5.90	0.20	mg/L	5.56	ND	106	80-120			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study - Weeks	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	09/30/16 14:14

## Anions by EPA Method 300.0 - Quality Control

Analyte(s) Result Limit Units Level Result %REC Limits RPD Limit		Reporting		Spike	Source		%REC		RPD	
	R	ult Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

#### **Batch AI63687 - General Preparation**

Matrix Spike Dup (AI63687-MSD1)	Sourc	e: 16l2096	-01	Prepared &	Analyzed:	09/24/16			
Nitrate as N	6.01	0.20	mg/L	5.56	ND	108	80-120	0.188	20
Chloride	16.6	0.50	mg/L	11.1	5.30	102	80-120	0.107	20
Nitrite as N	5.74	0.20	mg/L	5.56	ND	103	80-120	0.155	20
Sulfate as SO4	34.1	0.50	mg/L	22.2	11.1	103	80-120	0.0554	20



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study - Weeks	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	09/30/16 14:14

#### **Notes and Definitions**

- QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.
- QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- REC Recovery
- RPD Relative Percent Difference



# **Certificate of Analysis**

FINAL REPORT

Work Orders:	6127070	Report Date:	10/10/2016
		Received Date:	9/27/2016
Project:	1612059	Turnaround Time:	Normal
i rojecu		Phones:	(925) 828-6226
		Fax:	(925) 828-6309
Attn:	Robbie Phillips	P.O. #:	
Client:	Alpha Analytical Laboratories - Ukiah 208 Mason St Ukiah, CA 95482		

Dear Robbie Phillips,

Enclosed are the results of analyses for samples received 9/27/16 with the Chain-of-Custody document. The samples were received in good condition, at 18.1 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Sa	mple Results								
Sample:	16I2059-05, Alias: ESW-921-15:00						Sa	ampled: 09/22/16 1	5:00 by Client
	6I27070-01 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Method: IC-I	CP/MS	Batch ID: W6J0393	In	str: Inst		Prepa	ared: 10/09/	16 09:07	Analyst: apa
Arsenic III			20	0.14	4.0	ug/l	10	10/10/16 15:29	
							10	10/10/16 15:29	



# WECK LABORATORIES, INC.

# Quality Control Results

**Certificate of Analysis** 

FINAL REPORT

				Spike	Source		%REC		RPD	
Analyte	Result	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W6J0393 - Direct Injection										
Blank (W6J0393-BLK1)			P	repared: 10/09/1	6 Analyzed: 1	0/10/16				
Arsenic III	ND	0.014	ug/l							
Arsenic V	0.177	0.014	ug/l							J
LCS (W6J0393-BS1)			P	repared: 10/09/1	6 Analyzed: 1	0/10/16				
Arsenic III	9.89	0.014	ug/l	8.94		111	85-115			
Arsenic V	9.29	0.014	ug/l	9.13		102	85-115			
Matrix Spike (W6J0393-MS1)	Source	6115020-01	P	repared: 10/09/1	6 Analyzed: 1	0/10/16				
Arsenic III	9.79	0.014	ug/l	8.94	0.276	106	70-130			
Arsenic V	10.2	0.014	ug/l	9.13	0.536	105	70-130			
Matrix Spike Dup (W6J0393-MSD1)	Source	6115020-01	P	repared: 10/09/1	6 Analyzed: 1	0/10/16				
Arsenic III	9.86	0.014	ug/l	8.94	0.276	107	70-130	0.7	30	
Arsenic V	10.2	0.014	ug/l	9.13	0.536	105	70-130	0.03	30	



WECK LABORATORIES, INC.

# Notes and Definitions

**FINAL REPORT** 

ltem	Definition
J	Estimated conc. detected <mrl and="">MDL.</mrl>
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
Dil	Dilution
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
% Rec	Percent Recovery
Source	Sample that was matrix spiked or duplicated.
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) and Detection Limit for Reporting (DLR)
MDA	Minimum Detectable Activity
NR	Not Reportable
TIC	Tentatively Identified Compound (TIC) using mass spectrometry. The reported concentration is relative concentration based on the nearest internal standard. If the library search produces no matches at, or above 85%, the compound is reported as unknown.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance. An Absence of Total Coliform meets the drinking water standards as established by the California State Water Resources Control Board (SWRCB) All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS 002.

# Not Certified Analyses Summary

Analyte	CAS #	Not Accredited By
IC-ICP/MS in Water		
Arsenic III	22541-54-4	NELAP
Arsenic V	17428-41-0	NELAP
Paviawad by:		

**Reviewed by:** 

in In

Kim G. Tu Project Manager



## DoD-ELAP #L15-366 • ELAP-CA #1132 • EPA-UCMR #CA00211 • HW-DOH # • ISO 17025 #L15-365 • LACSD #10143 • NELAP-OR #4047 • NJ-DEP #CA015 • NV-DEP #NAC 445A • SCAQMD #93LA1006

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

And Loha Abra Andreal Laboratore Inc www.alpha-labs.com WATERS, SEDMIERTS, SOLEDS
--------------------------------------------------------------------------------------------

Ray Ans Latoratory 6398 Dougheny Road, #35, Dublin. CA 94568 925-828-6226 F) 825-828-6309 Corporate Laboratory 208 Mason Street, Ukueh CA 95482 707-468-0401 F) 707-468-5267 cilentservices@alpha-labs.com

٠

Central Valley Laboratory 9090 (Innom Park VVy #113, Elk Grove CA 95524 916-686-5190 F) 916-686-5192

Work Order Chain of Cu

Record	page
Chain of Custody	Lab No 1622059

2.0

					Ũ	mature below a	Simplified being authorizes work under terms stated on reverse side	stated on reverse side	ά		
Name: Town of Windsor - Drinking Water	Project IL		Esposti Well				Analysis Request	quest		TAT	
Mailing Address: 9234 Cid Redwood Highwey Building 400 ***********************************	Prints	Project ID: 25-1	): 25-13	310			/* =	nr ² an			
Project Contact (Hardcopy or PDF to) Eterated Contact (Hardcopy or PDF to)	PO	PO# 200336	36	4			1121 1121	+ <u>s</u> s-		101 PM	
ecargay@rownorminecon.com ken oBnen kobrien@hazenandsawyer.com	1981 1981	BILLING RE Note: WEEKS	: WEEKS ? Town of Winnsur	Viugene		- 6¥	ד י עו. אור	t an	51 er	Dvel Redu	
Flord Sommer - Print Name & Signature Ryther C. Child For P.C. Print Conf J.	Sample Collection	F ZL	2010 2010 2010		c		179779 170517 190517 190517 190517 190517 2005	4115411 4115411 40101	) \$'907	_ ه	
Identification	Date Time	1	100 26H × 0NH 10H		01 × S1 ×	2 2 2	r > ∀	>		X	
	*****			1						6HD SUPPLIED	
	10:1 91/2/1									Botices	<b></b>
123W-9-21-8:00	0e:8		X								<b>4</b> 39
12-1-12-0-MZ			\$								
ESW-9-21-15-00	V [5:00				X	Ś			-		
							-145 /mov	mc/Luss ALPHA/TAUNUK		eic D	
							Tout of	WINDEL.	1 21	120	
							F7	3 BILL to		-	
Reinvice Pad by	Rece	Received by		<u> </u>	1/22/1	5180 D815	CDPH Write On EDT Report?	IT Report?	Yes	× v	
Reinnighed by	8 <b>9</b> 60	Received by				Time 16-0-6-	State System Number.	nber			
Resinquistred by:		Received by					CA Geotracker EDF Report	: Report	Yes	No.	1
Reinquished by:	Recs	Received by:			Oate	Time	Sampling Company Log Code: Global ID: ED-	/ Log Code: EDF to (Errot: Attoress)	4 Address)		
Reinquished by.	Rece	Received by:			Date	Time	Site Time	Mileage.	Misc. Supplies		<b>.</b>

L

.



Corporate Leboratory 208 Mason Street, Ukiah, CA 95482 707-468-0401 F.) 707-468-5267 - utanturvices@atoha-isbs.com

Central Valley Laboratory 9090 Union Park Wy., #113, Etk Grove, CA 95624 919-686-5190 F) 916-686-5192

**Chain of Custody Record** Work Order

	, <b>-</b> -	a sincel	CCC Prished	Daunbes IFA	Jidity 0									$\bigcirc$		X			
O'Brien at 11/05 7 Page 1 of 1	l ab No	Analysis Request	0:8	+9 +9 5 +9 5 +9 5 +9 5 + 7 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	0	· POZ · POZ · Safid > NIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNIQI JNI JNI JNI JNI JNI JNI JNI JNI JNI JN		Mn/Fe only, no Ca/ 16405uffuer	these four samples			TT TS / TOC/6455 ALPHA/TANINUS BILL TO	AUALYTES BILL TO WEEKS		15 CUPH Wine OIL CONTRACT		(64) SCOLED	Globallo	
207.468-0401 (5) 707.468-500 clientservices@stpha.ists.com	6398 Dougnerty Rowi, #35, Dudith, CA 94568 925-828-679 825-828-6309		Project ID: 25-1310	2003:	(jul)Ser	1064 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 2004 Die 200					A A A A A A A A A A A A A A A A A A A	As/Mn/Fe Only			9/22/16				Date Time
707.468-040 Cleantservice		ing Water	bhase:	55492 act (Hardcopy or PDF to): gay MownofwindSof.Coff	Kobrien@hazenandsawyer.com	Find Sampler - Print Name & Standiure Sample Right C Ritur P PO Right C Ritur P PO Collection	cation Date Time	ESW		-9-21-15-00	0. CI JIZ-b- MSA				Relinquisted by Received by	Reinquitred by:	Received by	Received by:	Reinquistred by:





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

07 October 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Feasibility Study Work Order: 16I2103

Enclosed are the results of analyses for samples received by the laboratory on 09/22/16 16:06. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette Popli

Jeanette L. Poplin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	10/07/16 08:13

## ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESW-9-21-15:00	16I2103-01	Water	09/21/16 15:00	09/22/16 16:06





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	10/07/16 08:13

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note
ESW-9-21-15:00 (16I2103-01)		Sample Type:	Water		Sampleo	1: 09/21/16 15:00		
Conventional Chemistry Parameters by APHA/E								
Tannins & Lignins	ND mg/L	0.50	1	AJ63130	10/03/16 09:00	10/03/16 11:45	SM5550B	
Total Suspended Solids	3.5 mg/L	1.0	1	AI63813	09/27/16 13:30	09/29/16 10:59	SM2540D	
Total Organic Carbon	ND mg/L	0.300	1	AI63861	09/29/16 06:58	09/29/16 14:37	SM5310C	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	10/07/16 08:13

## Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting	<b>*</b> * *.	Spike	Source		%REC	DDD	RPD	EI.
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63813 - General Preparation										
Blank (AI63813-BLK1)				Prepared: (	)9/27/16 A	nalyzed: 09	/29/16			
Total Suspended Solids	ND	1.0	mg/L							
Duplicate (AI63813-DUP1)	Sou	rce: 16l2071	-01	Prepared: (	)9/27/16 A	nalyzed: 09	/29/16			
Total Suspended Solids	157	1.0	mg/L		154			1.98	30	
Duplicate (AI63813-DUP2)	Sou	rce: 16l2148	-01	Prepared: (	)9/27/16 A	nalyzed: 09	/29/16			
Total Suspended Solids	243	1.0	mg/L		247			1.74	30	
Batch AI63861 - General Prep										
Blank (AI63861-BLK1)				Prepared &	Analyzed	09/29/16				
Total Organic Carbon	ND	0.300	mg/L							
LCS (AI63861-BS1)				Prepared &	Analyzed	09/29/16				
Total Organic Carbon	10.4	0.300	mg/L	10.0		104	85-115			
LCS Dup (AI63861-BSD1)				Prepared &	Analyzed	09/29/16				
Total Organic Carbon	10.6	0.300	mg/L	10.0		106	85-115	1.96	20	
Duplicate (AI63861-DUP1)	Sou	rce: 16l2213	-02	Prepared &	Analyzed	09/29/16				
Total Organic Carbon	0.916	0.300	mg/L		0.866			5.60	20	
Matrix Spike (AI63861-MS1)	Sou	rce: 16l2213	-02	Prepared & Analyzed: 09/29/16						
Total Organic Carbon	21.5	0.600	mg/L	20.0	0.866	103	70-130			
Matrix Spike Dup (AI63861-MSD1)	Sou	rce: 16l2213	-02	Prepared &	Analyzed	09/29/16				
Total Organic Carbon	21.7	0.600	mg/L	20.0	0.866	104	70-130	1.09	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	10/07/16 08:13

## Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

				~ "	~					
	D k	Reporting	TT '4	Spike	Source	0/DEC	%REC	DDD	RPD	Flag
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AJ63130 - General Preparation										
Blank (AJ63130-BLK1)				Prepared &	Analyzed:	10/03/16				
Tannins & Lignins	ND	0.50	mg/L							
LCS (AJ63130-BS1)				Prepared & Analyzed: 10/03/16						
Tannins & Lignins	4.20	0.50	mg/L	4.00		105	80-120			
LCS Dup (AJ63130-BSD1)				Prepared &	Analyzed:	10/03/16				
Tannins & Lignins	4.27	0.50	mg/L	4.00		107	80-120	1.70	20	
Duplicate (AJ63130-DUP1)	Sou	rce: 16l2103	-01	Prepared & Analyzed: 10/03/16						
Tannins & Lignins	ND	0.50	mg/L		ND				200	
Matrix Spike (AJ63130-MS1)	Sou	rce: 16l2103	-01	Prepared & Analyzed: 10/03/16		10/03/16				
Tannins & Lignins	3.60	0.50	mg/L	4.00	ND	90.0	80-120			
Matrix Spike Dup (AJ63130-MSD1)	Sou	rce: 16l2103	-01	Prepared &	Analyzed:	10/03/16				
Tannins & Lignins	3.57	0.50	mg/L	4.00	ND	89.1	80-120	1.01	20	



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: 25-1310	10/07/16 08:13

#### **Notes and Definitions**

- P-04 This analysis was run from a plastic container because a glass container was not provided.
- ND Analyte NOT DETECTED at or above the reporting limit
- Sample results reported on a dry weight basis dry
- REC Recovery
- RPD Relative Percent Difference

October 12, 2016

Alpha Analytical Laboratories, Inc.	Lab ID	: SP 1611469
208 Mason St.	Customer	: 2-20626
Ukiah, CA 95482		
	 _	

**ENVIRONMENTAL** 

## Laboratory Report

GL

Analytical Chemists

AGRICULTURAL

**Introduction:** This report package contains total of 3 pages divided into 3 sections:

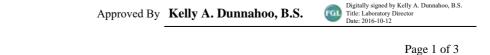
Case Narrative	(1 pages) : An overview of the work performed at FGL.
Sample Results	(1 page) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

## **Case Narrative**

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
16I2103-01 ESW-9-21-15:00	09/21/2016	09/27/2016	SP 1611469-001	W

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 6 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.


**Quality Control:** All samples were prepared and analyzed according to the following tables:

<u>.</u>	
900.0	10/06/2016:214631 All analysis quality controls are within established criteria.
	<ul><li>10/04/2016:211974 All preparation quality controls are within established criteria, except:</li><li>The following note applies to Gross Alpha:</li><li>435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.</li></ul>

**Radio OC** 

**Certification::** I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

## **KD:DMB**



Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435



October 12, 2016

## Alpha Analytical Laboratories, Inc.

208 Mason St. Ukiah, CA 95482

#### Lab ID : SP 1611469-001 Customer ID : 2-20626

Sampled On : September 21, 2016-15:00 Sampled By : Not Available Received On : September 27, 2016-11:40 : Water Matrix

#### Description : 16I2103-01 ESW-9-21-15:00 Project : 16I2103

## Sample Result - Radio

Constituent	Result + Error	MDA	Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent	$\begin{array}{c} \text{Result} \pm \text{Error} & \text{MDA} & \text{Offits} & \text{MCL/AL} \end{array}$		Method	Date/ID	Method	Date/ID		
<b>Radio Chemistry</b> ^{P:1}								
Gross Alpha	$0.844 \pm 1.40$	1.75	pCi/L	15/5	900.0	10/04/16-14:55 2P1611974	900.0	10/06/16-14:00 2A1614631

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance: Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 2 of 3

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810



## October 12, 2016 Alpha Analytical Laboratories, Inc.

Lab ID Customer : SP 1611469 : 2-20626

## **Quality Control - Radio**

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	10/06/16:214631caa	CCV CCB	cpm cpm	8567	42.4 % 0.100	39 - 48 0.14	
Gross Alpha		900.0	10/04/16:211974ELC (SP 1611307-001)	Blank LCS MS MSD MSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	107.4 107.4 107.4 107.4	0.93 95.6 % 148 % 132 % 11.6%	$3 \\ 75-125 \\ 60-140 \\ 60-140 \\ \leq 30$	435
Definition CCV CCB Blank LCS MS MSD MSRPD DQO	: Continuing Calil : Method Blank - : Laboratory Cont : Matrix Spikes - matrix affects ana : Matrix Spike Du are an indication o : MS/MSD Relati and analysis.	pration Blank Prepared to veri rol Standard/Sa A random samp lyte recovery. plicate of MS/N of how that sam ve Percent Diffe	tion - Analyzed to verif Analyzed to verify the i fy that the preparation mple - Prepared to veri le is spiked with a know ASD pair - A random sa ple matrix affects analy erence (RPD) - The MS the criteria against whi	nstrument b process is no fy that the p vn amount c umple duplic te recovery. relative per	aseline is with ot contributing reparation pro f analyte. The cate is spiked cent differenc	nin criteria. g contaminat cess is not a e recoveries with a know re is an indic	tion to the sam ffecting analyt are an indication n amount of ar ation of precis	e recovery. on of how the nalyted. The	recoveries
Explanation 435	: Sample matrix n	nay be affecting	this analyte. Data was	accepted bas	sed on the LC	S or CCV re	covery.		

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 3 of 3

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

cord 2, C	TAT 24 br	No Rottices Since the Approval Required For Rush No Rottices Since to Retrict the Since to City Sufficient Lab Approval Required For Rush	
* Chain of Custody Record	Signature below authorcaes work under terms stated on reverse side. Analysis Request	De Code: Mumber: De Code: De CODE	Travel and Sile Time Mileage Misc. Supplies
Central Valley Laboratory Central Valley Laboratory 9090 Uniom Park Wy #113, Elk Grove, CA 95624 916-686-5190 F) 916-686-5192	Signature below authorizes work under Analysis	Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite     Suite	Date Time Trave
Corporate Leboratory 208 Mason Street, Ukteh CA 95482 701-468-0401 F) 707-486-5267 6 clientservices@athharlabs.com Bay Area Laboratory 8398 Doughery Road, #35, Dublin, CA 94568	Project ID: Esposti Well	Project ID: 25-1310 PO# 200336 Bill to: 926 Vorte: Weerk's ? Bill to: 926 Vorte: Weerk's ? Four of Wiutysek Sample Container Preservative Matrix Container Preservative Matrix Container Preservative Matrix Received by XX X X X X X X X X X X X X X X X X X	Received by
1×	WATERS, SEDHARNTS, SOLIDS Name: Town of Windsor - Drinking Water	Hailing Address:     Pariling Address:       9231 Clore Address:     9231 Clore Address:       9231 Clore Address:     9231 Clore Address:       9231 Clore Address:     Finansia       Project Contact (Harrecopy or PDF ta):     Finansia       Funder: Contact (Harrecopy or PDF ta):     Finansia       Funder: Contact (Harrecopy or PDF ta):     Finansia       Funder: Contact (Harrecopy or PDF ta):     Finansia       Funder: Contact (Harrecopy or PDF ta):     Finansia       Kenn Office:     Finansia       Kobi Fender: Print Name & Signature     Sample       Founder: Print Name & Signature     Sample       ESW     -     -       FSW     -     -       FSW     -     -       FSW     -     -       Reinguet F     -     -	Rainquished by

A CONTRACT



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

ELAP Certificates 1551, 2728, and 2922

22 September 2016

Town Of Windsor - Drinking Water Attn: Elizabeth Cargay 8400 Windsor Rd. Windsor, CA 95492-0100 RE: Esposti Feasibility Study Work Order: 16I0423

Enclosed are the results of analyses for samples received by the laboratory on 09/06/16 16:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette Popli

Jeanette L. Poplin For Robbie C. Phillips Project Manager





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

## ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Esposti Irrigation Well	16I0423-01	Water	09/06/16 10:45	09/06/16 16:00



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Proj									
8400 Windsor Rd.		Project: Esp	oosti Fea	sibility St	udy		Re	eported:		
Windsor, CA 95492-0100	Pro	Project Number: #25-1310								
	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	Method	Note		
Esposti Irrigation Well (16I0423-01)		Sample Type: Water				Sampled: 09/06/16 10:45				
Metals (Drinking Water) by EPA 200 Series Met	thods									
Calcium	19 mg/L	1.0	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7			
Iron	ND ug/L	100	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7			
Magnesium	19 mg/L	1.0	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7			
Manganese	1500 ug/L	20	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7			
Potassium	7.1 mg/L	1.0	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7			
Sodium	31 mg/L	1.0	1	AI63409	09/20/16 08:00	09/20/16 17:49	EPA 200.7			
Metals by EPA 200 Series Methods										
Chromium, hexavalent	ND ug/L	1.0	1	AI63521	09/19/16 15:44	09/19/16 15:44	EPA 218.6			
Metals by EPA Method 200.8 ICP/MS										
Arsenic	13 ug/L	2.0	4	AI63407	09/19/16 06:35	09/20/16 12:21	EPA 200.8			
Chromium	ND ug/L	10	4	AI63407	09/19/16 06:35	09/20/16 12:21	EPA 200.8	R-0		
Vanadium	ND ug/L	3.0	4	AI63407	09/19/16 06:35	09/20/16 12:21	EPA 200.8	R-0		
Conventional Chemistry Parameters by APHA/	EPA Methods									
Phosphate, Total	0.95 mg/L	0.10	1	AI63455	09/19/16 07:45	09/19/16 12:57	SM4500-P E			
Silica	85 mg/L	5.0	5	AI63462	09/19/16 08:14	09/19/16 11:30	SM4500-SiO2 C			
Total Alkalinity as CaCO3	150 mg/L	5.0	1	AI63242	09/13/16 08:00	09/13/16 16:13	SM2320B			
Total Kjeldahl Nitrogen	ND mg/L	1.0	1	AI63268	09/14/16 06:19	09/15/16 09:57	SM4500-Norg B			
Total Nitrogen	ND mg/L	1.0	1	AI63246	09/12/16 10:47	09/19/16 16:38	SM4500-N			
Anions by EPA Method 300.0										
Chloride	27 mg/L	2.5	5	AI63111	09/08/16 03:04	09/08/16 03:04	EPA 300.0			
Nitrate as N	ND mg/L	0.20	1	AI63111	09/08/16 03:20	09/08/16 03:20	EPA 300.0			
Nitrite as N	ND mg/L	0.20	1	AI63111	09/08/16 03:04	09/08/16 03:04	EPA 300.0			
Sulfate as SO4	9.2 mg/L	0.50	1	AI63111	09/08/16 03:20	09/08/16 03:20	EPA 300.0			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

## Metals (Drinking Water) by EPA 200 Series Methods - Quality Control

		Reporting	<b>.</b>	Spike	Source		%REC		RPD	E1
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63409 - Metals Digest										
Blank (AI63409-BLK1)				Prepared &	Analyzed:	09/20/16				
Calcium	ND	1.0	mg/L							
Iron	ND	100	ug/L							
Magnesium	ND	1.0	mg/L							
Manganese	ND	20	ug/L							
Potassium	ND	1.0	mg/L							
Sodium	ND	1.0	mg/L							
LCS (AI63409-BS1)				Prepared &	Analyzed:	09/20/16				
Calcium	7.31	1.0	mg/L	8.00	-	91.4	85-115			
Iron	1930	100	ug/L	2000		96.5	85-115			
Magnesium	7.39	1.0	mg/L	8.00		92.4	85-115			
Manganese	192	20	ug/L	200		96.1	85-115			
Potassium	7.74	1.0	mg/L	8.00		96.8	85-115			
Sodium	6.88	1.0	mg/L	8.00		86.0	85-115			
Duplicate (AI63409-DUP1)	Sour	ce: 1610351	-01	Prepared 8	Analyzed:	09/20/16				
Calcium	24.8	1.0	mg/L		24.3			1.77	20	
Iron	ND	100	ug/L		ND			3.83	20	
Magnesium	17.2	1.0	mg/L		17.1			0.696	20	
Manganese	ND	20	ug/L		ND			4.49	20	
Potassium	32.1	1.0	mg/L		31.7			1.28	20	
Sodium	93.5	1.0	mg/L		91.8			1.86	20	
Matrix Spike (AI63409-MS1)	Sour	ce: 1610351	-01	Prepared 8	Analyzed:	09/20/16				
Calcium	32.5	1.0	mg/L	8.00	24.3	103	70-130			
Iron	2020	100	ug/L	2000	ND	97.5	70-130			
Magnesium	24.5	1.0	mg/L	8.00	17.1	92.2	70-130			
Manganese	203	20	ug/L	200	ND	98.6	70-130			
Potassium	38.4	1.0	mg/L	8.00	31.7	83.8	70-130			
Sodium	98.7	1.0	mg/L	8.00	91.8	86.7	70-130			





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

## Metals (Drinking Water) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63409 - Metals Digest										
Matrix Spike (AI63409-MS2)	Sour	ce: 1610318	-01	Prepared &	k Analyzed:	09/20/16				
Calcium	48.0	1.0	mg/L	8.00	37.1	135	70-130			QM-4X
Iron	32300	100	ug/L	2000	30200	107	70-130			
Magnesium	36.2	1.0	mg/L	8.00	27.1	113	70-130			
Manganese	6030	20	ug/L	200	5760	137	70-130			QM-4X
Potassium	9.63	1.0	mg/L	8.00	1.14	106	70-130			
Sodium	28.2	1.0	mg/L	8.00	18.5	121	70-130			
Matrix Spike Dup (AI63409-MSD1)	Sour	ce: 1610351	-01	Prepared &	analyzed:	09/20/16				
Calcium	33.3	1.0	mg/L	8.00	24.3	112	70-130	2.22	20	
Iron	2160	100	ug/L	2000	ND	105	70-130	6.72	20	
Magnesium	24.8	1.0	mg/L	8.00	17.1	96.4	70-130	1.34	20	
Manganese	217	20	ug/L	200	ND	106	70-130	6.75	20	
Potassium	38.7	1.0	mg/L	8.00	31.7	87.7	70-130	0.806	20	
Sodium	102	1.0	mg/L	8.00	91.8	123	70-130	2.89	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

## Metals by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63521 - General Preparation										
Blank (AI63521-BLK1)				Prepared &	Analyzed:	09/19/16				
Chromium, hexavalent	ND	1.0	ug/L							
LCS (AI63521-BS1)				Prepared & Analyzed: 09/19/16						
Chromium, hexavalent	9.93	1.0	ug/L	10.0		99.3	90-110			
Duplicate (AI63521-DUP1)	Sou	rce: 16l0423	-01	Prepared &	Analyzed:	09/19/16				
Chromium, hexavalent	ND	1.0	ug/L		ND				20	
Matrix Spike (AI63521-MS1)	Sou	rce: 16l0423	-01	Prepared 8	Analyzed:	09/19/16				
Chromium, hexavalent	9.72	1.0	ug/L	10.0	ND	97.2	90-110			
Matrix Spike (AI63521-MS2)	Sou	rce: 16 1463	-01	Prepared 8	Analyzed:	09/19/16				
Chromium, hexavalent	9.83	1.0	ug/L	10.0	ND	98.3	90-110			
Matrix Spike Dup (AI63521-MSD1)	Sou	rce: 16l0423	-01	Prepared 8	Analyzed:	09/19/16				
Chromium, hexavalent	9.60	1.0	ug/L	10.0	ND	96.0	90-110	1.15	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

## Metals by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63407 - EPA 200.8										
Blank (AI63407-BLK1)				Prepared: (	09/19/16 A	nalyzed: 09	/20/16			
Arsenic	ND	2.0	ug/L							
Chromium	ND	10	ug/L							
Vanadium	ND	3.0	ug/L							
LCS (AI63407-BS1)				Prepared: (	09/19/16 A	nalyzed: 09	/20/16			
Arsenic	21.9	2.0	ug/L	20.0		110	85-115			
Chromium	20.9	10	ug/L	20.0		104	85-115			
Vanadium	21.0	3.0	ug/L	20.0		105	85-115			
Duplicate (AI63407-DUP1)	Sou	urce: 1610351	-01	Prepared: (	09/19/16 A	nalyzed: 09	/20/16			
Arsenic	6.08	2.0	ug/L		6.63			8.57	20	
Chromium	ND	10	ug/L		ND				20	
Vanadium	ND	30	ug/L		ND				20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

## Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63242 - General Preparation										
Duplicate (AI63242-DUP1)	Source: 1610603-01 Pre		Prepared &	Prepared & Analyzed: 09/13/16						
Total Alkalinity as CaCO3	11.0	5.0	mg/L		11.0			0.00	20	
Batch AI63268 - General Prep										
LCS (AI63268-BS1)				Prepared: (	09/13/16 A	nalyzed: 09	/14/16			
Total Kjeldahl Nitrogen	2.95	1.0	mg/L	2.98		99.0	80-120			
LCS Dup (AI63268-BSD1)				Prepared: 09/13/16 Analyzed: 09/14/16						
Total Kjeldahl Nitrogen	2.95	1.0	mg/L	2.98		99.0	80-120	0.00	20	
Matrix Spike (AI63268-MS1)	Source: 16I0737-03			Prepared: 09/13/16 Analyzed: 09/14/16						
Total Kjeldahl Nitrogen	3.13	1.0	mg/L	2.98	ND	105	75-125			
Matrix Spike Dup (AI63268-MSD1)	Sou	ırce: 16l0737	-03	Prepared: 09/13/16 Analyzed: 09/14/16						
Total Kjeldahl Nitrogen	3.13	1.0	mg/L	2.98	ND	105	75-125	0.00	20	
Batch AI63455 - General Prep										
Blank (AI63455-BLK1)				Prepared & Analyzed: 09/19/16						
Phosphate, Total	ND	0.10	mg/L							
LCS (AI63455-BS1)				Prepared & Analyzed: 09/19/16						
Phosphate, Total	0.590	0.10	mg/L	0.600		98.4	85-115			
Duplicate (AI63455-DUP1)	Soι	ırce: 16 1150	-01	Prepared & Analyzed: 09/19/16						
Phosphate, Total	ND	0.10	mg/L	ND			6.35	20		





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

## Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

	Reporting			Spike Source			%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI63455 - General Prep										
Matrix Spike (AI63455-MS1)	Sour	ce: 16 1150	-01	Prepared &	Prepared & Analyzed: 09/19/16					
Phosphate, Total	0.607	0.10	mg/L	0.600	ND	90.7	70-130			
Matrix Spike Dup (AI63455-MSD1)	Sour	ce: 16 1150	-01	Prepared &	Prepared & Analyzed: 09/19/16					
Phosphate, Total	0.607	0.10	mg/L	0.600	ND	90.7	70-130	0.00	20	
Batch AI63462 - General Preparation										
Blank (A163462-BLK1)				Prepared &	Analyzed:	09/19/16				
Silica	ND	1.0	mg/L							
LCS (AI63462-BS1)				Prepared & Analyzed: 09/19/16						
Silica	9.57	1.0	mg/L	10.0		95.7	85-115			
LCS Dup (AI63462-BSD1)				Prepared & Analyzed: 09/19/16						
Silica	9.61	1.0	mg/L	10.0		96.1	85-115	0.411	20	
Duplicate (AI63462-DUP1)	Sour	ce: 1610685	-01	Prepared &	Analyzed:	09/19/16				
Silica	34.3	5.0	mg/L		35.8			4.50	20	
Matrix Spike (AI63462-MS1)	Source: 1610685-01 Pro		Prepared & Analyzed: 09/19/16							
Silica	56.1	5.0	mg/L	25.0	35.8	81.3	80-120			
Matrix Spike Dup (AI63462-MSD1)	Sour	Source: 16I0685-01		Prepared & Analyzed: 09/19/16						
Silica	56.5	5.0	mg/L	25.0	35.8	82.8	80-120	0.700	20	





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

## Anions by EPA Method 300.0 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AI63111 - General Preparation	Result	Linit	Onto	Level	Result	JULLE	Linits	Ki D	Linit	8
Blank (AI63111-BLK1)				Prepared &	analyzed:	00/07/16				
Nitrate as N	ND	0.20	mg/L	i icpaicu a	c Analyzeu.	09/07/10				
Sulfate as SO4	ND	0.20	mg/L							
Nitrite as N	ND	0.30	mg/L							
Chloride	ND	0.50	mg/L							
LCS (AI63111-BS1)				Prepared &	Analyzed:	09/07/16				
Sulfate as SO4	23.4	0.50	mg/L	22.2	-	105	90-110			
Nitrite as N	5.85	0.20	mg/L	5.56		105	90-110			
Nitrate as N	5.86	0.20	mg/L	5.56		105	90-110			
Chloride	11.6	0.50	mg/L	11.1		104	90-110			
Duplicate (AI63111-DUP1)	Sou	Source: 1610425-04 Prep		Prepared &	Analyzed:	09/08/16				
Nitrate as N	ND	0.20	mg/L		ND				20	
Nitrite as N	ND	0.20	mg/L		ND				20	
Chloride	ND	0.50	mg/L		ND				20	
Sulfate as SO4	ND	0.50	mg/L		ND				20	
Matrix Spike (AI63111-MS1)	Sou	rce: 16l0425	-04	Prepared &	Analyzed:	09/08/16				
Nitrite as N	5.58	0.20	mg/L	5.56	ND	100	80-120			
Chloride	11.4	0.50	mg/L	11.1	ND	102	80-120			
Nitrate as N	5.76	0.20	mg/L	5.56	ND	104	80-120			
Sulfate as SO4	22.8	0.50	mg/L	22.2	ND	103	80-120			
Matrix Spike (AI63111-MS2)	Source: 1610362-03 Pr		Prepared &	Analyzed:	09/08/16					
Chloride	15.9	2.5	mg/L	11.1	5.03	98.2	80-120			
Nitrate as N	5.32	1.0	mg/L	5.56	ND	95.7	80-120			
Nitrite as N	5.29	1.0	mg/L	5.56	ND	95.2	80-120			
Sulfate as SO4	32.0	2.5	mg/L	22.2	11.1	93.9	80-120			





Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

### Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

### **Batch AI63111 - General Preparation**

Matrix Spike Dup (AI63111-MSD1)	Sourc	e: 16l0425	-04	Prepared &	Analyzed:	09/08/16			
Chloride	11.6	0.50	mg/L	11.1	ND	104	80-120	1.65	20
Nitrate as N	5.85	0.20	mg/L	5.56	ND	105	80-120	1.65	20
Nitrite as N	5.59	0.20	mg/L	5.56	ND	101	80-120	0.139	20
Sulfate as SO4	23.1	0.50	mg/L	22.2	ND	104	80-120	1.48	20



Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309 Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192

Town Of Windsor - Drinking Water	Project Manager: Elizabeth Cargay	
8400 Windsor Rd.	Project: Esposti Feasibility Study	Reported:
Windsor, CA 95492-0100	Project Number: #25-1310	09/22/16 13:21

### **Notes and Definitions**

- QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- REC Recovery
- RPD Relative Percent Difference



# Certificate of Analysis

FINAL REPORT

Work Orders:	6109025	Report Date:	9/13/2016
		Received Date:	9/9/2016
Project [.]	1610423	Turnaround Time:	Normal
i i ojecu		Phones:	(925) 828-6226
		Fax:	(925) 828-6309
Attn:	Robbie Phillips	P.O. #:	
Client:	Alpha Analytical Laboratories - Ukiah 208 Mason St Ukiah, CA 95482		

Dear Robbie Phillips,

Enclosed are the results of analyses for samples received 9/09/16 with the Chain-of-Custody document. The samples were received in good condition, at 3.3 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Sample:	16I0423-01, Alias: Esposti Irrigation WellSampled: 09/06/16 10:45 by Client							
	6109025-01 (Water)							
Analyte			Result	MRL	Units	Dil	Analyzed	Qualifier
Method: IC-I	CP/MS	Batch ID: W6I0467	Instr: Inst		Prepa	red: 09/11/	16 08:36	Analyst: apa
Arsenic III	L		0.52	0.40	ug/l	1	09/11/16 16:57	
Arsenic V			13	4.0	ug/l	10	09/11/16 16:57	



# WECK LABORATORIES, INC.

# Quality Control Results

FINAL REPORT

Metals by EPA 200 Series Methods										
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W6I0467 - Direct Injection										
Blank (W6I0467-BLK1)				Prepared & A	nalyzed: 09/1	1/16				
Arsenic III	ND	0.40	ug/l							
Arsenic V	ND	0.40	ug/l							
LCS (W6I0467-BS1)				Prepared & A	nalyzed: 09/1	1/16				
Arsenic III	9.56	0.40	ug/l	10.0		96	85-115			
Arsenic V	8.92	0.40	ug/l	10.0		89	85-115			
Matrix Spike (W6I0467-MS1)	Source: 6H2602	26-01		Prepared & Analyzed: 09/11/16						
Arsenic III	118	4.0	ug/l	100	ND	118	70-130			
Arsenic V	119	4.0	ug/l	100	5.42	114	70-130			
Matrix Spike (W6I0467-MS2)	Source: 610800	4-01		Prepared & A	nalyzed: 09/1	1/16				
Arsenic III	112	4.0	ug/l	100	0.260	112	70-130			
Arsenic V	139	4.0	ug/l	100	28.7	110	70-130			
Matrix Spike Dup (W6I0467-MSD1)	Source: 6H2602	26-01		Prepared & A	nalyzed: 09/1	1/16				
Arsenic III	109	4.0	ug/l	100	ND	109	70-130	8	30	
Arsenic V		4.0	ug/l	100	5.42	108	70-130	4	30	
Matrix Spike Dup (W610467-MSD2)	Source: 610800	4-01		Prepared & A	nalyzed: 09/1	1/16				
Arsenic III	110	4.0	ug/l	100	0.260	110	70-130	2	30	
Arsenic V	140	4.0	ug/l	100	28.7	112	70-130	1	30	



WECK LABORATORIES, INC.

# Certificate of Analysis

**FINAL REPORT** 

# Notes and Definitions

# Definition

Item	Definition
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
Dil	Dilution
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
% Rec	Percent Recovery
Source	Sample that was matrix spiked or duplicated.
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) and Detection Limit for Reporting (DLR)
MDA	Minimum Detectable Activity
NR	Not Reportable
TIC	Tentatively Identified Compound (TIC) using mass spectrometry. The reported concentration is relative concentration based on the nearest internal standard. If the library search produces no matches at, or above 85%, the compound is reported as unknown.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance. An Absence of Total Coliform meets the drinking water standards as established by the California State Water Resources Control Board (SWRCB) All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS 002.

# Not Certified Analyses Summary

Analyte	CAS #	Not Accredited By
IC-ICP/MS in Water		
Arsenic III	22541-54-4	NELAP
Arsenic V	17428-41-0	NELAP
Reviewed by:		

Kim In

Kim G. Tu Project Manager

### DoD-ELAP #L15-366 ELAP-CA #1132 EPA-UCMR #CA00211 HW-DOH # ISO 17025 #L15-365 NELAP-OR #4047 NJ-DEP #CA015 NV-DEP #NAC 445A SCAQMD #93LA1006

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Alpha Analytical Laboratories Inc.		Central Valley Laboratory In Park Wy., #113, Elk Grove, CA 95624 118-688-5190 F) 916-688-5192	Work Order Chain of Custody Re	ecord
www.alpha-labs.com	Bay Area Laboratory 98 Dougherty Road, #35, Dublin, CA 94568 925-828-6228 F) 925-828-6309	2 2 2	Lab No. 1610423 Pag	• <u> </u>
Name:	Project ID:	Signature below authorizes work	k under terms stated on reverse side,	
Town of Windsor - Brinking Water FERSTBICK TY	#25-1310	Analys	sis Request	ТАТ
Mailing Address: 9291 Old Redwood Highway Building 400 Windsor, CA 95492	Esposti Well			124'hr
Project Contact (Hardcopy or PDF to): Elizabeth Cargay ecargay@townofwindsor.com	PO# 200336		4, NO2, 1	
KUBRIEN EHAZEN ANDAWYEE	Bill to:	Alu Va	(includes TKA Itium - total sub Weck	
Fleid Sampler, Prist Name & Standarte CID Sa	mple Container Preservative Matrix ection	<b>200.8 45</b> 200.8 Cr 218.6 Cr6 200.7 Ca, Mg, K, Na Alkalinity Chloride	e Nanac Shate As5 -	2 wfx (standerg)
Identification Date Esposti Irrigation Well	ومعاجب المراجع المعاد فالمعاد والمتعاد والمتعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعا	X         Zec.           X         200.8           X         200.8           X         200.8           X         200.7           X         Alkalli           X         Chlorit	x Sulfat x Total N x 200.8 x 200.8 x As3 8	
BOTTLE KIT ORDER for Esposti Irrigation Ryan Crawford 2235 Mercury Way, Suite 150, Santa Rosa, CA 95407	on Well placed 9/1/2016, deliver kit on Friday	9/2/20016 in a cooler to:		
		} ¥		
	-			
		l		
			EDF to (Emell Address);	
Relinquiter by	Received by particulation Da			<u> </u>
Willow, & entra	. 14	1- 1600		_

.

•

۲

-

1

Appendix K – Comprehensive Analytical Table A

Constituent	Analytical Method	Entire Well Pumping at 800 gpm for 28 Hours May 17, 2016 (mg/L ¹ )	Upper Zone Pumping at 300 gpm for 8 Hours September 21, 2016 (mg/L ¹ )	Irrigation Well September 6, 2016 (mg/L ¹ )	State MCL Drinking Water Standard Units in mg/L (Unless Otherwise Noted)
Aluminum	EPA 200.8	<0.050	NA	NA	1.0
Antimony	EPA 200.8	<0.006	NA	NA	0.006
Arsenic	EPA 200.8	0.057	0.035	0.013	0.010
Barium	EPA 200.8	0.150	NA	NA	1.0
Beryllium	EPA 200.8	<0.001	NA	NA	0.004
Boron	EPA 200.7	NA	NA	NA	1 (NL)
Cadmium	EPA 200.8	<0.001	NA	NA	0.005
Calcium	EPA 200.7	22	23	19	
Chromium (Total)	EPA 200.8	<0.010	<0.008	<0.010	0.05
Chromium (Hexavalent)	EPA 200	<0.001	<0.001	<0.001	0.01
Copper	EPA 200.8	<0.050	NA	NA	1.0 (SMCL)
Iron	EPA 200.7	<0.100	0.140	<0.10	0.3 (SMCL)
Lead	EPA 200.7	<0.005	NA	NA	0.015
Magnesium	EPA 200.7	16	18	19	
Manganese	EPA 200.8	0.860	0.910	1.5	0.05 (SMCL)
Mercury	EPA 245.1	<0.001	NA	NA	0.002
Nickel	EPA 200.8	<0.010	NA	NA	0.1
Potassium	EPA 200.7	NA	14	7.1	
Selenium	EPA 200.8	<0.005	NA	NA	0.05
Silver	EPA 200.8	<0.010	NA	NA	0.1 (SMCL)
Sodium	EPA 200.7	53	52	31	
Thallium	EPA 200.8	<0.001	NA	NA	0.002
Gross Alpha	EPA 900.0	0.818 ± 1.44 pCi/L	0.844 ± 1.40 pCi/L	NA	15 pCi/L
Ra 228	Ra - 05	0.049 ± 0.560 pCi/L	NA	NA	2 pCi/L
Uranium	EPA 200.8	<1.0 pCi/L	NA	NA	20 pCi/L
Vanadium	EPA 200.8	< 0.003	NA	<0.003	0.05 (NL)
Zinc	EPA 200.8	<0.050	NA	NA	5.0 (SMCL)
Aggressive Index	AWWA	11.68 NU	NA	NA	
Ammonia as NH₃	SM4500/H3N	<0.50	NA	NA	
Bicarbonate	SM2320B	270	NA	NA	
Carbonate	SM2320B	<5.0	NA	NA	
Color	SM2120B	<5.0 CU	NA	NA	15 Units (SMCL)
Cyanide (Total)	10-204-001X	<0.10	NA	NA	0.2
Hydroxide	SM2320B	<5.0	NA	NA	
MBAS, calculated as LAS, mw 340	SM5540C	<0.050	NA	NA	0.5 (SMCL)
Odor	EPA 140.1	<1.0 T.O.N.	NA	NA	, , ,
Perchlorate	EPA 314.0	<0.004	NA	NA	0.006
pH	SM4500-H+B	7.60 pH Units	NA	NA	
Phosphate (Total)	SM4500-PE	1.4	1.2	0.95	
Specific Conductance (EC)	SM2510B	520 uS/cm	NA	NA	900 uS/cm (SMCL)
Sulfide	SM4500SD	<0.10	NA	NA	· · · (-··· <b>··</b> )

# Table A - Comprehesive Analytical Results

Constituent	Analytical Method	Entire Well Pumping at 800 gpm for 28 Hours May 17, 2016 (mg/L ¹ )	Upper Zone Pumping at 300 gpm for 8 Hours September 21, 2016 (mg/L ¹ )	Irrigation Well September 6, 2016 (mg/L ¹ )	State MCL Drinking Water Standard Units in mg/L (Unless Otherwise Noted)	
Silica	SM4500-SiO2 C	50	86	85		
Total Dissolved Solids	SM2540C	350	NA	NA	500 (SMCL)	
Turbidity	SM2130B	0.26 NTU	NA	NA	5 NTU (SMCL)	
Total Alkalinity as CaCO₃	SM2320B	220	220	150		
Hardness, Total	SM2340B	120	NA	NA		
Chloride	EPA 300.0	21 22		27	250 (SMCL)	
Fluoride	EPA 300.0	0.15	NA	NA		
Nitrate as N	EPA 300.0	<0.40	<0.20	<0.20	10	
Nitrite as N	EPA 300.0	<0.40	<0.20	<0.20	1.0	
Total Nitrogen	SM4500-N	NA	<1.0	<1.0		
Total Kjeldahl Nitrogen	SM4500-NorgB	NA	<1.0	<1.0		
Sulfate as SO4	EPA 300.0	14	14	9.2	250 (SMCL)	
Volatile Organic Compounds	EPA 524.2	<0.0005 to <0.010	NA	NA		
Chlorinated Pesticides and PCBs	EPA 508	NA	NA	NA		
Nitrogen- and Phosphorus- Pesticides	EPA 507	<0.0005 to <0.002	NA	NA		
1,2-Dibromo-3-chloropropane	EPA 504.1	<1E-05	NA	NA		
1,2-Dibromoethane (EDB)	EPA 504.1	<2E-05	<2E-05 NA			
Chlorinated Acids	EPA 515.1	<0.0002 to <0.010	NA	NA		
Semivolatile Organic Compounds	EPA 525.2	<0.0001 to <0.005	NA	NA		
Carbofuran	EPA 531.1	NA	NA	NA	0.018	
Oxamyl	EPA 531.1	NA	NA	NA	0.05	
Glphosate	EPA 547	<0.025	NA	NA	0.7	
Endothall	EPA 548.1	NA	NA	NA	0.1	
Diquat	EPA 549.2	<0.004	NA	NA	0.02	
Tannins & Lignins	SM5550B	NA	<0.50	NA		
Total Suspended Solids	SM2540D	NA	3.5	NA		
Total Organic Carbon	SM5310C	NA	<0.300	NA		

Notes: 1 = Some analytical results are reported in units of µg/L these have been converted to mg/L for ease of comparison with water quality standards NA = Not analyzed MCL = Maximum Contaminant Level SMCL = Secondary Maximum Contaminant Level NL = Notification Level

# www.ghd.com



THIS PAGE INTENTIONALLY LEFT BLANK

# APPENDIX D

Acorn Environmental Water and Wastewater Feasibility Study Geotechnical Data Memorandum



# CAL ENGINEERING & GEOLOGY

785 Ygnacio Valley Rd. | Walnut Creek | CA 94596 6455 Almaden Expwy., Suite 100| San José | CA 95120 23785 Cabot Blvd., Suite 321 | Hayward | CA 94545 www.caleng.com

# **GEOTECHNICAL DATA MEMORANDUM**

- To: Curtis Lam, Principal HydroScience Engineers 741 Allston Way Berkeley, California 94710
- From: Christian Rodil, E.I.T. & Kevin Loeb P.G., C.E.G.
  Cal Engineering & Geology, Inc.
  6455 Almaden Expwy., Suite 100
  San Jose, California 95120



- Date: 26 July 2022
- RE: Geotechnical Data Memorandum Windsor Wastewater Treatment System Project Windsor, California CE&G Document 220270.001

# **INTRODUCTION**

Cal Engineering & Geology, Inc. (CE&G) has provided geotechnical engineering services to HydroScience Engineers for the Windsor Wastewater Treatment System Project located in Windsor, California. This geotechnical memorandum has been prepared to provide a summary of subsurface soil and groundwater conditions, as well as percolation rate data for the project site soils to be considered during the design and construction of the planned improvements.

# **SCOPE OF SERVICES**

The purpose of CE&G's geotechnical engineering services was to explore and evaluate the percolation potential of shallow subsurface soils in the planned percolation pond areas, around the project site as well as provide information on subsurface soils for use by the project designer.

The scope of work completed for this study and memorandum included:

- Completion of an office study to identify and evaluate relevant geologic and geotechnical information available for the site, including published geologic maps, and unpublished geotechnical information in our files regarding the site and vicinity.
- Geologic reconnaissance to observe current site conditions and to mark for Underground Service Alert (USA) utility clearance.
- Excavation of four test pits to visually classify subsurface soils and perform percolation testing.
- Laboratory testing to determine key engineering index properties of selected earth materials.
- Engineering analyses to evaluate percolation rates of on-site shallow soils.
- Preparation of this geotechnical data memorandum.

# **SITE DESCRIPTION**

The project site is located at 222 E Shiloh Rd. in Windsor, California as shown in Figure 1, and is bounded by Old Redwood Highway on the west; East Shiloh Road on the north; a neighboring vineyard to the east; and Santa Rosa Mineral Gem Society to the south. The project site is divided by the northeast-southwest trending Pruitt Creek, which flows southwest. Most of the project site is comprised of vineyards with various access roads and a single dwelling unit and associated improvements as well as a storage structure near the eastern border. Elevations throughout the project site range from approximately 134 to 160 feet above sea level with elevations decreasing from northeast to southwest.

A topographic survey of the project site was prepared by HMH, Inc. and provided to us by HydroScience Engineers. The topographic survey as well as other site features are shown in the attached Site Plan (Figure 2).

# SITE GEOLOGY

The general vicinity of the project site has been mapped several times, with geologic mapping having different emphases (e.g., Knudsen and others, 2000; Graymer and others, 2006; and Witter and others, 2006). Knudsen and others (2000) mapped Quaternary geologic materials in detail for much of the San Francisco Bay Area. Much of Knudsen and others' mapping was incorporated or refined by Witter and others (2006). For the purposes of the project, the Quaternary geologic mapping of Knudsen and others (2000),

refined by Witter and others (2006) is the most detailed and pertinent. The central and southwestern portions of the site are mapped as being underlain by Holocene to Latest Pleistocene aged basin deposits, which generally consist of poorly drained, clay-rich soils (Witter and others, 2006). The northern and eastern limits of the project site are mapped as being underlain by Holocene-aged alluvial fan deposits, which generally consist of varying amounts of sand, gravel, silt, and clay, and are moderately- to poorly-sorted and bedded (Witter and others, 2006). Historical stream channel deposits are mapped along the on-site Pruitt Creek area and are described as "loose, unconsolidated, poorly- to well-sorted sand, gravel, and cobbles, with minor silt and clay" (Witter and others, 2006).

# **NRCS SOIL SURVEY**

The U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) Soil Survey was reviewed for the project area. The soil survey identifies general shallow soil materials that may be encountered within the upper few feet. The project site is shown on the NRCS soil map as being underlain by the following shallow soil materials:

- Huichica loam (HtA/HuB): Generally, extends to depths about 57 inches below grade. This unit is imperfectly drained, has a slow runoff class, and has very low to moderately low saturated hydraulic conductivity (Ksat) of 0.00 to 0.06 in/hr.
- Yolo silt loam (YsA): Generally, extends to depths about 65 inches below grade. This unit is well-drained, has a slow to medium runoff class, and has moderately high to high saturated hydraulic conductivity (Ksat) of 0.60 to 2.00 in/hr.
- Riverwash (RnA): Generally, consists of barren, coarse-textured, alluvial areas that are exposed along streams with low water levels and are subject to shifting during normal high-water levels. This unit is excessively drained and has high to very high saturated hydraulic conductivity (Ksat) of 5.95 to 19.98 in/hr.

The attached Figure 4 shows the NRCS soil survey map for the project site. Further soil descriptions are included in Attachment C.

# **REGIONAL GROUNDWATER**

Groundwater level data from the Sustainable Groundwater Management Act (SGMA) database, by the Department of Water Resources (DWR), was reviewed for a site located approximately 0.5 miles south of the project area. According to the database, depth to groundwater ranges from about 9 ft below ground surface (bgs) after wet seasons to about 37 ft bgs after dryer seasons, between 2018 and early 2022.

# **FIELD EXPLORATION**

# SITE RECONNAISSANCE

CE&G performed field reconnaissance of the site on April 4, 2022, in advance of performing the test pits and percolation testing. Site reconnaissance consisted of photographic documentation of the project site and identifying and marking the test pit locations for utility clearance by Underground Service Alert (USA). The test pit locations were also cleared by a private utility locator.

# SUBSURFACE EXPLORATIONS

# **Scope of Explorations**

Our field explorations included excavating four test pits in the vicinity of the planned percolation ponds and/or leach fields. The test pits were excavated by Houck's Grading on April 11, 2022, using a mini excavator equipped with 12-inch and 24-inch-wide buckets. The test pits were excavated to a depth of 5 feet bgs. An additional 12-inch by 12-inch hole was hand-excavated at the bottom of each test pit to approximately 6 feet bgs for percolation testing, which is further described in the Percolation Testing Section of this memorandum. Test pit locations were selected by HydroScience Engineers and are shown in Figure 2.

# Logging and Sampling

The materials encountered in the test pits were logged in the field by a CE&G engineer. The soil was visually classified in the field, office, and laboratory according to the Unified Soil Classification System (USCS) in general accordance with ASTM D2487 and D2488.

Soil samples obtained from the test pits were packaged and sealed in the field to reduce the potential for moisture loss. The samples were taken to CE&G's local laboratory for further analysis and storage.

# LABORATORY TESTING

Laboratory testing was performed to obtain information regarding the physical and index properties of selected samples recovered from the test pits. Tests performed included grain size distribution and Atterberg limits. Tests were completed in general conformance with applicable ASTM standards. The results of the laboratory tests are summarized on the test pit logs in Attachment B and are included in Attachment C.

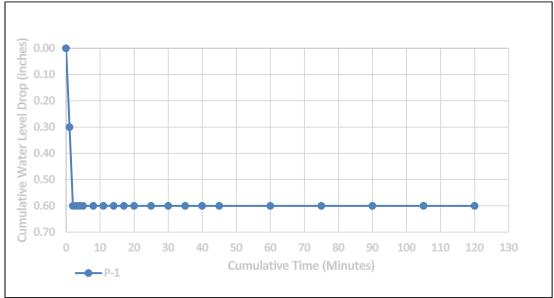
# SOIL CONDITIONS ENCOUNTERED

Alluvial deposits were encountered in each test pit to the maximum depth explored of 6 feet. The encountered alluvium within the upper four feet of test pits P-1, P-2, and P-3 primarily consists of lean clays with varying amounts of sand, silt, and gravel and occasional silty sand layers. Shallow soils encountered in test pit P-4 are more granular and consist of moist to wet silty sand, clayey gravel, and clayey sand from 0 to 5 feet below the ground surface. Sandy lean clay and lean clay with sand was encountered in each of the four test pits from approximately 5 to 6 feet below ground surface.

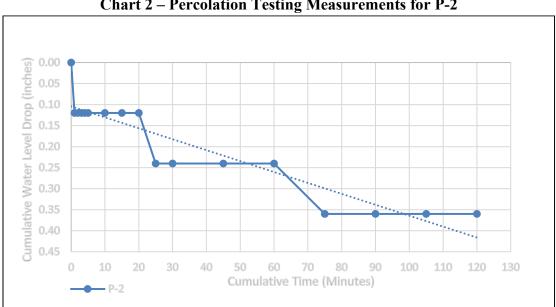
For a more detailed description of the encountered soils, the test pit logs, and laboratory test results are included in Attachments B and C.

# **GROUNDWATER CONDITIONS ENCOUNTERED**

Perched groundwater was encountered at approximately 2 feet bgs in test pit P-4. Groundwater was not encountered in test pits P-1, P-2, or P-3.


# PERCOLATION TESTING

Percolation testing was performed by CE&G on April 12 and 13, 2022, at three locations on the project site, selected by HydroScience Engineers. The three percolation tests were designated as P-1, P-2 and P-3, and their approximate locations are shown in Figure 2. Soil samples were collected from each percolation testing zones (depth of 5 to 6 feet) for laboratory analysis.


The previously discussed test pits were utilized to perform the percolation tests in general conformance with Regional Water Quality Control Board Basin Plan percolation testing guidelines for OTWS sites. Percolation testing was only performed in 3 of the 4 test pits due to perched groundwater seeping into and filling the bottom 6 inches of test pit P-4.

Preparation for the percolation tests consisted of excavating a 12-inch diameter by 12-inch deep hole into the bottom of each test pit and continuously presoaking the test holes for 12 hours. Starting 24-hours after beginning the initial presoak, the test holes were again presoaked for one additional hour by continuously adding water to maintain a constant head of 12 inches within the test hole. Once the presoaking was completed, the testing began with 12 inches of water above the bottom of the hole. Water level drops were then measured and recorded at varying time intervals for the observed rate of percolation. Upon completion of the percolation testing, the test pits were backfilled with the stockpiled soil and compacted using the excavator bucket.

Data plots showing the recorded cumulative water level drops versus time are shown on Charts 1, 2, and 3 for tests P-1, P-2, and P-3, respectively. The average slopes of the recorded values were used to calculate the percolation rates for each percolation test. The calculated percolation rates are listed in Table 1.



**Chart 2 – Percolation Testing Measurements for P-1** 



**Chart 2 – Percolation Testing Measurements for P-2** 

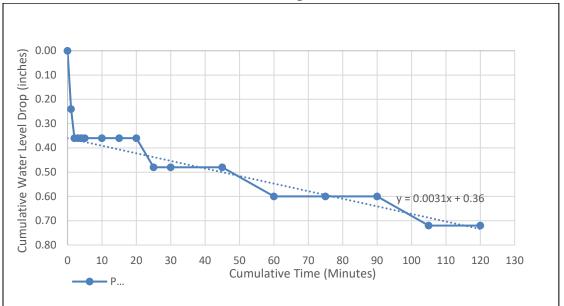



Chart 3 – Percolation Testing Measurements for P-3

 Table 1 – Percolation Rate Data

Infiltration Test ID	Soil Type	Average Percolation Rate (in/hr)	Average Percolation Rate (in/min)		
P-1	Sandy Lean Clay	0.0	0.000		
P-2	Sandy Lean Clay	0.2	0.003		
P-3	Sandy Lean Clay	0.2	0.003		
NRCS*		0.00 to 0.06			

*NRCS saturated hydraulic conductivity (Ksat) values for shallow soils within the site vicinity.

# **CONCLUSIONS**

CE&G has performed data research and field explorations to characterize the subsurface soil and groundwater conditions, including percolation rates of shallow soils for the Windsor Wastewater Treatment System Project. A summary of infiltration rates is presented in Table 1.

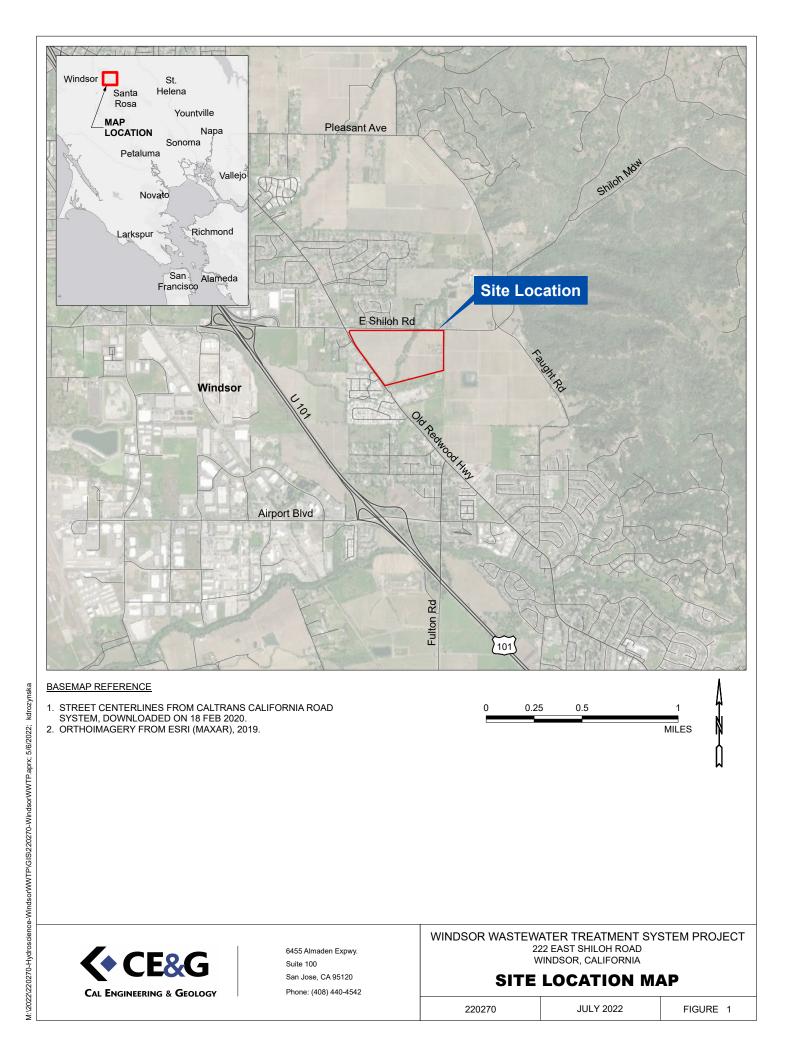
In our judgment, percolation rates ranging from 0.00 to 0.2 in/hr are recommended for the sandy lean clay soils encountered from approximately 5 to 6 feet below the ground surface. Percolation testing of P-4 was unsuccessful due to the presence of perched groundwater.

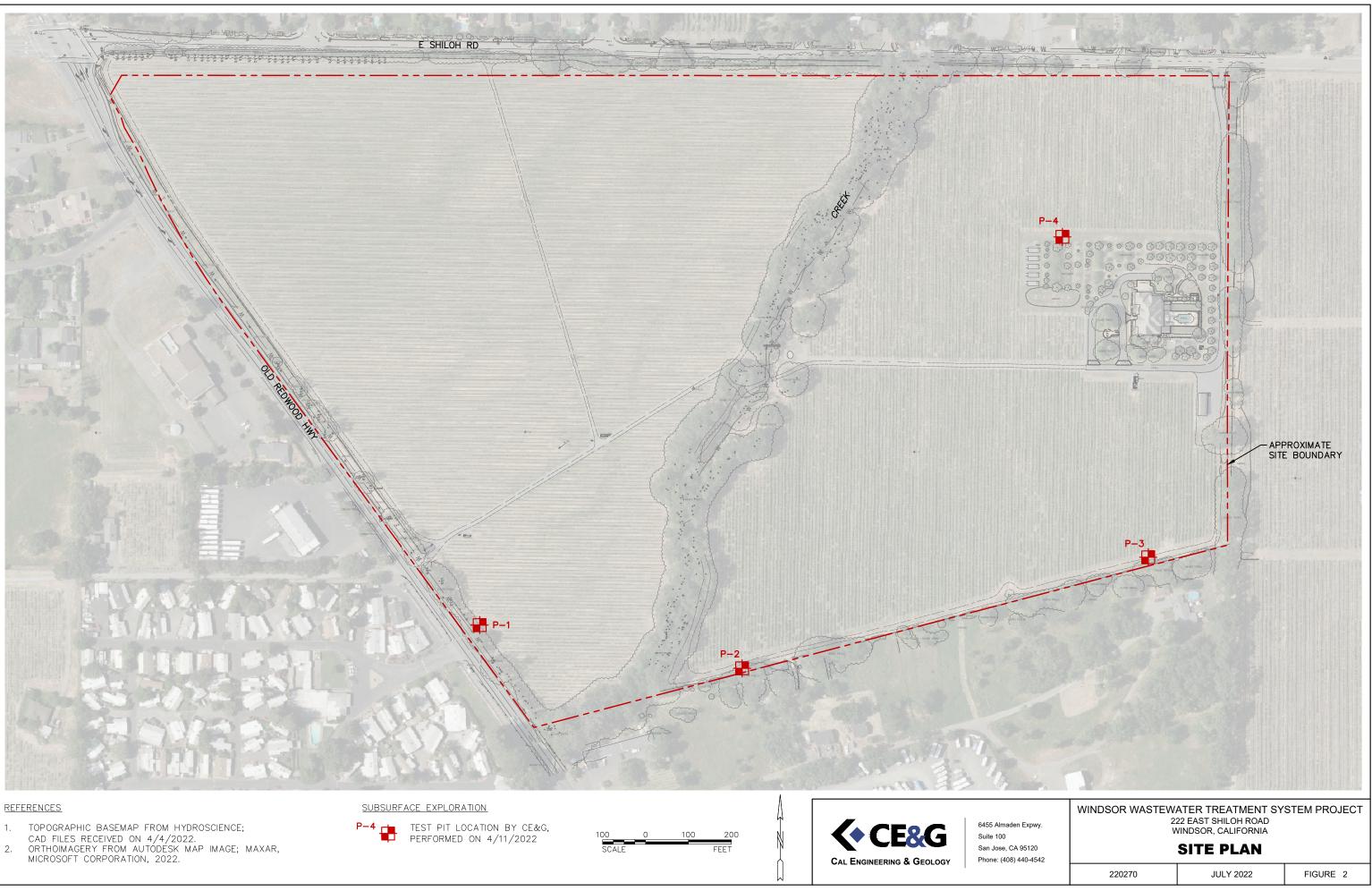
# **LIMITATIONS**

The information presented in this memorandum is based upon information provided to us regarding the project, subsurface conditions encountered at the exploration locations, our reconnaissance, and professional judgment.

The information provided in this report and on the test pit logs should be provided to the engineer for design of the proposed improvements.

We have employed accepted geologic and geotechnical engineering procedures, and our professional opinions and conclusions are made in accordance with generally accepted geotechnical engineering principles and practices. This standard is in lieu of all warranties, either expressed or implied.


The locations of the exploratory test pits were determined by using a handheld GPS, and tape and compass methods from established site features and are considered to be approximate. Site conditions described in the text of this report are those existing at the time of our last field exploration and reconnaissance in April 2022 and are not necessarily representative of the site conditions at other times or locations.


Unanticipated soil conditions are frequently encountered during construction and cannot be fully determined by a limited number of subsurface exploration locations. Additional expenditures may be required during the construction phases of the project as conditions vary. If it is found during construction that subsurface conditions differ from those described on the exploratory logs, then the findings presented in this report shall be considered invalid, unless the changes are reviewed and the findings modified and approved in writing by Cal Engineering & Geology, Inc.

The evaluation or identification of the potential presence of hazardous materials at the site was not requested and is beyond the scope of this project. If you have any questions regarding this report, or if we may be of further service, please contact us.

# **REFERENCES**

- Graymer, R.W., and 5 others, 2006, Geologic Map of the San Francisco Bay Region. U.S. Geological Survey, Scientific Investigations Map 2918.
- Department of Water Resources (DWR), 2015, Sustainable Groundwater Management Act (SGMA) https://sgma.water.ca.gov/webgis
- Knudsen, K.L., and 7 others, 2000, Preliminary Maps of Quaternary Deposits and Liquefaction Susceptibility, Nine-County San Francisco Bay Region, California; a Digital Database: U.S. Geological Survey Open-File Report 00-444, 1:24,000.
- U.S. Department of Agriculture, 2019, Natural Resources Conservation Service Soil Survey, accessed April 2022. https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
- Witter, R. C., Knudsen, K. L., Sowers, J. M., Wentworth, C. M., Koehler, R. D., Randolph, C. E., and Gans, K. D., 2006, Maps of Quaternary deposits and liquefaction susceptibility in the central San Francisco Bay region, California (No. 2006-1037). Geological Survey (US).









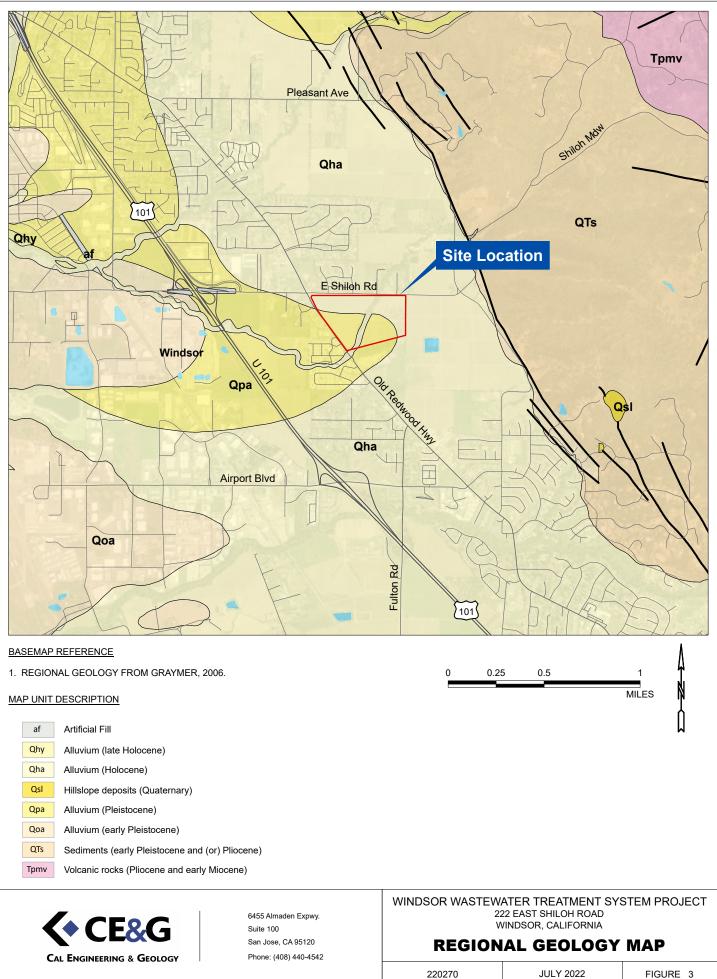
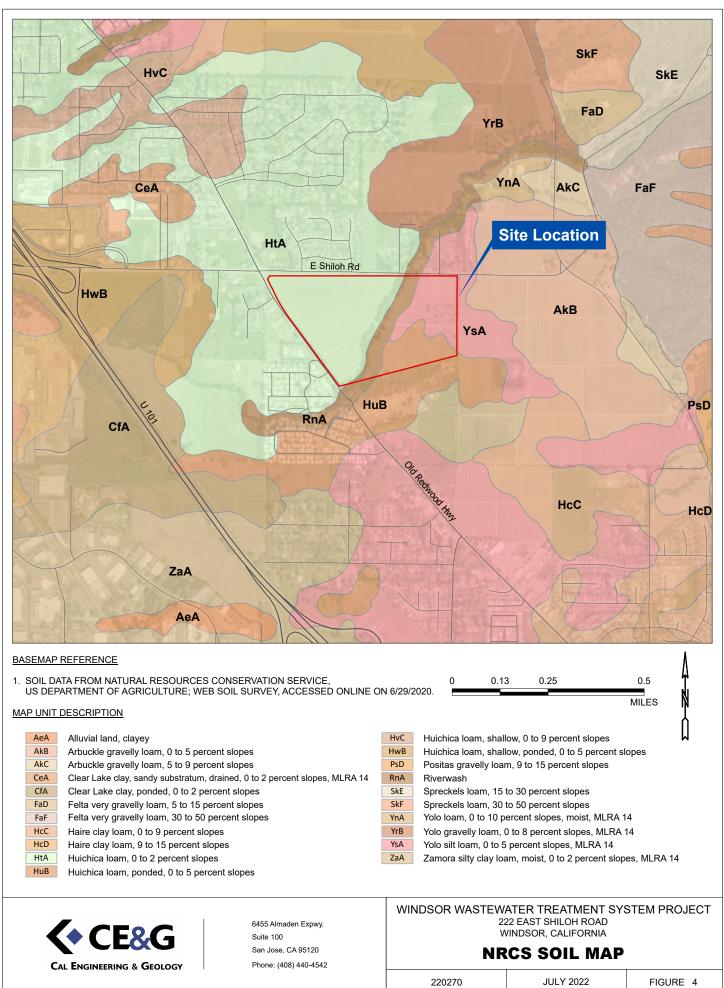




FIGURE 3



# Attachment A. NRCS Soil Descriptions

# **Map Unit Description**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named, soils that are similar to the named components, and some minor components that differ in use and management from the major soils.

Most of the soils similar to the major components have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Some minor components, however, have properties and behavior characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

# Sonoma County, California

# HtA—Huichica loam, 0 to 2 percent slopes

# Map Unit Setting

National map unit symbol: hffk Elevation: 100 to 300 feet Mean annual precipitation: 30 inches Mean annual air temperature: 61 degrees F Frost-free period: 260 days

USDA

Farmland classification: Farmland of statewide importance

### Map Unit Composition

Huichica and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

# **Description of Huichica**

### Setting

Landform: Terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from igneous, metamorphic and sedimentary rock

# **Typical profile**

*H1 - 0 to 14 inches:* loam *H2 - 14 to 23 inches:* sandy clay loam *H3 - 23 to 30 inches:* clay *H4 - 30 to 57 inches:* cemented

# **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches; 20 to 40 inches to duripan
Drainage class: Moderately well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.5 inches)

### Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 3s Hydrologic Soil Group: C Ecological site: R014XG912CA - Loamy Terrace Hydric soil rating: No

# **Minor Components**

### Unnamed

Percent of map unit: 5 percent Landform: Basin floors Hydric soil rating: Yes

# Wright

Percent of map unit: 3 percent

USDA

Hydric soil rating: No

### Haire

Percent of map unit: 3 percent Hydric soil rating: No

### **Clear lake**

Percent of map unit: 2 percent Landform: Depressions Hydric soil rating: Yes

# Zamora

Percent of map unit: 2 percent Hydric soil rating: No

# **Data Source Information**

Soil Survey Area: Sonoma County, California Survey Area Data: Version 15, Sep 10, 2021

# Sonoma County, California

# HuB—Huichica loam, ponded, 0 to 5 percent slopes

# Map Unit Setting

National map unit symbol: hffn Elevation: 100 to 300 feet Mean annual precipitation: 30 inches Mean annual air temperature: 61 degrees F Frost-free period: 260 days Farmland classification: Farmland of statewide importance

# **Map Unit Composition**

Huichica and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

# **Description of Huichica**

# Setting

Landform: Terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from igneous, metamorphic and sedimentary rock

# **Typical profile**

*H1 - 0 to 14 inches:* loam *H2 - 14 to 23 inches:* sandy clay loam *H3 - 23 to 38 inches:* clay *H4 - 38 to 57 inches:* cemented

# **Properties and qualities**

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches; 20 to 40 inches to duripan
Drainage class: Moderately well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water supply, 0 to 60 inches: Low (about 3.5 inches)

### Interpretive groups

Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 3w Hydrologic Soil Group: D

USDA

Ecological site: R014XG912CA - Loamy Terrace Hydric soil rating: Yes

### **Minor Components**

# **Clear lake**

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

# Zamora

Percent of map unit: 5 percent Hydric soil rating: No

# Wright

Percent of map unit: 5 percent Hydric soil rating: No

# **Data Source Information**

Soil Survey Area: Sonoma County, California Survey Area Data: Version 15, Sep 10, 2021



# Sonoma County, California

# **RnA**—Riverwash

# **Map Unit Setting**

National map unit symbol: hfj7 Elevation: 700 to 2,900 feet Mean annual precipitation: 8 to 15 inches Mean annual air temperature: 46 to 52 degrees F Frost-free period: 110 to 180 days Farmland classification: Not prime farmland

# **Map Unit Composition**

*Riverwash:* 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

# **Description of Riverwash**

# Setting

Landform: Flood plains Parent material: Sandy and gravelly alluvium

# Typical profile

H1 - 0 to 6 inches: very gravelly sand
H2 - 6 to 60 inches: stratified very gravelly coarse sand to very gravelly sand

# Properties and qualities

Slope: 0 to 2 percent
Drainage class: Excessively drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: FrequentNone
Available water supply, 0 to 60 inches: Very low (about 1.8 inches)

# Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydric soil rating: Yes

### **Minor Components**

# Unnamed

Percent of map unit: 15 percent

Hydric soil rating: No

# **Data Source Information**

Soil Survey Area: Sonoma County, California Survey Area Data: Version 15, Sep 10, 2021



# Sonoma County, California

# YsA—Yolo silt loam, 0 to 5 percent slopes, MLRA 14

# Map Unit Setting

National map unit symbol: 2w8b0 Elevation: 30 to 790 feet Mean annual precipitation: 31 to 54 inches Mean annual air temperature: 56 to 60 degrees F Frost-free period: 240 to 260 days Farmland classification: Prime farmland if irrigated

# **Map Unit Composition**

Yolo and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

# **Description of Yolo**

# Setting

Landform: Alluvial fans Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from volcanic and sedimentary rock

# **Typical profile**

*Ap - 0 to 8 inches:* silt loam *C - 8 to 60 inches:* loam

# **Properties and qualities**

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Rare
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline (0.3 to 0.5 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 11.0 inches)

# Interpretive groups

Land capability classification (irrigated): 1 Land capability classification (nonirrigated): 3c Hydrologic Soil Group: B Ecological site: R014XG918CA - Loamy Fan

USDA

Hydric soil rating: No

**Minor Components** 

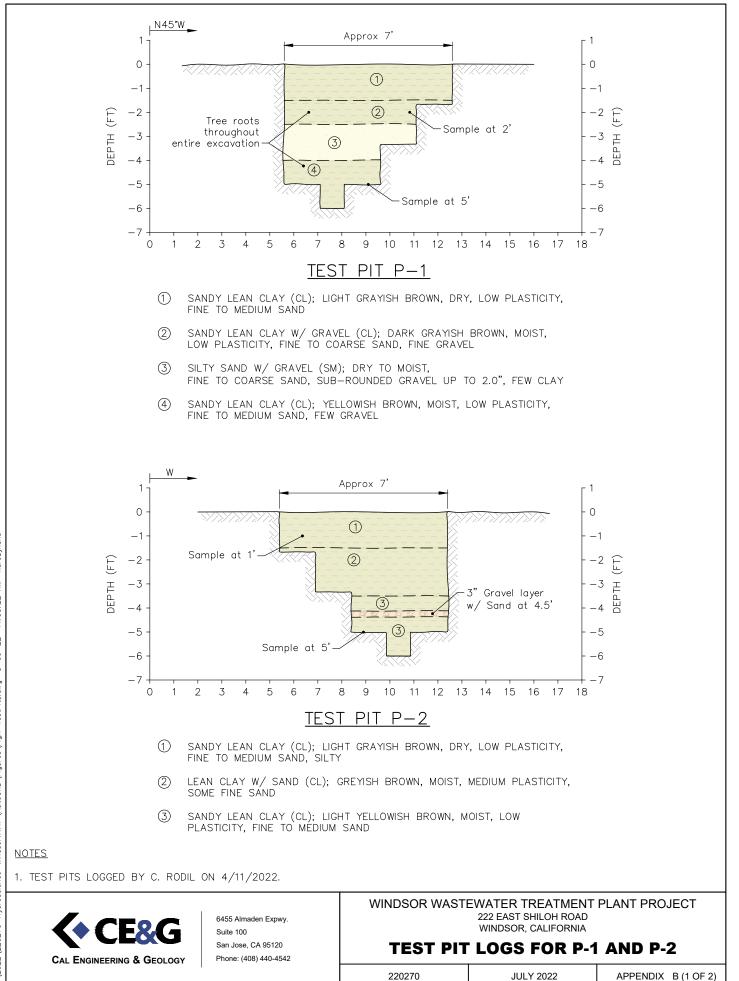
# Pleasanton

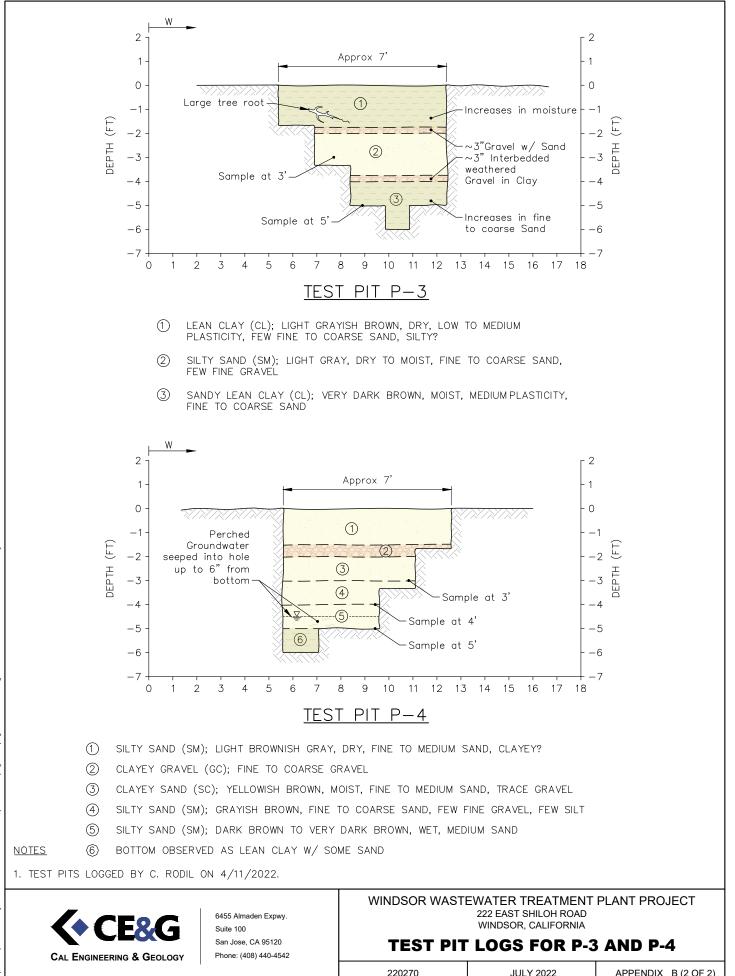
Percent of map unit: 5 percent

Cortina

Percent of map unit: 5 percent

Pajaro


Percent of map unit: 5 percent


# **Data Source Information**

Soil Survey Area: Sonoma County, California Survey Area Data: Version 15, Sep 10, 2021



Attachment B. Test Pit Logs





11:53:27 AM kdrozynska 5-09-22 M: \2022\220270-Hydroscience-WindsorWWTP\AutoCAD\Figures\FigX-TestPits.dwg

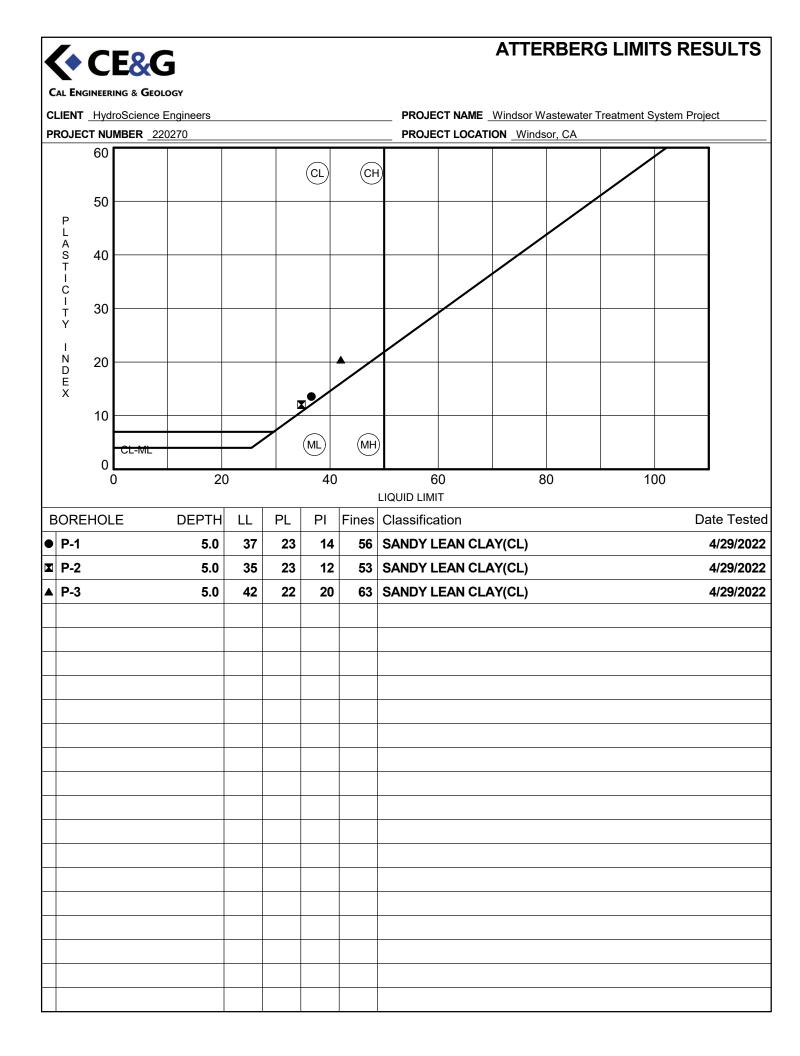
**JULY 2022** 

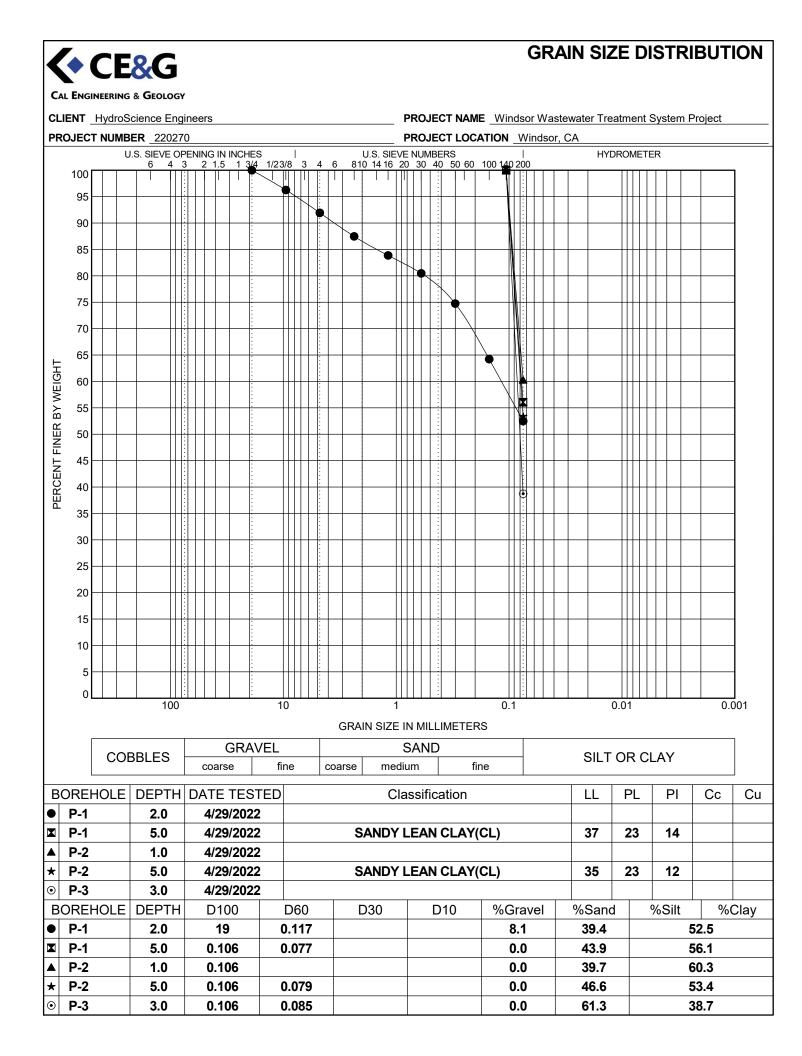
APPENDIX B (2 OF 2)

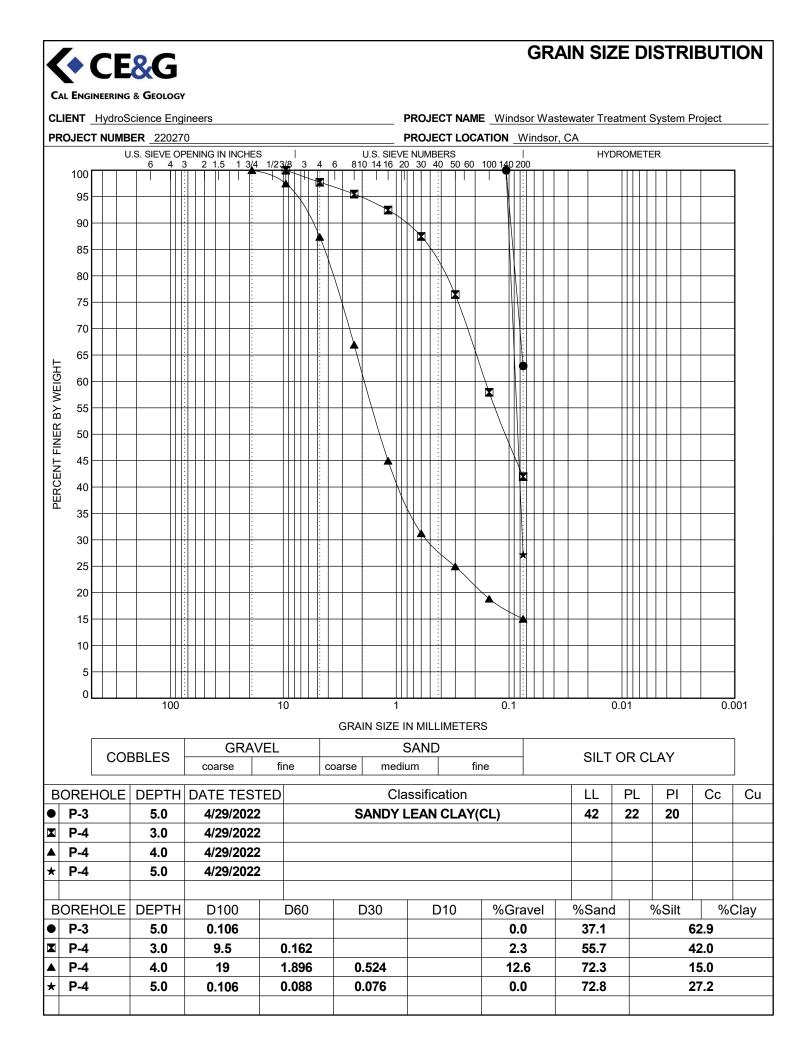
Attachment C. Laboratory Testing



# SUMMARY OF LABORATORY RESULTS


PAGE 1 OF 1


CAL ENGINEERING & GEOLOGY


CLIENT HydroScience Engineers

PROJECT NAME Windsor Wastewater Treatment System Project

PROJECT NUMBER 220270 PROJECT LOCATION Windsor, CA												
Borehole	Depth	Date Tested	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Screen Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
P-1	2.0	4/29/2022				19	52					
P-1	5.0	4/29/2022	37	23	14	0.106	56	CL				
P-2	1.0	4/29/2022				0.106	60					
P-2	3.0	4/29/2022										
P-2	5.0	4/29/2022	35	23	12	0.106	53	CL				
P-3	3.0	4/29/2022				0.106	39					
P-3	5.0	4/29/2022	42	22	20	0.106	63	CL				
P-4	3.0	4/29/2022				9.5	42					
P-4	4.0	4/29/2022				19	15					
P-4	5.0	4/29/2022				0.106	27					







THIS PAGE INTENTIONALLY LEFT BLANK